7,629
Views
67
CrossRef citations to date
0
Altmetric
Review

Interactions between host and gut microbiota in domestic pigs: a review

ORCID Icon, & ORCID Icon
Pages 310-334 | Received 02 Aug 2019, Accepted 04 Nov 2019, Published online: 24 Nov 2019

References

  • Dominguez-Bello MG, Godoy-Vitorino F, Knight R, Blaser MJ. Role of the microbiome in human development. Gut. 2019;68(6):1108. doi:10.1136/gutjnl-2018-317503.
  • Kim HB, Isaacson RE. The pig gut microbial diversity: understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet Microbiol. 2015;177(3):242–251. doi:10.1016/j.vetmic.2015.03.014.
  • Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70(1):S38–S44. doi:10.1111/nure.2012.70.issue-s1.
  • Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016;535(7610):65. doi:10.1038/nature18847.
  • Min YW, Rhee P-L. The role of microbiota on the gut immunology. Clin Ther. 2015;37(5):968–975. doi:10.1016/j.clinthera.2015.03.009.
  • Peterson J, Garges S, Giovanni M, McInnes P, Lu W, Schloss JA, Bonazzi V, McEwen JE, Wetterstrand KA, Deal C, et al. The NIH human microbiome project. (Report). Genome Res. 2009;19(12):2317–2333. doi:10.1101/gr.096651.109.
  • Wang M, Monaco MH, Donovan SM. Impact of early gut microbiota on immune and metabolic development and function. Seminars in Fetal and Neonatal Medicine. 2016;21(6):380–387. doi:10.1016/j.siny.2016.04.004.
  • Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A. 2005;102(31):11070–11075. doi:10.1073/pnas.0504978102.
  • Savage DC. Microbial ecology of the gastrointestinal tract. Annu Rev Microbiol. 1977;31(1):107–133. doi:10.1146/annurev.mi.31.100177.000543.
  • Xu J, Gordon JI. Honor thy symbionts. Proc Natl Acad Sci U.S.A. 2003;100(18):10452–10459. doi:10.1073/pnas.1734063100.
  • Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005;307(5717):1915–1920. doi:10.1126/science.1104816.
  • Hill DA, Artis D. Intestinal bacteria and the regulation of immune cell homeostasis. Annu Rev Immunol. 2009;28:623–667. doi:10.1146/annurev-immunol-030409-101330.
  • Ley RE, Hamady M, Lozupone C, Turnbaugh P, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, et al. Evolution of mammals and their gut microbes. Science (New York, NY). 2008;320(5883):1647–1651. doi:10.1126/science.1155725.
  • Wu H-J, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3(1):4–14. doi:10.4161/gmic.19320.
  • Levy M, Blacher E, Elinav E. Microbiome, metabolites and host immunity. Curr Opin Microbiol. 2017;35::8–15. doi:10.1016/j.mib.2016.10.003.
  • Brown K, Decoffe D, Molcan E, Gibson DL. Diet-induced dysbiosis of the intestinal microbiota and the effects on immunity and disease. Nutrients. 2012;4:1095–1119. doi:10.3390/nu4081095.
  • Madsen KL. Interactions between microbes and the gut epithelium. J Clin Gastroenterol. 2011;45:S111–S114. doi:10.1097/MCG.0b013e3182274249.
  • Yu S, Gao N. Compartmentalizing intestinal epithelial cell toll-like receptors for immune surveillance. Cell Mol Life Sci. 2015;72(17):3343–3353. doi:10.1007/s00018-015-1931-1.
  • Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. The pig: a model for human infectious diseases. Trends Microbiol. 2012;20(1):50–57. doi:10.1016/j.tim.2011.11.002.
  • Zhang Q, Widmer G, Tzipori S. A pig model of the human gastrointestinal tract. Gut Microbes. 2013;4(3):193–200. doi:10.4161/gmic.23867.
  • Xiao L, Estellé J, Kiilerich P, Ramayo-Caldas Y, Xia Z, Feng Q, Liang S, Pedersen AØ, Kjeldsen NJ, Liu C, et al. A reference gene catalogue of the pig gut microbiome. Nat Microbiol. 2016;16161(1):1–6.
  • Lu D, Tiezzi F, Schillebeeckx C, McNulty NP, Schwab C, Shull C, Maltecca C. Host contributes to longitudinal diversity of fecal microbiota in swine selected for lean growth. Microbiome. 2018;6(1):4. doi:10.1186/s40168-017-0384-1.
  • Saffrey M. Aging of the mammalian gastrointestinal tract: a complex organ system. The Official J Am Aging Assoc. 2014;36:1019–1032.
  • Kim B, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, Isaacson RE. Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin. Proc Natl Acad Sci U.S.A. 2012;109(38):15485–15490. doi:10.1073/pnas.1205147109.
  • Looft T, Allen HK, Cantarel BL, Levine UY, Bayles DO, Alt DP, Henrissat B, Stanton TB. Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations. Isme J. 2014;8:1566. doi:10.1038/ismej.2014.12.
  • Maradiaga N, Aldridge B, Zeineldin M, Lowe J. Gastrointestinal microbiota and mucosal immune gene expression in neonatal pigs reared in a cross-fostering model. Microb Pathog. 2018;121:27–39. doi:10.1016/j.micpath.2018.05.007.
  • Allen HK, Looft T, Bayles DO, Humphrey S, Levine UY, Alt D, Stanton TB. Antibiotics in feed induce prophages in swine fecal microbiomes. Antibiot in Feed Induce Prophages in Swine Fecal Microbiomes. 2011;2(6):1–9:e00260-11.
  • Lamendella R, Santo Domingo JW, Ghosh S, Martinson J, Oerther DB. Comparative fecal metagenomics unveils unique functional capacity of the swine gut. BMC Microbiol. 2011;11(1):103. doi:10.1186/1471-2180-11-103.
  • Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD, Sul WJ, Stedtfeld TM, Chai B, Cole JR, et al. In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl. Acad Sci U.S.A. 2012;109(5):1691. doi:10.1073/pnas.1120238109.
