3,996
Views
10
CrossRef citations to date
0
Altmetric
Review

Use of genetically modified lactic acid bacteria and bifidobacteria as live delivery vectors for human and animal health

, , , , , , & ORCID Icon show all
Article: 2110821 | Received 15 Jun 2022, Accepted 01 Aug 2022, Published online: 12 Aug 2022

References

  • Mokoena MP. Lactic acid bacteria and their bacteriocins: classification, biosynthesis and applications against uropathogens: a mini-review. Molecules. 2017;22(8):1255. doi:10.3390/molecules22081255.
  • Turroni F, van Sinderen D, Ventura M. Genomics and ecological overview of the genus Bifidobacterium. Int J Food Microbiol. 2011;149(1):37–22. doi:10.1016/j.ijfoodmicro.2010.12.010.
  • Stiles ME, Holzapfel WH. Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol. 1997;36(1):1–29. doi:10.1016/S0168-1605(96)01233-0.
  • Hugenholtz P, Chuvochina M, Oren A, Parks DH, Soo RM. Prokaryotic taxonomy and nomenclature in the age of big sequence data. ISME J. 2021;15(7):1879–1892. doi:10.1038/s41396-021-00941-x.
  • Klein G, Pack A, Bonaparte C, Reuter G. Taxonomy and physiology of probiotic lactic acid bacteria. Int J Food Microbiol. 1998;41(2):103–125. doi:10.1016/S0168-1605(98)00049-X.
  • Lukjancenko O, Ussery DW, Wassenaar TM. Comparative genomics of Bifidobacterium, Lactobacillus and related probiotic genera. Microb Ecol. 2012;63(3):651–673. doi:10.1007/s00248-011-9948-y.
  • Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, et al. Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–514. doi:10.1038/nrgastro.2014.66.
  • Helander HF, Fändriks L. Surface area of the digestive tract – revisited. Scand J Gastroenterol. 2014;49(6):681–689. doi:10.3109/00365521.2014.898326.
  • Corr SC, Gahan CCGM, Hill C. M-cells: origin, morphology and role in mucosal immunity and microbial pathogenesis. Fems Immunol Med Mic. 2008;52(1):2–12. doi:10.1111/j.1574-695X.2007.00359.x.
  • Cesta MF. Normal structure, function, and histology of mucosa-associated lymphoid tissue. Toxicol Pathol. 2006;34(5):599–608. doi:10.1080/01926230600865531.
  • Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med. 2005;11(S4):S45–S53. doi:10.1038/nm1213.
  • Moradi-Kalbolandi S, Majidzadeh-A K, Abdolvahab MH, Jalili N, Farahmand L. The role of mucosal immunity and recombinant probiotics in SARS-CoV2 vaccine development. Probiotics Antimicrob Proteins. 2021;13(5):1239–1253. doi:10.1007/s12602-021-09773-9.
  • Szatraj K, Szczepankowska AK, Chmielewska-Jeznach M. Lactic acid bacteria-promising vaccine vectors: possibilities, limitations, doubts. J Appl Microbiol. 2017;123(2):325–339. doi:10.1111/jam.13446.
  • Wyszynska A, Kobierecka P, Bardowski J, Jagusztyn-Krynicka EK. Lactic acid bacteria–20 years exploring their potential as live vectors for mucosal vaccination. Appl Microbiol Biotechnol. 2015;99(7):2967–2977. doi:10.1007/s00253-015-6498-0.
  • Plavec TV, Berlec A. Safety Aspects of Genetically Modified Lactic Acid Bacteria. Microorganisms. 2020;8(2):297.
  • Siegers K, Entian KD. Genes involved in immunity to the lantibiotic nisin produced by Lactococcus lactis 6F3. Appl Environ Microbiol. 1995;61(3):1082–1089. doi:10.1128/aem.61.3.1082-1089.1995.
  • Djordjevic GM, Klaenhammer TR. Inducible gene expression systems inLactococcus lactis. Mol Biotechnol. 1998;9(2):127–139. doi:10.1007/BF02760814.
  • Nouaille S, Ribeiro LA, Miyoshi A, Pontes D, Le Loir Y, Oliveira SC, Langella P, Azevedo V. Heterologous protein production and delivery systems for Lactococcus lactis. Genet Mol Res. 2003;2:102–111.
  • Bermúdez-Humarán L, Corthier G, Langella P. Recent advances in the use of Lactococcus lactis as live recombinant vector for the development of new safe mucosal vaccines. Recent Res Dev Microbiol. 2004;8:147–160.
  • Bolotin A, Wincker P, Mauger S, Jaillon O, Malarme K, Weissenbach J, Ehrlich SD, Sorokin A. The Complete Genome Sequence of the Lactic Acid Bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res. 2001;11(5):731–753. doi:10.1101/gr.169701.
  • Wegmann U, O’Connell-Motherway M, Zomer A, Buist G, Shearman C, Canchaya C, Ventura M, Goesmann A, Gasson MJ, Kuipers OP, et al. Complete Genome Sequence of the Prototype Lactic Acid Bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol. 2007;189(8):3256–3270. doi:10.1128/JB.01768-06.
  • Bermúdez-Humarán LG. Lactococcus lactis as a live vector for mucosal delivery of therapeutic proteins. Hum Vaccin. 2009;5(4):264–267. doi:10.4161/hv.5.4.7553.
  • Wells JM, Mercenier A. Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nat Rev Microbiol. 2008;6(5):349–362. doi:10.1038/nrmicro1840.
  • Leloir Y, Gruss A, Ehrlich SD, Langella P. Direct Screening of Recombinants in Gram-Positive Bacteria Using the Secreted Staphylococcal Nuclease as a Reporter. J Bacteriol. 1994;176(16):5135–5139. doi:10.1128/jb.176.16.5135-5139.1994.
  • de Ruyter Pg, Kuipers OP, Beerthuyzen MM, van Alen-boerrigter I, de Vos WM, de Ruyter PG. Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol. 1996;178(12):3434–3439. doi:10.1128/jb.178.12.3434-3439.1996.