  • Zhao W, Wang Y, Liu S, Huang J, Zhai Z, He C, Ding J, Wang J, Wang H, Fan W, et al. The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLoS One. 2015;10(2):e0117441. doi:10.1371/journal.pone.0117441.
  • Sandhu KV, Sherwin E, Schellekens H, Stanton C, Dinan TG, Cryan JF. Feeding the microbiota-gut-brain axis: diet, microbiome, and neuropsychiatry. Transl Res. 2017;179:223–244. doi:10.1016/j.trsl.2016.10.002.
  • Martin CR, Osadchiy V, Kalani A, Mayer EA. The brain-gut-microbiome axis. Cell Mol Gastroentero Hepatol. 2018. doi:10.1016/j.jcmgh.2018.04.003.
  • Bohórquez DV, Liddle RA. The gut connectome: making sense of what you eat. J Clin Invest. 2015;125(3):888–890. doi:10.1172/JCI81121.
  • Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest. 2015;125(3):926–938. doi:10.1172/JCI76304.
  • Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI. Worlds within worlds: evolution of the vertebrate gut microbiota. (ANALYSIS)(Report). Nat Rev Microbiol. 2008;6(10):776. doi:10.1038/nrmicro1978.
  • Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Møller K. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol. 2002;68(2):673–690. doi:10.1128/AEM.68.2.673-690.2002.
  • Wang M, Radlowski EC, Monaco MH, Fahey GC, Gaskins HR, Donovan SM. Mode of delivery and early nutrition modulate microbial colonization and fermentation products in neonatal piglets. J Nutr. 2013;143(6):795–803. doi:10.3945/jn.112.173096.
  • Jansman AJM, Zhang J, Koopmans SJ, Dekker RA, Smidt H. Effects of a simple or a complex starter microbiota on intestinal microbiota composition in caesarean derived piglets1. J Anim Sci. 2012;90(4):433–435. doi:10.2527/jas.53850.
  • Siggers RH, Thymann T, Jensen BB, Mølbak L, Heegaard PMH, Schmidt M, Buddington RK, Sangild PT. Elective cesarean delivery affects gut maturation and delays microbial colonization but does not increase necrotizing enterocolitis in preterm pigs. Am J Physiol-Regul, Integr and Comp Physiol. 2008;294(3):R929–R938. doi:10.1152/ajpregu.00705.2007.
  • Hyde Matthew J, Griffin Julian L, Herrera E, Byrne Christopher D, Clarke L, Kemp Paul R. Delivery by Caesarean section, rather than vaginal delivery, promotes hepatic steatosis in piglets. Clin Sci. 2010;118(1):47. doi:10.1042/CS20090169.
  • Thompson CL, Wang B, Holmes AJ. The immediate environment during postnatal development has long-term impact on gut community structure in pigs. Isme J. 2008;2:739. doi:10.1038/ismej.2008.29.
  • Yang H, Xiao Y, Wang J, Xiang Y, Gong Y, Wen X, Li D. Core gut microbiota in Jinhua pigs and its correlation with strain, farm and weaning age. Journal of Microbiology. 2018;56(5):346–355. doi:10.1007/s12275-018-7486-8.
  • Pajarillo EAB, Chae JP, Balolong MP, Kim HB, Seo K-S, Kang D-K. Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. Journal of Microbiology. 2014a;52(8):646–651. doi:10.1007/s12275-014-4270-2.
  • Pajarillo EAB, Chae JP, Balolong MP, Kim HB, Seo K-S, Kang D-K. Characterization of the fecal microbial communities of Duroc pigs using 16S rRNA gene pyrosequencing. Asian-Australas J Anim Sci. 2015;28:584+. doi:10.5713/ajas.14.0651.
  • Kim HB, Borewicz K, White BA, Singer RS, Sreevatsan S, Tu ZJ, Isaacson RE. Longitudinal investigation of the age-related bacterial diversity in the feces of commercial pigs. Vet Microbiol. 2011;153(1):124–133. doi:10.1016/j.vetmic.2011.05.021.
  • Mathur R, Barlow GM. Obesity and the microbiome. Expert Review of Gastroenterology & Hepatology. 2015;9:1087–1099. Informa Healthcare. doi:10.1586/17474124.2015.1051029.
  • Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio. 2015;6(1). doi:10.1128/mBio.02288-14.
  • Han GG, Lee J-Y, Jin G-D, Park J, Choi YH, Kang S-K, Chae BJ, Kim EB, Choi Y-J. Tracing of the fecal microbiota of commercial pigs at five growth stages from birth to shipment. Sci Rep. 2018;8(1):6012. doi:10.1038/s41598-018-24508-7.
  • Holman DB, Brunelle BW, Trachsel J, Allen HK, Bik H. Meta-analysis to define a core microbiota in the swine gut. mSystems. 2017;2(3):1-14:e00004-17.
  • Pryde SE, Richardson AJ, Stewart CS, Flint HJ. Molecular analysis of the microbial diversity present in the colonic wall, colonic lumen, and cecal lumen of a pig. Appl Environ Microbiol. 1999;65:5372.
  • Simpson JM, McCracken VJ, White BA, Gaskins HR, Mackie RI. Application of denaturant gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. J Microbiol Methods. 1999;36(3):167. doi:10.1016/S0167-7012(99)00029-9.
  • Dowarah R, Verma AK, Agarwal N, Patel BHM, Singh P. Effect of swine based probiotic on performance, diarrhoea scores, intestinal microbiota and gut health of grower-finisher crossbred pigs. Livestock Sci. 2017;195:74–79. doi:10.1016/j.livsci.2016.11.006.
  • Petri D, Hill JE, Van Kessel AG. Microbial succession in the gastrointestinal tract (GIT) of the preweaned pig. Livestock Sci. 2010;133(1):107–109. doi:10.1016/j.livsci.2010.06.037.
  • Dou S, Gadonna-Widehem P, Rome V, Hamoudi D, Rhazi L, Lakhal L, Larcher T, Bahi-Jaber N, Pinon-Quintana A, Guyonvarch A, et al. Characterisation of early-life fecal microbiota in susceptible and healthy pigs to post-weaning diarrhoea. PLoS One. 2017;12(1):e0169851. doi:10.1371/journal.pone.0169851.