  • van Asseldonk M, de Vos Wm, Simons G, de Vos WM. Functional analysis of the Lactococcus lactis usp45 secretion signal in the secretion of a homologous proteinase and a heterologous α-amylase. Mol Gen Genet. 1993;240(3):428–434. doi:10.1007/BF00280397.
  • Di Lorenzo A, Varcamonti M, Parascandola P, Vignola R, Bernardi A, Sacceddu P, Sisto R, de Alteriis E. Characterization and performance of a toluene-degrading biofilm developed on pumice stones. Microb Cell Fact. 2005;4(1):4. doi:10.1186/1475-2859-4-4.
  • Piard JC, Hautefort I, Fischetti VA, Ehrlich SD, Fons M, Gruss A. Cell wall anchoring of the Streptococcus pyogenes M6 protein in various lactic acid bacteria. J Bacteriol. 1997;179(9):3068–3072. doi:10.1128/jb.179.9.3068-3072.1997.
  • Song J, Zhao L, Song M. A lactococcus lactis-vectored oral vaccine induces protective immunity of mice against enterotoxigenic escherichia coli lethal challenge. Immunol Lett. 2020;225:57–63. doi:10.1016/j.imlet.2020.06.007.
  • van der Vossen Jm, van der Lelie D, Venema G, van der Vossen JM. Isolation and characterization of Streptococcus cremoris Wg2-specific promoters. Appl Environ Microbiol. 1987;53(10):2452–2457. doi:10.1128/aem.53.10.2452-2457.1987.
  • Clow F, Peterken K, Pearson V, Proft T, Radcliff FJ. PilVax, a novel Lactococcus lactis -based mucosal vaccine platform, stimulates systemic and mucosal immune responses to Staphylococcus aureus. Immunol Cell Biol. 2020;98(5):369–381. doi:10.1111/imcb.12325.
  • Rezaei M, Rabbani-Khorasgani M, Zarkesh-Esfahani SH, Emamzadeh R, Abtahi H. Lactococcus-based vaccine against brucellosis: igG immune response in mice with rOmp16-IL2 fusion protein. Arch Microbiol. 2021;203(5):2591–2596. doi:10.1007/s00203-021-02241-6.
  • Aliramaei MR, Khorasgani MR, Rahmani MR, Esfahani SHZ, Emamzadeh R. Expression of Helicobacter pylori CagL gene in Lactococcus lactis MG1363 and evaluation of its immunogenicity as an oral vaccine in mice. Microb Pathog. 2020;142:103926. doi:10.1016/j.micpath.2019.103926.
  • de Castro Cp, Souza BM, Mancha-Agresti P, Pereira VB, Zurita-Turk M, Preisser TM, de Castro CP, da Cunha VP, Dos Santos JSC, Leclercq SY, et al. Lactococcus lactis FNBPA+ (pValac:e6ag85a) Induces Cellular and Humoral Immune Responses After Oral Immunization of Mice. Front Microbiol. 2021;12:1222.
  • Mohseni AH, Taghinezhad-S S, Keyvani H. The First Clinical Use of a Recombinant Lactococcus lactis Expressing Human Papillomavirus Type 16 E7 Oncogene Oral Vaccine: a Phase I Safety and Immunogenicity Trial in Healthy Women Volunteers. Mol Cancer Ther. 2020;19(2):717–727. doi:10.1158/1535-7163.MCT-19-0375.
  • Diaz-Dinamarca DA, Hernandez C, Escobar DF, Soto DA, Muñoz GA, Badilla JF, Manzo RA, Carrión F, Kalergis AM, Vasquez AE, et al. Mucosal vaccination with lactococcus lactis-secreting surface immunological protein induces humoral and cellular immune protection against group b streptococcus in a murine model. Vaccines. 2020;8(2):146. doi:10.3390/vaccines8020146.
  • Xu P, Wang Y, Tao L, Wu X, Wu W. Recombinant lactococcus lactis secreting viral protein 1 of enterovirus 71 and its immunogenicity in mice. Biotechnol Lett. 2019;41(6–7):867–872. doi:10.1007/s10529-019-02695-1.
  • Lei H, Gao T, Cen Q. Cross-protective immunity of the haemagglutinin stalk domain presented on the surface of Lactococcus lactis against divergent influenza viruses in mice. Virulence. 2021;12(1):12–19. doi:10.1080/21505594.2020.1857162.
  • Zhou BY, Sun JC, Li X, Zhang Y, Luo B, Jiang N, Liu MC. Analysis of Immune Responses in Mice Orally Immunized with Recombinant pMG36e-SP-TSOL18/ Lactococcus lactis and pMG36e-TSOL18/ Lactococcus lactis Vaccines of Taenia solium. J Imm Res. 2018;2018:1–12. doi:10.1155/2018/9262631.
  • Singh SK, Plieskatt J, Chourasia BK, Singh V, Bolscher JM, Dechering KJ, Adu B, López-Méndez B, Kaviraj S, Locke E, et al. The Plasmodium falciparum circumsporozoite protein produced in Lactococcus lactis is pure and stable. Journal of Biological Chemistry. 2020;295(2):403–414. doi:10.1074/jbc.RA119.011268.
  • Davarpanah E, Seyed N, Bahrami F, Rafati S, Safaralizadeh R, Taheri T, Bueno LL. Lactococcus lactis expressing sand fly PpSP15 salivary protein confers long-term protection against Leishmania major in BALB/c mice. PLoS Negl Trop Dis. 2020;14(1):e0007939. doi:10.1371/journal.pntd.0007939.
  • Torkashvand A, Bahrami F, Adib M, Ajdary S. Subcutaneous immunization with recombinant Lactococcus lactis expressing F1S1 fusion protein induces systemic and mucosal immune responses in BALB/C mice. Biochem Moler Bio. 2019;7:196.