  • Inoue R, Tsukahara T, Nakanishi N, Ushida K. Development of the intestinal microbiota in the piglet. J Gen Appl Microbiol. 2005;51(4):257–265. doi:10.2323/jgam.51.257.
  • Ajouz H, Mukherji D, Shamseddine A. Secondary bile acids: an underrecognized cause of colon cancer. World J Surg Oncol. 2014;12:164.
  • Yan S, Zhu C, Yu T, Huang W, Huang J, Kong Q, Shi J, Chen Z, Liu Q, Wang S, et al. Studying the differences of bacterial metabolome and microbiome in the colon between landrace and meihua piglets. Front Microbiol. 2017;8:1812.
  • Gao Y, Han F, Huang X, Rong Y, Yi H, Wang Y. Changes in gut microbial populations, intestinal morphology, expression of tight junction proteins, and cytokine production between two pig breeds after challenge with Escherichia coli K88: A comparative study1. J Anim Sci Champaign. 2013;91:13.
  • Bian G, Ma S, Zhu Z, Su Y, Zoetendal EG, Mackie R, Liu J, Mu C, Huang R, Smidt H, et al. Age, introduction of solid feed and weaning are more important determinants of gut bacterial succession in piglets than breed and nursing mother as revealed by a reciprocal cross-fostering model. Environ Microbiol. 2016;18(5):1566–1577. doi:10.1111/1462-2920.13272.
  • Su Y, Bian G, Zhu Z, Smidt H, Zhu W. Early methanogenic colonisation in the faeces of meishan and yorkshire piglets as determined by pyrosequencing analysis. Archaea. 2014;2014:10. doi:10.1155/2014/547908.
  • Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. Monitoring Bacterial community of human gut microbiota reveals an increase in lactobacillus in obese patients and methanogens in anorexic patients. PLoS One. 2009;4(9):e7125. doi:10.1371/journal.pone.0007125.
  • Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K. Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett Appl Microbiol. 2008;47(5):367–373. doi:10.1111/j.1472-765X.2008.02408.x.
  • Liu H, Guo X, Gooneratne R, Lai R, Zeng C, Zhan F, Wang W. The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Sci Rep. 2016;6:24340. doi:10.1038/srep24340.
  • Leblois J, Massart S, Li B, Wavreille J, Bindelle J, Everaert N. Modulation of piglets’ microbiota: differential effects by a high wheat bran maternal diet during gestation and lactation. Sci Rep. 2017;7(1):7426. doi:10.1038/s41598-017-07228-2.
  • Doré J, Blottière H. The influence of diet on the gut microbiota and its consequences for health. Curr Opin Biotechnol. 2015;32:195–199. doi:10.1016/j.copbio.2015.01.002.
  • Liao SF, Nyachoti M. Using probiotics to improve swine gut health and nutrient utilization. Anim Nutr. 2017;3(4):331–343. doi:10.1016/j.aninu.2017.06.007.
  • Yang H, Yang M, Fang S, Huang X, He M, Ke S, Gao J, Wu J, Zhou Y, Fu H, et al. Evaluating the profound effect of gut microbiome on host appetite in pigs. BMC Microbiol. 2018;18(1):215. doi:10.1186/s12866-018-1364-8.
  • De Rodas B, Youmans BP, Danzeisen JL, Tran H, Johnson TJ. Microbiome profiling of commercial pigs from farrow to finish. J Anim Sci. 2018;96(5):1778–1794. doi:10.1093/jas/sky109.
  • Montagne L, Pluske JR, Hampson DJ. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim Feed Sci Technol. 2003;108(1):95–117. doi:10.1016/S0377-8401(03)00163-9.
  • Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017;279:70–89. doi:10.1111/imr.12567.
  • Bach K, Erik K, Hedemann MS, Lærke HN. The role of carbohydrates in intestinal health of pigs. Anim Feed Sci Technol. 2012;173(1):41–53. doi:10.1016/j.anifeedsci.2011.12.020.
  • Lindberg JE. Fiber effects in nutrition and gut health in pigs. J Anim Sci Biotechnol. 2014;5(1):15. doi:10.1186/2049-1891-5-15.
  • Freire JPB, Guerreiro AJG, Cunha LF, Aumaitre A. Effect of dietary fibre source on total tract digestibility, caecum volatile fatty acids and digestive transit time in the weaned piglet. Anim Feed Sci Technol. 2000;87(1–2):71–83. doi:10.1016/S0377-8401(00)00183-8.
  • Hedemann MS, Eskildsen M, Laerke HN, Pedersen C, Lindberg JE, Laurinen P, Knudsen KEB. Intestinal morphology and enzymatic activity in newly weaned pigs fed contrasting fiber concentrations and fiber properties. J Anim Sci. 2006;84(6):1375. doi:10.2527/2006.8461375x.
  • Balasubramanian B, Lee SI, Kim I-H. Inclusion of dietary multi-species probiotic on growth performance, nutrient digestibility, meat quality traits, faecal microbiota and diarrhoea score in growing–finishing pigs. Ital J Anim Sci. 2018;17(1):100–106. doi:10.1080/1828051X.2017.1340097.
  • Leser TD, Lindecrona RH, Jensen TK, Jensen BB, Møller K. Changes in bacterial community structure in the colon of pigs fed different experimental diets and after infection with brachyspira hyodysenteriae. Appl Environ Microbiol. 2000;66(8):3290–3296. doi:10.1128/AEM.66.8.3290-3296.2000.
  • Stephens RW, Arhire L, Covasa M. Gut microbiota: from microorganisms to metabolic organ influencing obesity. Obesity. 2018;26(5):801–809. doi:10.1002/oby.v26.5.
  • Heinritz SN, Weiss E, Eklund M, Aumiller T, Louis S, Rings A, Messner S, Camarinha-Silva A, Seifert J, Bischoff SC, et al. Intestinal microbiota and microbial metabolites are changed in a pig model fed a high-fat/low-fiber or a low-fat/high-fiber diet. PLoS One. 2016;11(4):e0154329. doi:10.1371/journal.pone.0154329.
  • Spurlock ME, Gabler NK. The development of porcine models of obesity and the metabolic syndrome. J Nutr. 2008;138(2):397–402. doi:10.1093/jn/138.2.397.
  • National Research Council. Committee on Nutrient Requirements of S, National Research Council. Committee on Nutrient Requirements of Swine ib, National Research Council. Board on A, Natural Resources ib. Nutrient requirements of swine 11th. Washington (D.C.): National Academies Press; 2012.
  • Hojberg O, Canibe N, Poulsen HD, Hedemann MS, Jensen BB. Influence of Dietary Zinc Oxide and Copper Sulfate on the gastrointestinal ecosystem in newly weaned piglets. Appl Environ Microbiol. 2005;71(5):2267. doi:10.1128/AEM.71.5.2267-2277.2005.
  • Debski B. Supplementation of pigs diet with zinc and copper as alternative to conventional antimicrobials. Pol J Vet Sci. 2016;19(4):917–924. doi:10.1515/pjvs-2016-0113.
  • Namkung H, Gong J, Yu H, de Lange CFM. Effect of pharmacological intakes of zinc and copper on growth performance, circulating cytokines and gut microbiota of newly weaned piglets challenged with coliform lipopolysaccharides. Can J Anim Sci. 2006;86(4):511–522. doi:10.4141/A05-075.
  • Yazdankhah S, Rudi K, Bernhoft A. Zinc and copper in animal feed - development of resistance and co-resistance to antimicrobial agents in bacteria of animal origin. Microb Ecol Health Dis. 2014;25:11. https://doi.org/10.3389/fmicb.2017.00846.
  • Daniel ML, Carolina G, Erica R, José MF, María ET, Ross RP, Catherine S. Lactic Acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Front Microbiol. 2017 MAY;8:1–11. https://doi.org/10.3389/fmicb.2017.00846
  • Kenny M, Smidt H, Mengheri E, Miller B. Probiotics – do they have a role in the pig industry? Animal. 2010;5(3):462–470. doi:10.1017/S175173111000193X.
  • Galdeano CM, de Leblanc ADM, Dogi C, Perdigón G. Lactic acid bacteria as immunomodulators of the gut-associated immune system. Biotechnol Lactic Acid Bacteria. 2010. doi:10.1002/9780813820866.ch7
  • Wang M, Donovan SM. Human microbiota-associated swine: current progress and future opportunities. ILAR Journal. 2015;56(1):63–73. doi:10.1093/ilar/ilv006.
  • Li D, Ni K, Pang H, Wang Y, Cai Y, Jin Q. Identification and antimicrobial activity detection of lactic acid bacteria isolated from corn stover silage. Asian-Australas J Anim Sci. 2015;28:620+. doi:10.5713/ajas.14.0439.
  • Chiang M-L, Chen H-C, Chen K-N, Lin Y-C, Lin Y-T, Chen M-J. Optimizing production of two potential probiotic lactobacilli strains isolated from piglet feces as feed additives for weaned piglets. Asian-Australas J Anim Sci. 2015;28:1163+. doi:10.5713/ajas.14.0780.
  • Giang HH, Viet TQ, Ogle B, Lindberg JE. Growth performance, digestibility, gut environment and health status in weaned piglets fed a diet supplemented with potentially probiotic complexes of lactic acid bacteria. Livestock Sci. 2010;129(1):95–103. doi:10.1016/j.livsci.2010.01.010.
  • Riboulet-Bisson E, Sturme MHJ, Jeffery IB, O’Donnell MM, Neville BA, Forde BM, Claesson MJ, Harris H, Gardiner GE, Casey PG, et al. Effect of lactobacillus salivarius bacteriocin abp118 on the mouse and pig intestinal microbiota. PLoS One. 2012;7(2):e31113. doi:10.1371/journal.pone.0031113.
  • Yang Y, Zhao X, Le MHA, Zijlstra R, Gänzle M. Reutericyclin producing Lactobacillus reuteri modulates development of fecal microbiota in weanling pigs. Front Microbiol. 2015;6:762. doi:10.3389/fmicb.2015.00762.
  • Lallès J-P, Bosi P, Smidt H, Stokes CR. Nutritional management of gut health in pigs around weaning. Proc Nutr Soc. 2007;66(2):260–268. doi:10.1017/S0029665107005484.
  • Wells JE, Yen JT, Miller DN. Impact of dried skim milk in production diets on Lactobacillus and pathogenic bacterial shedding in growing-finishing swine1. J Appl Microbiol. 2005;99(2):400–407. doi:10.1111/jam.2005.99.issue-2.
  • Hutkins RW, Krumbeck JA, Bindels LB, Cani PD, Fahey G, Goh YJ, Hamaker B, Martens EC, Mills DA, Rastal RA, et al. Prebiotics: why definitions matter. Curr Opin Biotechnol. 2016;37:1–7. doi:10.1016/j.copbio.2015.09.001.
  • Sivaprakasam S, Prasad PD, Singh N. Benefits of short-chain fatty acids and their receptors in inflammation and carcinogenesis. Pharmacol Ther. 2016;164:144–151. doi:10.1016/j.pharmthera.2016.04.007.
  • Çeti̇n N, Güçlü BK, Çeti̇n E. The effects of probiotic and mannanoligosaccharide on some haematological and immunological parameters in Turkeys. J Vet Med Series A. 2005;52(6):263–267. doi:10.1111/j.1439-0442.2005.00736.x.
  • Yin YL, Tang ZR, Sun ZH, Liu ZQ, Li TJ, Huang RL, Ruan Z, Deng ZY, Gao B, Chen LX, et al. Effect of galacto-mannan-oligosaccharides or chitosan supplementation on cytoimmunity and humoral immunity in early-weaned piglets. (Report). Asian-Australas J Anim Sci. 2008;21(5):723. doi:10.5713/ajas.2008.70408.
  • Smith HW, Jones JET. Observations on the alimentary tract and its bacterial flora in healthy and diseased pigs. J Pathol Bacteriol. 1963;86(2):387–412. doi:10.1002/(ISSN)1555-2039.
  • Krause DO, Bhandari SK, House JD, Nyachoti CM. Response of nursery pigs to a synbiotic preparation of starch and an anti-escherichia coli K88 probiotic. Appl Environ Microbiol. 2010;76(24):8192. doi:10.1128/AEM.01427-10.