  • Kim EB, Piao da C, Son JS, Choi YJ. Cloning and characterization of a novel tuf promoter from Lactococcus lactis subsp. lactis IL1403. Curr Microbiol. 2009;59(4):425–431. doi:10.1007/s00284-009-9455-2.
  • Xuan B, Park J, Yoo JH, Kim EB. Oral Immunization of mice with cell extracts from recombinant Lactococcus lactis Expressing SARS-CoV-2 Spike Protein. Curr Microbiol. 2022;79(6):1–8. doi:10.1007/s00284-022-02866-w.
  • Temprana CF, Argüelles MH, Gutierrez NM, Barril PA, Esteban LE, Silvestre D, Mandile MG, Glikmann G, Castello AA, et al. Rotavirus VP6 protein mucosally delivered by cell wall-derived particles from Lactococcus lactis induces protection against infection in a murine model. PloS one. 2018;13(9):e0203700. doi:10.1371/journal.pone.0203700.
  • Kuipers OP, Beerthuyzen MM, de Ruyter Pg, Luesink EJ, de Vos WM, de Ruyter PGGA. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem. 1995;270(45):27299–27304. doi:10.1074/jbc.270.45.27299.
  • Mierau I, Kleerebezem M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis. Appl Microbiol Biotechnol. 2005;68(6):705–717. doi:10.1007/s00253-005-0107-6.
  • Morello E, Bermudez-Humaran LG, Llull D, Sole V, Miraglio N, Langella P, Poquet I. Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol. 2008;14(1–3):48–58. doi:10.1159/000106082.
  • Benbouziane B, Ribelles P, Aubry C, Martin R, Kharrat P, Riazi A, Langella P, Bermúdez-Humarán LG. Development of a Stress-Inducible Controlled Expression (SICE) system in Lactococcus lactis for the production and delivery of therapeutic molecules at mucosal surfaces. J Biotechnol. 2013;168(2):120–129. doi:10.1016/j.jbiotec.2013.04.019.
  • Carvalho RD, Do Carmo FLR, de Oliveira Junior A, Langella P, Chatel J-M, Bermúdez-Humarán LG, Azevedo V, de Azevedo MS. Use of wild type or recombinant lactic acid bacteria as an alternative treatment for gastrointestinal inflammatory diseases: a focus on inflammatory bowel diseases and mucositis. Front Microbiol. 2017;8:800. doi:10.3389/fmicb.2017.00800.
  • Tavares LM, De Jesus LCL, Da Silva TF, Barroso FAL, Batista VL, Coelho-Rocha ND, Azevedo V, Drumond MM, Mancha-Agresti P. Novel strategies for efficient production and delivery of live biotherapeutics and biotechnological uses of Lactococcus lactis: the lactic acid bacterium model. Front BioengiBiotech. 2020;8:1269. doi:10.3389/fbioe.2020.517166.
  • Miyoshi A, Jamet E, Commissaire J, Renault P, Langella P, Azevedo V. A xylose-inducible expression system for Lactococcus lactis. FEMS Microbiol Lett. 2004;239(2):205–212. doi:10.1016/j.femsle.2004.08.018.
  • de Azevedo Ms, Rocha CS, Electo N, Pontes DS, Molfetta JB, Goncalves ED, de Azevedo MSP, Azevedo V, Silva CL, Miyoshi A. Cytoplasmic and extracellular expression of pharmaceutical-grade mycobacterial 65-kDa heat shock protein in Lactococcus lactis. Genet Mol Res. 2012;11(2):1146–1157. doi:10.4238/2012.April.27.14.
  • Hollmann A, Saviello M, Delfederico L, Saraiva TD, Barh D, Jain N, Tiwari S, Chandra S, Gupta K, Zambare V, et al. Tight controlled expression and secretion of Lactobacillus brevis SlpA in Lactococcus lactis. Biotechnol Lett. 2012;34(7):1275–1281. doi:10.1007/s10529-012-0887-6.
  • Le Loir Y, Gruss A, Ehrlich SD, Langella P. A Nine-Residue Synthetic Propeptide Enhances Secretion Efficiency of Heterologous Proteins in Lactococcus lactis. J Bacteriol. 1998;180(7):1895–1903. doi:10.1128/JB.180.7.1895-1903.1998.
  • Morello E, Nouaille S, Cortes-Perez NG, Blugeon S, Medina LF, Azevedo V, Gratadoux JJ, Berm�dez-Humar�n LG, Le Loir Y, Langella P, et al. Inactivation of the ybdD Gene in Lactococcus lactis increases the amounts of exported proteins. Appl Environ Microbiol. 2012;78(19):7148–7151. doi:10.1128/AEM.01076-12.
  • Nouaille S, Morello E, Cortez-Peres N, Le Loir Y, Commissaire J, Gratadoux JJ, Poumerol E, Gruss A, Langella P. Complementation of the Lactococcus lactis secretion machinery with Bacillus subtilis SecDF Improves Secretion of Staphylococcal Nuclease. Appl Environ Microbiol. 2006;72(3):2272–2279. doi:10.1128/AEM.72.3.2272-2279.2006.
  • Poquet I, Saint V, Seznec E, Simoes N, Bolotin A, Gruss A. HtrA is the unique surface housekeeping protease in Lactococcus lactis and is required for natural protein processing. Mol Microbiol. 2000;35(5):1042–1051. doi:10.1046/j.1365-2958.2000.01757.x.
  • Frees D, Ingmer H. ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Mol Microbiol. 1999;31(1):79–87. doi:10.1046/j.1365-2958.1999.01149.x.
  • Cortes-Perez NG, Poquet I, Oliveira M, Gratadoux JJ, Madsen SM, Miyoshi A, Corthier G, Azevedo V, Langella P, Bermúdez-Humarán LG, et al. Construction and characterization of a Lactococcus lactis strain deficient in intracellular ClpP and extracellular HtrA proteases. Micro Bio. 2006;152(9):2611–2618. doi:10.1099/mic.0.28698-0.