  • Pié S, Awati A, Vida S, Falluel I. Effects of added fermentable carbohydrates in the diet on intestinal proinflammatory cytokine-specific mRNA content in weaning piglets1. J Anim Sci. 2007;85(3):673–683. doi:10.2527/jas.2006-535.
  • Call L, Stoll B, Oosterloo B, Ajami N, Sheikh F, Wittke A, Waworuntu R, Berg B, Petrosino J, Olutoye O, et al. Metabolomic signatures distinguish the impact of formula carbohydrates on disease outcome in a preterm piglet model of NEC. Microbiome. 2018;6(1):111. doi:10.1186/s40168-018-0498-0.
  • Naqid IA, Owen JP, Maddison BC, Gardner DS, Foster N, Tchórzewska MA, La Ragione RM, Gough KC. Prebiotic and probiotic agents enhance antibody-based immune responses to Salmonella Typhimurium infection in pigs. Anim Feed Sci Technol. 2015;201:57–65. doi:10.1016/j.anifeedsci.2014.12.005.
  • Qing N, Pinghua L, Shuaishuai H, Yeqiu Z, Sung Woo K, Huizhi L, Xiang M, Shuo G, Lichun H, Wangjun W, et al. Dynamic distribution of the gut microbiota and the relationship with apparent crude fiber digestibility and growth stages in pigs. Sci Rep. 2015;5(1):1–7. DOI: 10.1038/srep09938
  • Etleva D, Männerin K. Efficiency of probiotics in farm animals. In:Rigobelo EC, editors. Probiotic in Animals.Rigobelo EC: IntechOpen; 2012.
  • Kenny M, Smidt H, Mengheri E, Miller B. Probiotics – do they have a role in the pig industry? Animal. 2011;5(3):462–470. doi:10.1017/S175173111000193X.
  • Konstantinov SR, Awati AA, Williams BA, Miller BG, Jones P, Stokes CR, Akkermans ADL, Smidt H, De Vos WM. Post-natal development of the porcine microbiota composition and activities. Environ Microbiol. 2006;8(7):1191–1199. doi:10.1111/emi.2006.8.issue-7.
  • Katouli M, Wallgren P. Chapter 2 Metabolism and population dynamics of the intestinal microflora in the growing pig. In editors, Holzapfel WH, Naughton PJ, Pierzynowski SG, Zabielski R, Salek E. Biology of Growing Animals. Vol. 2. The Netherlands: Elsevier; 2005. p. 21–53.
  • Stafford V, John VOD, Alan KK, Cormac JOS, Torres S. The effect of divergence in feed efficiency on the intestinal microbiota and the intestinal immune response in both unchallenged and lipopolysaccharide challenged ileal and colonic explants. PLoS One. 2016;11(2):e0148145. doi:10.1371/journal.pone.0148145.
  • Zhang DY, Ji HF, Wang SX, Liu H, Wang J, Wang YM. In vitro characterisation of two Lactobacillus strains and evaluation of their suitability as probiotics for growing-finishing pigs. Anim Prod Sci. 2018;59(8):1537–1545.
  • Suo C, Yin Y, Wang X, Lou X, Song D, Wang X, Gu Q. Effects of lactobacillus plantarum ZJ316 on pig growth and pork quality. BMC Vet Res. 2012;8(1):89. doi:10.1186/1746-6148-8-89.
  • Ross GR, Van Nieuwenhove CP, González SN. Fatty acid profile of pig meat after probiotic administration. J Agric Food Chem. 2012;60(23):5974. doi:10.1021/jf205360h.
  • Suda Y, Villena J, Takahashi Y, Hosoya S, Tomosada Y, Tsukida K, Shimazu T, Aso H, Tohno M, Ishida M, et al. Immunobiotic Lactobacillus jensenii as immune-health promoting factor to improve growth performance and productivity in post-weaning pigs. BMC Immunol. 2014;15(1):24. doi:10.1186/1471-2172-15-24.
  • Mann E, Schmitz-Esser S, Zebeli Q, Wagner M, Ritzmann M, Metzler-Zebeli BU. Mucosa-associated bacterial microbiome of the gastrointestinal tract of weaned pigs and dynamics linked to dietary calcium-phosphorus. PLoS One. 2014;9(1):e86950. doi:10.1371/journal.pone.0086950.
  • Roselli M, Pieper R, Rogel-Gaillard C, de Vries H, Bailey M, Smidt H, Lauridsen C. Immunomodulating effects of probiotics for microbiota modulation, gut health and disease resistance in pigs. Anim Feed Sci Technol. 2017;233(C):104–119. doi:10.1016/j.anifeedsci.2017.07.011.
  • Inman CF, Haverson K, Konstantinov SR, Jones PH, Harris C, Smidt H, Miller B, Bailey M, Stokes C. Rearing environment affects development of the immune system in neonates. Clin Exp Immunol. 2010;160(3):431–439. doi:10.1111/cei.2010.160.issue-3.
  • Lewis MC, Inman CF, Patel D, Schmidt B, Mulder I, Miller B, Gill BP, Pluske J, Kelly D, Stokes CR, et al. Direct experimental evidence that early-life farm environment influences regulation of immune responses. Pediatr Allergy Immunol. 2012;23(3):265–269. doi:10.1111/pai.2012.23.issue-3.
  • Mulder IE, Schmidt B, Lewis M, Delday M, Stokes CR, Bailey M, Aminov RI, Gill BP, Pluske JR, Mayer C-D, et al. Restricting microbial exposure in early life negates the immune benefits associated with gut colonization in environments of high microbial diversity. PLoS One. 2011;6(12):e28279. doi:10.1371/journal.pone.0028279.
  • Mulder IE, Schmidt B, Stokes CR, Lewis M, Bailey M, Aminov RI, Prosser JI, Gill BP, Pluske JR, Mayer C-D, et al. Environmentally-acquired bacteria influence microbial diversity and natural innate immune responses at gut surfaces. BMC Biol. 2009;7(1):79. doi:10.1186/1741-7007-7-79.