  • Iwaki M, Okahashi N, Takahashi I, Kanamoto T, Sugita-Konishi Y, Aibara K, Koga T. Oral immunization with recombinant Streptococcus lactis carrying the Streptococcus mutans surface protein antigen gene. Infect Immun. 1990;58(9):2929–2934. doi:10.1128/iai.58.9.2929-2934.1990.
  • Wells JM, Wilson PW, Norton PM, Gasson MJ, Le Page RW. Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge. Mol Microbiol. 1993;8:1155–1162.
  • Norton PM, Brown HW, Wells JM, Macpherson AM, Wilson PW, Le Page RW. Factors affecting the immunogenicity of tetanus toxin fragment C expressed in Lactococcus lactis. FEMS Immunol Med Microbiol. 1996;14(2–3):167–177. doi:10.1111/j.1574-695X.1996.tb00284.x.
  • Robinson K, Chamberlain LM, Schofield KM, Wells JM, Le Page RW. Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat Biotechnol. 1997;15:653–657.
  • Seegers JFML. Lactobacilli as live vaccine delivery vectors: progress and prospects. Trends Biotechnol. 2002;20(12):508–515. doi:10.1016/S0167-7799(02)02075-9.
  • Allain T, Mansour NM, Bahr MMA, Martin R, Florent I, Langella P, Bermúdez-Humarán LG. A new lactobacilli in vivo expression system for the production and delivery of heterologous proteins at mucosal surfaces. FEMS Microbiol Lett. 2016;363(13):fnw117. doi:10.1093/femsle/fnw117.
  • Rush CM, Hafner LM, Timms PL. Vehicles for antigen delivery to the female urogenital tract. Advances in Mucosal Immunology, Pts a and B. 1995;371:1547–1552.
  • Pouwels PH, Leer RJ, Boersma WJA. The potential of Lactobacillus as a carrier for oral immunization: development and preliminary characterization of vector systems for targeted delivery of antigens. J Biotechnol. 1996;44(1–3):183–192. doi:10.1016/0168-1656(95)00140-9.
  • Xue Y, Zhang B, Huang H-B, Li J-Y, Pan T-X, Tang Y, Shi C-W, Chen H-L, Wang N, Yang G-L, et al. Immunoprotective effects of invasive Lactobacillus plantarum delivered nucleic acid vaccine coexpressing Trichinella spiralis CPF1 and murine interleukin-4. Vet Parasitol. 2021;298:109556. doi:10.1016/j.vetpar.2021.109556.
  • Ding G, Bai J, Feng B, Wang L, Qiao X, Zhou H, Jiang Y, Cui W, Tang L, Li Y, et al. An EGFP-marked recombinant lactobacillus oral tetravalent vaccine constitutively expressing α, ε, β1, and β2 toxoids for Clostridium perfringens elicits effective anti-toxins protective immunity. Virulence. 2019;10(1):754–767. doi:10.1080/21505594.2019.1653720.
  • Wang S, Geng N, Zhou D, Qu Y, Shi M, Xu Y, Liu K, Liu Y, Liu J. Oral immunization of chickens with recombinant Lactobacillus plantarum vaccine against early ALV-J infection. Front Immunol. 2019;10:2299. doi:10.3389/fimmu.2019.02299.
  • Huang H, Jiang Y, Zhou F, Shi C, Yang W, Wang J, Kang Y, Cao X, Wang C, Yang G, et al. A potential vaccine candidate towards chicken coccidiosis mediated by recombinant Lactobacillus plantarum with surface displayed EtMIC2 protein. Exp Parasitol. 2020;215:107901. doi:10.1016/j.exppara.2020.107901.
  • Wang J, Jiang H, Yang R, Zhang S, Zhao W, Hu J, Jiang Y, Yang W, Huang H, Shi C, et al. Construction and evaluation of recombinant Lactobacillus plantarum NC8 delivering one single or two copies of G protein fused with a DC-targeting peptide (DCpep) as novel oral rabies vaccine. Vet Microbiol. 2020;251:108906. doi:10.1016/j.vetmic.2020.108906.
  • Wang L, Xia T, Guo T, Ru Y, Jiang Y, Cui W, Zhou H, Qiao X, Tang L, Xu Y, et al. Recombinant Lactobacillus casei expressing capsid protein vp60 can serve as vaccine against rabbit hemorrhagic disease virus in rabbits. Vaccines. 2019;7(4):172. doi:10.3390/vaccines7040172.
  • Kuczkowska K, Copland A, Øverland L, Mathiesen G, Tran AC, Paul MJ, Eijsink VGH, Reljic R. Inactivated Lactobacillus plantarum carrying a surface-displayed Ag85B-ESAT-6 fusion antigen as a booster vaccine against Mycobacterium tuberculosis infection. Front Immunol. 2019;10:1588. doi:10.3389/fimmu.2019.01588.
  • Shonyela SM, Shi C, Yang W, Cao X, Yang G, Wang C. Recombinant Lactobacillus plantarum NC8 strain expressing porcine rotavirus VP7 induces specific antibodies in BALB/c mice. Acta Biochim Biophys Sin (Shanghai). 2021;53(6):707–718. doi:10.1093/abbs/gmab050.
  • Pan N, Liu B, Bao X, Zhang H, Sheng S, Liang Y, Pan H, Wang X. Oral delivery of novel recombinant lactobacillus elicit high protection against staphylococcus aureus pulmonary and skin infections. Vaccines. 2021;9(9):984. doi:10.3390/vaccines9090984.
  • Zhang Z, Huang H-B, Jiang Y-L, Liu J, Gao X, Liu Y, Yang W-T, Shi C-W, Wang D, Wang J-Z, et al. Immunological evaluation of invasive Lactobacillus plantarum co-expressing EtMIC2 and chicken interleukin-18 against Eimeria tenella. Parasitol Res. 2020;119(9):2885–2895. doi:10.1007/s00436-020-06745-w.
  • Bai Y, Wang G, Qi H, Wang Y, Xu C, Yue L, Hou X, Yu L. Immunogenicity of 987P fimbriae of enterotoxigenic Escherichia coli surface-displayed on Lactobacillus casei. Res Vet Sci. 2020;128:308–314. doi:10.1016/j.rvsc.2019.12.016.