  • Schmidt B, Mulder IE, Musk CC, Aminov RI, Lewis M, Stokes CR, Bailey M, Prosser JI, Gill BP, Pluske JR, et al. Establishment of normal gut microbiota is compromised under excessive hygiene conditions. PLoS One. 2011;6(12):e28284. doi:10.1371/journal.pone.0028284.
  • Dibner JJ, Richards JD. Antibiotic growth promoters in agriculture: history and mode of action. Poult Sci. 2005;84(4):634. doi:10.1093/ps/84.4.634.
  • Kim J, Guevarra RB, Nguyen SG, Lee J-H, Jeong DK, Unno T. Effects of the antibiotics growth promoter tylosin on swine gut microbiota. J Microbiol Biotechnol. 2016;26(5):876. doi:10.4014/jmb.1512.12004.
  • Ichinohe T, Pang IK, Kumamoto Y, Peaper DR, Ho JH, Murray TS, Iwasaki A. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc. Natl. Acad. Sci. U.S.A. 2011;108(13):5354. doi:10.1073/pnas.1019378108.
  • Bosi P, Merialdi G, Scandurra S, Messori S, Bardasi L, Nisi I, Russo D, Casini L, Trevisi P. Feed supplemented with 3 different antibiotics improved food intake and decreased the activation of the humoral immune response in healthy weaned pigs but had differing effects on intestinal microbiota. J Anim Sci. 2011;89(12):4043. doi:10.2527/jas.2010-3311.
  • Gao K, Pi Y, Peng Y, Mu C-L, Zhu W-Y. Time-course responses of ileal and fecal microbiota and metabolite profiles to antibiotics in cannulated pigs. Appl Microbiol Biotechnol. 2018;102(5):2289–2299. doi:10.1007/s00253-018-8774-2.
  • DebRoy C, Hegde NV, Schilling KV, Katani R. Gut microbiomes of pigs grown in organic and conventional dietary regimens. 2017;5.
  • Hill DA, Hoffmann C, Abt MC, Du Y, Kobuley D, Kirn TJ, Bushman FD, Artis D. Metagenomic analyses reveal antibiotic-induced temporal and spatial changes in intestinal microbiota with associated alterations in immune cell homeostasis. Mucosal Immunol. 2009;3(2):148. doi:10.1038/mi.2009.132.
  • Schokker D, Zhang J, L-l Z, Vastenhouw SA, Heilig HGHJ, Smidt H, Rebel JMJ, Smits MA. Early-life environmental variation affects intestinal microbiota and immune development in new-born piglets. PLoS One. 2014;9(6):e100040. doi:10.1371/journal.pone.0100040.
  • Shapiro H, Thaiss CA, Levy M, Elinav E. The cross talk between microbiota and the immune system: metabolites take center stage. Curr Opin Immunol. 2014;30:54–62. doi:10.1016/j.coi.2014.07.003.
  • Hooper LV. Bacterial contributions to mammalian gut development. Trends Microbiol. 2004;12(3):129–134. doi:10.1016/j.tim.2004.01.001.
  • Hooper LV, Gordon JI. Commensal host- bacterial relationships in the gut. (statistical data included). Science. 2001;292(5519):1115. doi:10.1126/science.1058709.
  • Frick J-S, Autenrieth IB. The gut microflora and its variety of roles in health and disease. In: Dobrindt U, Hacker JH, Svanborg C, editors. Between Pathogenicity and Commensalism. Berlin (Heidelberg): Springer Berlin Heidelberg; 2013. p. 273–289.
  • Carey DN, Knut D, Kevin RF. Spatial structure, cooperation and competition in biofilms. Nat Rev Microbiol. 2016;14(9).
  • Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature. 2017;548:43. doi:10.1038/nature23292.
  • Janczyk P, Pieper R, Smidt H, Souffrant WB. Changes in the diversity of pig ileal lactobacilli around weaning determined by means of 16S rRNA gene amplification and denaturing gradient gel electrophoresis. FEMS Microbiol Ecol. 2007;61(1):132–140. doi:10.1111/fem.2007.61.issue-1.
  • Pajarillo E, Chae J-P, Balolong MP, Bum Kim H, Kang D-K. Assessment of fecal bacterial diversity among healthy piglets during the weaning transition. J Gen Appl Microbiol. 2014;60(4):140. doi:10.2323/jgam.60.140.
  • Pajarillo E, Chae J, Balolong M, Kim H, Seo K-S, Kang D-K. Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. Journal of Microbiology. 2014;52(8):646–651. doi:10.1007/s12275-014-4270-2.
  • Bomba L, Minuti A, Moisá SJ, Trevisi E, Eufemi E, Lizier M, Chegdani F, Lucchini F, Rzepus M, Prandini A, et al. Gut response induced by weaning in piglet features marked changes in immune and inflammatory response. Funct Integr Genomics. 2014;14(4):657–671. doi:10.1007/s10142-014-0396-x.
  • Dowd S,E, Callaway T,R, Morrow-Tesch J. Handling May Cause Increased Shedding of Escherichia coli And Total Coliforms in Pigs. Foodborne Pathog Dis. 2007;4(1):99–102.
  • Freestone PPE, Sandrini SM, Haigh RD, Lyte M. Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol. 2008;16(2):55–64. doi:10.1016/j.tim.2007.11.005.
  • Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu X-N, Kubo C, Koga Y. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol. 2004;558(1):263–275. doi:10.1113/jphysiol.2004.063388.
  • Lupien SJ, McEwen BS, Gunnar MR, Heim C. Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nat Rev Neurosci. 2009;10:434+. doi:10.1038/nrn2639.
  • O’Mahony L, McCarthy J, Kelly P, Hurley G, Luo F, Chen K, O’Sullivan GC, Kiely B, Collins JK, Shanahan F, et al. Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology. 2005;128(3):11. doi:10.1053/j.gastro.2004.11.050.
  • Borewicz KA, Kim HB, Singer RS, Gebhart CJ, Sreevatsan S, Johnson T, Isaacson RE. Changes in the Porcine intestinal microbiome in response to infection with salmonella enterica and lawsonia intracellularis. PLoS One. 2015;10(10):e0139106. doi:10.1371/journal.pone.0139106.
  • Drumo R, Pesciaroli M, Ruggeri J, Tarantino M, Chirullo B, Pistoia C, Petrucci P, Martinelli N, Moscati L, Manuali E, et al. Salmonella enterica Serovar Typhimurium Exploits Inflammation to Modify Swine Intestinal Microbiota. Front Cell Infect Microbiol. 2016;5:106. doi:10.3389/fcimb.2015.00106.
  • Hoffmann C, Hill DA, Minkah N, Kirn T, Troy A, Artis D, Bushman F. Community-wide response of the gut microbiota to enteropathogenic citrobacter rodentium infection revealed by deep sequencing. Infect Immun. 2009;77(10):4668. doi:10.1128/IAI.00493-09.
  • Stecher B, Robbiani R, Walker AW, Westendorf AM, Barthel M, Kremer M, Chaffron S, Macpherson AJ, Buer J, Parkhill J, et al. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota (inflammation impairs colonization resistance). PLoS Biol. 2007;5(10):e244. doi:10.1371/journal.pbio.0050244.
  • Lupp C, Robertson ML, Wickham ME, Sekirov I, Champion OL, Gaynor EC, Finlay B. Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of enterobacteriaceae. Cell Host Microbe. 2007;2(2):119–129.
  • Koh H-W, Kim MS, Lee J-S, Kim H, Park S-J. Changes in the swine gut microbiota in response to porcine epidemic diarrhea infection. Microbes Env. 2015;30(3):284–287. doi:10.1264/jsme2.ME15046.
  • Niederwerder MC. Role of the microbiome in swine respiratory disease. Vet Microbiol. 2017;209:97–106. doi:10.1016/j.vetmic.2017.02.017.
  • Knights D, Lassen KG, Xavier RJ. Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome. Gut. 2013;62(10):1505. doi:10.1136/gutjnl-2012-303954.
  • Keeney KM, Yurist-Doutsch S, Arrieta M-C, Finlay BB. Effects of antibiotics on human microbiota and subsequent disease. Annu Rev Microbiol. 2014;68(1):217–235. doi:10.1146/annurev-micro-091313-103456.
  • Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY, Lee JC, Schumm LP, Sharma Y, Anderson CA, et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature. 2012;1476–4687.
  • Wu H-J, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Micr. 2012;3(1):4–14. DOI: 10.4161/gmic.19320.
  • Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol. 2007;19(2):59–69. doi:10.1016/j.smim.2006.10.002.
  • Burkey TE, Skjolaas KA, Minton JE. BOARD-INVITED REVIEW: porcine mucosal immunity of the gastrointestinal tract1. J Anim Sci. 2009;87:1493–1501. doi:10.2527/jas.2008-1330.
  • Pluske JR, Turpin DL, Kim J-C. Gastrointestinal tract (gut) health in the young pig. Anim Nutr. 2018. doi:10.1016/j.aninu.2017.12.004.
  • Thaiss CA, Levy M, Suez J, Elinav E. The interplay between the innate immune system and the microbiota. Curr Opin Immunol. 2014;26: 1879–0372. (Electronic):8. doi:10.1016/j.coi.2013.10.016.
  • Levy M, Thaiss CA, Elinav E. Metagenomic cross-talk: the regulatory interplay between immunogenomics and the microbiome. Genome Med. 2015;7(1):120. doi:10.1186/s13073-015-0249-9.
  • Pickard JM, Maurice CF, Kinnebrew MA, Abt MC, Schenten D, Golovkina TV, Bogatyrev SR, Ismagilov RF, Pamer EG, Turnbaugh PJ, et al. Rapid fucosylation of intestinal epithelium sustains host–commensal symbiosis in sickness. Nature. 2014;514:638. doi:10.1038/nature13823.
  • Kamdar K, Khakpour S, Chen J, Leone V, Brulc J, Mangatu T, Antonopoulos Dionysios A, Chang Eugene B, Kahn Stacy A, Kirschner Barbara S, et al. Genetic and metabolic signals during acute enteric bacterial infection alter the microbiota and drive progression to chronic inflammatory disease. Cell Host Microbe. 2016;19(1):21–31. doi:10.1016/j.chom.2015.12.006.
  • Iwasaki A, Kelsall BL. Freshly isolated peyer’s patch, but not spleen, dendritic cells produce interleukin 10 and induce the differentiation of T Helper Type 2 Cells. J Exp Med. 1999;190(2):229–240. doi:10.1084/jem.190.2.229.
  • Haverson K, Rehakova Z, Sinkora J, Sver L, Bailey M. Immune development in jejunal mucosa after colonization with selected commensal gut bacteria: A study in germ-free pigs. Vet Immunol Immunopathol. 2007;119(3):243–253. doi:10.1016/j.vetimm.2007.05.022.
  • Zhang W, Wen K, Azevedo MSP, Gonzalez A, Saif LJ, Li G, Yousef AE, Yuan L. Lactic acid bacterial colonization and human rotavirus infection influence distribution and frequencies of monocytes/macrophages and dendritic cells in neonatal gnotobiotic pigs. Vet Immunol Immunopathol. 2008;121(3):222–231. doi:10.1016/j.vetimm.2007.10.001.
  • Neish AS, Gewirtz A, Fau - Zeng H, Zeng H, Fau - Young AN, An Y, Fau - Hobert ME, Hobert M, Fau - Karmali V, Karmali V, et al. Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. Science. 2000;289(5484). (0036-8075 (Print)):4. doi:10.1126/science.289.5484.1560.
  • Cebra JJ. Influences of microbiota on intestinal immune system development. Am J Clin Nutr. 1999;69(5):1046s–1051s. doi:10.1093/ajcn/69.5.1046s.
  • Liu H, Dicksved J, Lundh T, Lindberg J. Expression of heat shock proLEteins 27 and 72 correlates with specific commensal microbes in different regions of porcine gastrointestinal tract. Am J Physiol-Gastroint Liver Physiol. 2014;306(12):C1033–C1041. doi:10.1152/ajpgi.00299.2013.
  • Tamboli C, Fau - Neut C, Neut C, Fau - Desreumaux P, Desreumaux P, Fau - Colombel JF, Colombel JF. Dysbiosis as a prerequisite for IBD. Gut. 2004;53(7):1057.