  • Li L, Wang M, Hao J, Han J, Fu T, Bai J, et al. Mucosal IgA response elicited by intranasal immunization of Lactobacillus plantarum expressing surface-displayed RBD protein of SARS-CoV-2. Int J Biol Macromol. 2021;190:599–608. doi:10.1016/j.ijbiomac.2021.08.232.
  • Wells JM, Wilson PW, Norton PM, Gasson MJ, Lepage RWF. Lactococcus lactis: high-level expression of tetanus toxin fragment C and protection against lethal challenge. Mol Microbiol. 1993;8:1155–1162.
  • Robinson K, Chamberlain LM, Schofield KM, Wells JM, LePage RWF. Oral vaccination of mice against tetanus with recombinant Lactococcus lactis. Nat Biotechnol. 1997;15:653–657.
  • Maassen CBM, Laman JD, den Bak-glashouwer MJH, Tielen FJ, van Holten-neelen J, Hoogteijling L, Antonissen C, Leer RJ, Pouwels PH, Boersma WJA, et al. Instruments for oral disease-intervention strategies: recombinant Lactobacillus casei expressing tetanus toxin fragment C for vaccination or myelin proteins for oral tolerance induction in multiple sclerosis. Vaccine. 1999;17(17):2117–2128. doi:10.1016/S0264-410X(99)00010-9.
  • Reveneau N, Geoffroy M-C, Locht C, Chagnaud P, Mercenier A. Comparison of the immune responses induced by local immunizations with recombinant Lactobacillus plantarum producing tetanus toxin fragment C in different cellular locations. Vaccine. 2002;20(13–14):1769–1777. doi:10.1016/S0264-410X(02)00027-0.
  • Cortes-Perez NG, Lefevre F, Corthier G, Adel-Patient K, Langella P, Bermudez-Humaran LG. Influence of the route of immunization and the nature of the bacterial vector on immunogenicity of mucosal vaccines based on lactic acid bacteria. Vaccine. 2007;25(36):6581–6588. doi:10.1016/j.vaccine.2007.06.062.
  • Rochat T, Gratadoux -J-J, Gruss A, Corthier G, Maguin E, Langella P, van de Guchte M. Production of a heterologous nonheme catalase by lactobacillus casei: an efficient tool for removal of H 2 O 2 and Protection of Lactobacillus bulgaricus from Oxidative Stress in Milk. Appl Environ Microb. 2006;72(8):5143–5149. doi:10.1128/AEM.00482-06.
  • Watterlot L, Rochat T, Sokol H, Cherbuy C, Bouloufa I, Lefevre F, Gratadoux -J-J, Honvo-Hueto E, Chilmonczyk S, Blugeon S, et al. Intragastric administration of a superoxide dismutase-producing recombinant Lactobacillus casei BL23 strain attenuates DSS colitis in mice. Int J Food Microbiol. 2010;144(1):35–41. doi:10.1016/j.ijfoodmicro.2010.03.037.
  • Chang TLY, Chang C-H, Simpson DA, Xu Q, Martin PK, Lagenaur LA, Schoolnik GK, Ho DD, Hillier SL, Holodniy M, et al. Inhibition of HIV infectivity by a natural human isolate of Lactobacillus jensenii engineered to express functional two-domain CD4. P Natl Acad Sci USA. 2003;100(20):11672–11677. doi:10.1073/pnas.1934747100.
  • Wang Z, Yu Q, Gao J, Yang Q. Mucosal and systemic immune responses induced by recombinant Lactobacillus spp. expressing the hemagglutinin of the avian influenza virus H5N1. Clini and Vaccine Immu. 2012;19(2):174–179. doi:10.1128/CVI.05618-11.
  • Pavan S, Hols P, Delcour J, Geoffroy M-C, Grangette C, Kleerebezem M, Mercenier A. Adaptation of The Nisin-Controlled Expression System In Lactobacillus Plantarum: A Tool To Study In Vivo Biological Effects. Appl Environ Microbiol. 2000;66(10):4427–4432. doi:10.1128/AEM.66.10.4427-4432.2000.
  • Shaw DM, Gaerthe B, Leer RJ, Van Der Stap J, Smittenaar C, Heijne Den Bak-Glashouwer M-J, Thole JER, Tielen FJ, Pouwels PH, Havenith CEG, et al. Engineering the microflora to vaccinate the mucosa: serum immunoglobulin G responses and activated draining cervical lymph nodes following mucosal application of tetanus toxin fragment C-expressing lactobacilli. Immunology. 2000;100(4):510–518. doi:10.1046/j.1365-2567.2000.00069.x.
  • Bermúdez-Humarán LG, Kharrat P, Chatel J-M, Langella P. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb Cell Fact. 2011;10(S1):1–10. doi:10.1186/1475-2859-10-S1-S4.
  • Kruger C, Hu YZ, Pan Q, Marcotte H, Hultberg A, Delwar D, van Dalen PJ, Pouwels PH, Leer RJ, Kelly CG, et al. In situ delivery of passive immunity by lactobacilli producing single-chain antibodies. Nat Biotechnol. 2002;20(7):702–706. doi:10.1038/nbt0702-702.
  • Hidalgo-Cantabrana C, Delgado S, Ruiz L, Ruas-Madiedo P, Sanchez B, Margolles A. Bifidobacteria and their health-promoting effects. Microbiology Spectrum. 2017;5(3):5.3. 21. doi:10.1128/microbiolspec.BAD-0010-2016.
  • Mauras A, Chain F, Faucheux A, Ruffié P, Gontier S, Ryffel B, Butel M-J, Langella P, Bermúdez-Humarán LG, Waligora-Dupriet A-J, et al. A new Bifidobacteria Expression SysTem (BEST) to produce and deliver interleukin-10 in Bifidobacterium bifidum. Front Microbiol. 2018;9:3075. doi:10.3389/fmicb.2018.03075.
  • Shirakawa T, Kitagawa K. Antitumor effect of oral cancer vaccine with Bifidobacterium delivering WT1 protein to gut immune system is superior to WT1 peptide vaccine. Hum Vaccin Immunother. 2018;14(1):159–162. doi:10.1080/21645515.2017.1382787.
  • Hu B, Kou L, Li C, Zhu L-P, Fan Y-R, Wu Z-W, Wang -J-J, Xu G-X. Bifidobacterium longum as a delivery system of TRAIL and endostatin cooperates with chemotherapeutic drugs to inhibit hypoxic tumor growth. Cancer Gene Ther. 2009;16(8):655–663. doi:10.1038/cgt.2009.7.
  • Yu Z, Huang Z, Sao C, Huang Y, Zhang F, Ma G, Chen Z, Zeng Z, Qiwen D, Zeng W, et al. Oral immunization of mice using Bifidobacterium longum expressing VP1 protein from enterovirus 71. Arch Virol. 2013;158(5):1071–1077. doi:10.1007/s00705-012-1589-z.
  • Takei S, Omoto C, Kitagawa K, Morishita N, Katayama T, Shigemura K, Fujisawa M, Kawabata M, Hotta H, Shirakawa T, et al. Oral administration of genetically modified Bifidobacterium displaying HCV-NS3 multi-epitope fusion protein could induce an HCV-NS3-specific systemic immune response in mice. Vaccine. 2014;32(25):3066–3074. doi:10.1016/j.vaccine.2014.03.022.
  • Yamamoto S, Wada J, Katayama T, Jikimoto T, Nakamura M, Kinoshita S, et al. Genetically modified Bifidobacterium displaying Salmonella-antigen protects mice from lethal challenge of Salmonella Typhimurium in a murine typhoid fever model. Vaccine. 2010;28(41):6684–6691. doi:10.1016/j.vaccine.2010.08.007.
  • Castellsague X. Natural history and epidemiology of HPV infection and cervical cancer. Gynecol Oncol. 2008;110(3):S4–S7. doi:10.1016/j.ygyno.2008.07.045.
  • Schiller JT, Castellsague X, Villa LL, Hildesheim A. An update of prophylactic human papillomavirus L1 virus-like particle vaccine clinical trial results. Vaccine. 2008;26:K53–K61. doi:10.1016/j.vaccine.2008.06.002.
  • Metzger DW. IL-12 as an adjuvant for the enhancement of protective humoral immunity. Expert Rev Vaccines. 2009;8(5):515–518. doi:10.1586/erv.09.13.
  • Bermudez-Humaran LG, Langella P, Miyoshi A, Gruss A, Guerra RT, de Oca-luna RM, et al. Production of Human Papillomavirus Type 16 E7 Protein i Lactococcus lactis. Appl Environ Microb. 2002;68(2):917–922. doi:10.1128/AEM.68.2.917-922.2002.
  • Bermudez-Humaran LG, Cortes-Perez NG, Le Loir Y, Alcocer-Gonzalez JM, Tamez-Guerra RS, de Oca-luna RM, et al. An inducible surface presentation system improves cellular immunity against human papillomavirus type 16 E7 antigen in mice after nasal administration with recombinant lactococci. J Med Microbiol. 2004;53(5):427–433. doi:10.1099/jmm.0.05472-0.
  • Machhi J, Herskovitz J, Senan AM, Dutta D, Nath B, Oleynikov MD, et al. The natural history, pathobiology, and clinical manifestations of SARS-CoV-2 infections. Journal of Neuroimmune Pharmacology. 2020;15(3):359–386. doi:10.1007/s11481-020-09944-5.
  • Chung JY, Thone MN, Kwon YJ. COVID-19 vaccines: the status and perspectives in delivery points of view. Adv Drug Deliv Rev. 2021;170:1–25. doi:10.1016/j.addr.2020.12.011.
  • Mezhenskaya D, Isakova-Sivak I, Gupalova T, Bormotova E, Kuleshevich E, Kramskaya T, et al. a live probiotic vaccine prototype based on conserved influenza a virus antigens protect mice against lethal influenza virus infection. Biomedicines. 2021;9(11):1515. doi:10.3390/biomedicines9111515.
  • Gupalova T, Leontieva G, Kramskaya T, Grabovskaya K, Kuleshevich E, Suvorov A. Development of experimental pneumococcal vaccine for mucosal immunization. PloS one. 2019;14(6):e0218679. doi:10.1371/journal.pone.0218679.
  • Thinbanmai T, Lulitanond V, Mayo B, Lulitanond A, Panya M. Cloning and expression of enterovirus 71 capsid protein 1 in a probio Bifidobacterium pseudocatenulatum. Lett Appl Microbiol. 2019;68(1):9–16. doi:10.1111/lam.13089.
  • Jung K, Saif LJ, Wang Q. Porcine epidemic diarrhea virus (PEDV): an update on etiology, transmission, pathogenesis, and prevention and control. Virus Res. 2020;286:198045. doi:10.1016/j.virusres.2020.198045.
  • Hou X-L, L-y Y, Liu J, Wang G-H. Surface-displayed porcine epidemic diarrhea viral (PEDV) antigens on lactic acid bacteria. Vaccine. 2007;26(1):24–31. doi:10.1016/j.vaccine.2007.10.065.
  • Li X, Zhang B, Zhang D, Liu S, Ren J. The construction of recombinant Lactobacillus casei vaccine of PEDV and its immune responses in mice. BMC Vet Res. 2021;17(1):1–10. doi:10.1186/s12917-021-02885-y.
  • Yu M, Wang L, Ma S, Wang X, Wang Y, Xiao Y, et al. Immunogenicity of eGFP-marked recombinant Lactobacillus casei against transmissible gastroenteritis virus and porcine epidemic diarrhea virus. Viruses. 2017;9(10):274. doi:10.3390/v9100274.