  • Inman CF, Laycock GM, Mitchard L, Harley R, Warwick J, Burt R, van Diemen PM, Stevens M, Bailey M. Neonatal Colonisation Expands a Specific Intestinal Antigen-Presenting Cell Subset Prior to CD4 T-Cell Expansion, without Altering T-Cell Repertoire. PLoS One. 2012;7(3):e33707. doi:10.1371/journal.pone.0033707.
  • Sun J, Hayward C, Shinde R, Christenson R, Ford SP, Butler JE. Antibody repertoire development in fetal and neonatal piglets. I. Four VH Genes account for 80 percent of VH Usage during 84 days of fetal life. J Immunol. 1998;161:5070.
  • Wang A, Yu H, Gao X, Li X, Qiao S. Influence of Lactobacillus fermentum I5007 on the intestinal and systemic immune responses of healthy and E. coli challenged piglets. Antonie Van Leeuwenhoek. 2009;96(1):89–98. doi:10.1007/s10482-009-9339-2.
  • Wang AN, Yi XW, Yu HF, Dong B, Qiao SY. Free radical scavenging activity of Lactobacillus fermentum in vitro and its antioxidative effect on growing–finishing pigs. J Appl Microbiol. 2009;107(4):1140–1148. doi:10.1111/j.1365-2672.2009.04294.x.
  • Kandasamy S, Chattha KS, Vlasova AN, Rajashekara G, Saif LJ. Lactobacilli and Bifidobacteria enhance mucosal B cell responses and differentially modulate systemic antibody responses to an oral human rotavirus vaccine in a neonatal gnotobiotic pig disease model. Gut Microbes. 2014;5(5):639–651. doi:10.4161/19490976.2014.969972.
  • Zhang H, Wang H, Shepherd M, Wen K, Li G, Yang X, Kocher J, Giri-Rachman E, Dickerman A, Settlage R, et al. Probiotics and virulent human rotavirus modulate the transplanted human gut microbiota in gnotobiotic pigs. Gut Pathog. 2014;6(1):39. doi:10.1186/s13099-014-0039-8.
  • Laycock G, Sait L, Inman C, Lewis M, Smidt H, van Diemen P, Jorgensen F, Stevens M, Bailey M. A defined intestinal colonization microbiota for gnotobiotic pigs. Vet Immunol Immunopathol. 2012;149(3):216–224. doi:10.1016/j.vetimm.2012.07.004.
  • Lallès J. Microbiota-host interplay at the gut epithelial level, health and nutrition. J Anim Sci Biotechnol. 2016;7(1):66. doi:10.1186/s40104-016-0123-7.
  • Arnal M-E, Zhang J, Erridge C, Smidt H, Lallès J-P. Maternal antibiotic-induced early changes in microbial colonization selectively modulate colonic permeability and inducible heat shock proteins, and digesta concentrations of alkaline phosphatase and TLR-stimulants in swine offspring. PLoS One. 2015;10(2):e0118092. doi:10.1371/journal.pone.0118092.
  • Arnal M-E, Zhang J, Messori S, Bosi P, Smidt H, Lallès J-P. Early changes in microbial colonization selectively modulate intestinal enzymes, but not inducible heat shock proteins in young adult swine. PLoS One. 2014;9(2):e87967. doi:10.1371/journal.pone.0087967.
  • Lallès J-P, Lessard M, Oswald IP, David J-C. Consumption of fumonisin B 1 for 9 days induces stress proteins along the gastrointestinal tract of pigs. Toxicon. 2010;55(2):244–249. doi:10.1016/j.toxicon.2009.07.027.
  • Malago JJ, Van Dijk JE. The heat shock response and cytoprotection of the intestinal epithelium. Cell Stress Chaperones. 2002;7(2):191–199. doi:10.1379/1466-1268(2002)007<0191:THSRAC>2.0.CO;2.
  • Lallès JP, David JC. Fasting and refeeding modulate the expression of stress proteins along the gastrointestinal tract of weaned pigs. Fasting and Refeeding Modulate the Expression of Stress Proteins along the Gastrointestinal Tract of Weaned Pigs. 2011;95:478–488.
  • Arvans DL, Vavricka S, Ren H, Musch M, Kang L, Rocha F, Lucioni A, Turner J, Alverdy J, Chang E. Luminal bacterial flora determines physiological expression of intestinal epithelial cytoprotective heat shock proteins 25 and 72. Am J Physiol-Gastroint Liver Physiol. 2005;288(4):G696–G704. doi:10.1152/ajpgi.00206.2004.
  • Willem van E. Diet and the Anti-inflammatory effect of heat shock proteins. Endocrine, Metabolic & Immune Disorders - Drug Targets. 2015;15(1):31–36. doi:10.2174/1871530314666140922145333.
  • Lallès J-P:. Intestinal alkaline phosphatase: novel functions and protective effects. Nutr Rev. 2014;72(2):82–94. doi:10.1111/nure.12082.
  • Geddes K, Philpott DJ. A new role for intestinal alkaline phosphatase in gut barrier maintenance. Gastroenterology. 2008;135(1):8–12. doi:10.1053/j.gastro.2008.06.006.
  • Bates JM, Akerlund J, Mittge E, Guillemin K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. Cell Host Microbe. 2007;2(6):371–382. doi:10.1016/j.chom.2007.10.010.
  • Malo MS, Alam SN, Mostafa G, Zeller SJ, Johnson PV, Mohammad N, Chen KT, Moss AK, Ramasamy S, Faruqui A, et al. Intestinal alkaline phosphatase preserves the normal homeostasis of gut microbiota. Gut. 2010;59(11):1476. doi:10.1136/gut.2010.211706.
  • Mizumori M, Ham M, Guth PH, Engel E, Kaunitz JD, Akiba Y. Intestinal alkaline phosphatase regulates protective surface microclimate pH in rat duodenum. J Physiol. 2009;587(14):3651–3663. doi:10.1113/jphysiol.2009.172270.
  • Trevisi P, Pérez JF. Diets and pig gut health: preface. Anim Feed Sci Technol. 2017;233:87–88. doi:10.1016/j.anifeedsci.2017.11.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.