  • Lahiri A, Bhowmick S, Sharif S, Mallick AI. Pre-treatment with chicken IL-17A secreted by bioengineered LAB vector protects chicken embryo fibroblasts against Influenza Type A Virus (IAV) infection. Mol Immunol. 2021;140:106–119. doi:10.1016/j.molimm.2021.10.003.
  • Liu L, Zhang W, Song Y, Wang W, Zhang Y, Wang T, et al. Recombinant Lactococcus lactis co-expressing OmpH of an M cell-targeting ligand and IBDV-VP2 protein provide immunological protection in chickens. Vaccine. 2018;36(5):729–735. doi:10.1016/j.vaccine.2017.12.027.
  • Fleckenstein JM, Kuhlmann FM, Sheikh A. Acute Bacterial Gastroenteritis. GastrO Clin. 2021;50(2):283–304. doi:10.1016/j.gtc.2021.02.002.
  • Gorain C, Khan A, Singh A, Mondal S, Mallick AI. Bioengineering of LAB vector expressing Haemolysin co-regulated protein (Hcp): a strategic approach to control gut colonization of Campylobacter jejuni in a murine model. Gut Pathog. 2021;13(1):1–16. doi:10.1186/s13099-021-00444-2.
  • Ahmadi Rouzbahani H, Mousavi Gargari SL, Nazarian S, Abdollahi S. Protective immunity against enterotoxigenic escherichia coli by oral vaccination of engineered lactococcus lactis. Curr Microbiol. 2021;78(9):3464–3473. doi:10.1007/s00284-021-02601-x.
  • de Castro C P, Mendes Souza B, Mancha-Agresti P, Bastos Pereira V, Zurita-Turk M, Melo Preisser T, et al. Lactococcus lactis FNBPA+ (pValac: e6ag85a) induces cellular and humoral immune responses after oral immunization of mice. Front Microbiol. 2021;12:1222.
  • Gottstein B, Pozio E, Noìˆckler K. Epidemiology, diagnosis, treatment, and control of trichinellosis. Clin Microbiol Rev. 2009;22(1):127–145. doi:10.1128/CMR.00026-08.
  • Abdellahi L, Iraji F, Mahmoudabadi A, Hejazi SH. Vaccination in leishmaniasis: a review article. Iran Biomed J. 2022;26(1):1. doi:10.52547/ibj.26.1.35.
  • Hugentobler F, Di Roberto RB, Gillard J, Cousineau B. Oral immunization using live Lactococcus lactis co-expressing LACK and IL-12 protects BALB/c mice against Leishmania major infection. Vaccine. 2012;30(39):5726–5732. doi:10.1016/j.vaccine.2012.07.004.
  • Varo R, Chaccour C, Bassat Q. Update on malaria. Medicina Clínica(English Edition). Medicina clinica. 2020;155(9):395–402. doi:10.1016/j.medcli.2020.05.010.
  • Singh SK, Roeffen W, Mistarz UH, Chourasia BK, Yang F, Rand KD, et al. Construct design, production, and characterization of Plasmodium falciparum 48/45 R0. 6C subunit protein produced in Lactococcus lactis as candidate vaccine. Microb Cell Fact. 2017;16(1):1–11. doi:10.1186/s12934-017-0710-0.
  • Singh SK, Plieskatt J, Chourasia BK, Fabra-García A, Garcia-Senosiain A, Singh V, et al. A reproducible and scalable process for manufacturing a Pfs48/45 based Plasmodium falciparum transmission-blocking vaccine. Front Immunol. 2021;11:606266.
  • Singh SK, Plieskatt J, Chourasia BK, Singh V, Bengtsson KL, Reimer JM, et al. Preclinical development of a Pfs230-Pfs48/45 chimeric malaria transmission-blocking vaccine. NPJ Vaccines. 2021;6(1):1–11. doi:10.1038/s41541-021-00383-8.
  • Mills RM. Chagas disease: epidemiology and barriers to treatment. Am J Med. 2020;133(11):1262–1265. doi:10.1016/j.amjmed.2020.05.022.
  • Quintana I, Espariz M, Villar SR, González FB, Pacini MF, Cabrera G, et al. Genetic engineering of Lactococcus lactis co-producing antigen and the mucosal adjuvant 3’ 5’-cyclic di adenosine monophosphate (c-di-AMP) as a design strategy to develop a mucosal vaccine prototype. Front Microbiol. 2018;9:2100. doi:10.3389/fmicb.2018.02100.
  • Ebrahimzadeh F, Shirdast H, Taromchi A, Talebkhan Y, Haniloo A, Esmaeilzadeh A, et al. Induction of immunogenic response in balb/c mice by live and killed form of recombinant Lactococcus lactis displaying EG95 of echinococcus granulosus. Iran Biomed J. 2021;25(4):284. doi:10.52547/ibj.25.4.284.
  • Bermudez-Humaran LG, Langella P, Cortes-Perez NG, Gruss A, Tamez-Guerra RS, Oliveira SC, et al. intranasal immunization with recombinant lactococcus lactis secreting murine interleukin-12 enhances antigen-specific th1 cytokine production. Infect Immun. 2003;71(4):1887–1896. doi:10.1128/IAI.71.4.1887-1896.2003.
  • Bermudez-Humaran LG, Cortes-Perez NG, Lefevre F, Guimaraes V, Rabot S, Alcocer-Gonzalez JM, et al. A novel mucosal vaccine based on live lactococci expressing E7 antigen and IL-12 induces systemic and mucosal immune responses and protects mice against human papillomavirus type 16-induced tumors. Journal of Immunology. 2005;175(11):7297–7302. doi:10.4049/jimmunol.175.11.7297.
  • Angkasekwinai P. Th9 cells in allergic disease. Curr Allergy Asthma Rep. 2019;19(5):1–9. doi:10.1007/s11882-019-0860-8.
  • Ai C, Zhang Q, Ren C, Wang G, Liu X, Tian F, et al. Genetically engineered Lactococcus lactis protect against house dust mite allergy in a BALB/c mouse model. PloS one. 2014;9(10):e109461. doi:10.1371/journal.pone.0109461.
  • Chan CJ, Yong YS, Song AAL, Abdul Rahim R, In LLA, Lim RLH. Lactococcus lactharbouring Ara h 2.02 alleviates allergen-specific Th2-associated responses in sensitized mice. J Appl Microbiol. 2020;128(3):862–874. doi:10.1111/jam.14524.
  • C-y W, Bermúdez-Humarán LG, Yue F, Li M, Zhang L-P. Intranasal administration with recombinant Lactococcus lactis expressing heme oxygenase-1 reduces hyperoxia-induced lung inflammation in rat pups. Biotechnol Lett. 2015;37(6):1203–1211. doi:10.1007/s10529-015-1795-3.
  • Martin R, Chain F, Natividad JM, Natividad JM, Sokol H. Effects in the use of a genetically engineered strain of Lactococcus lacti delivering in situ IL-10 as a therapy to treat low-grade colon inflammation. Hum Vaccin Immunother. 2014;10(6):1611–1621. doi:10.4161/hv.28549.
  • Hanson ML, Hixon JA, Li W, Felber BK, Anver MR, Stewart CA, et al. Oral delivery of IL-27 recombinant bacteria attenuates immune colitis in mice. Gastroenterology. 2014;146(1):210–21. e13. doi:10.1053/j.gastro.2013.09.060.
  • Carvalho RD, Breyner N, Menezes-Garcia Z, Rodrigues NM, Lemos L, Maioli TU, et al. Secretion of biologically active pancreatitis-associated protein I (PAP) by genetically modified dairy Lactococcus lactis NZ9000 in the prevention of intestinal mucositis. Microb Cell Fact. 2017;16(1):1–11. doi:10.1186/s12934-017-0624-x.
  • Del Carmen S, de Moreno de Leblanc A, Perdigón G, Bastos Pereira V, Miyoshi A, Azevedo V, et al. Evaluation of the anti-inflammatory effect of milk fermented by a strain of IL-10-producing Lactococcus lactis using a murine model of Crohn`s disease. J Mol Microbiol Biotechnol. 2011;21(3–4):138–146. doi:10.1159/000333830.
  • LeBlanc JG, Del Carmen S, Miyoshi A, Azevedo V, Sesma F, Langella P, et al. Use of superoxide dismutase and catalase producing lactic acid bacteria in TNBS induced Crohn’s disease in mice. J Biotechnol. 2011;151(3):287–293. doi:10.1016/j.jbiotec.2010.11.008.
  • DiMeglio LA, Evans-Molina C, Oram RA. Type 1 diabetes. Lancet. 2018;391(10138):2449–2462. doi:10.1016/S0140-6736(18)31320-5.
  • Liu K-F, Liu X-R, G-L L, S-P L, Jin L, Wu J. Oral administration of Lactococcus lactis-expressing heat shock protein 65 and tandemly repeated IA2P2 prevents type 1 diabetes in NOD mice. Immunol Lett. 2016;174:28–36. doi:10.1016/j.imlet.2016.04.008.
  • Cook DP, Cunha JPMCM, Martens P-J, Sassi G, Mancarella F, Ventriglia G, Sebastiani G, Vanherwegen A-S, Atkinson MA, Van Huynegem K, et al. Intestinal delivery of proinsulin and IL-10 via Lactococcus lactis combined with low-dose anti-CD3 restores tolerance outside the window of acute type 1 diabetes diagnosis. Front Immunol. 2020;11:1103. doi:10.3389/fimmu.2020.01103.
  • Preisser TM, da Cunha VP, Santana MP, Pereira VB, Cara DC, Souza BM, Miyoshi A. Recombinant Lactococcus lactis carrying IL-4 and IL-10 coding vectors protects against type 1 diabetes in NOD mice and attenuates insulitis in the STZ-induced model. J Diabetes Res. 2021;2021:1–15. doi:10.1155/2021/6697319.
  • Sand IK. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr Opin Neurol. 2015;28(3):193–205. doi:10.1097/WCO.0000000000000206.
  • Rezende RM, Oliveira RP, Medeiros SR, Gomes-Santos AC, Alves AC, Loli FG, Guimarães MAF, Amaral SS, da Cunha AP, Weiner HL, et al. Hsp65-producing Lactococcus lactis prevents experimental autoimmune encephalomyelitis in mice by inducing CD4+LAP+ regulatory T cells. J Autoimmun. 2013;40:45–57. doi:10.1016/j.jaut.2012.07.012.
  • Szczepankowska K. Oral administration of Lactococcus lactis expressing synthetic genes of myelin antigens in decreasing experimental autoimmune encephalomyelitis in rats. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research. 2015;21:1587. doi:10.12659/MSM.892764.
  • Kasarello K, Szczepankowska A, Kwiatkowska-Patzer B, Lipkowski AW, Gadamski R, Sulejczak D, Łachwa M, Biały M, Bardowski J. Effect of recombinantLactococcuslactis producing myelin peptides on neuroimmunological changes in rats with experimental allergic encephalomyelitis. Folia Neuropathologica. 2016;3:249–258. doi:10.5114/fn.2016.62534.
  • Littlejohn EA, Monrad SU. Early diagnosis and treatment of rheumatoid arthritis. Primary Care: Clinics in Office Practice. 2018;45(2):237–255. doi:10.1016/j.pop.2018.02.010.
  • Maddaloni M, Kochetkova I, Hoffman C, Pascual DW. Delivery of IL-35 by Lactococcus lactis ameliorates collagen-induced arthritis in mice. Front Immunol. 2018;9:2691. doi:10.3389/fimmu.2018.02691.
  • Gusmao-Silva G, Aguiar SLF, Miranda MCG, Guimaraes MA, Alves JL, Vieira AT, et al. Hsp65-producing Lactococcocus lactis prevents antigen-induced arthritis in mice. Front Immunol. 2020;11:562905.
  • Akgul A, Maddaloni M, Jun SM, Nelson AS, Odreman VA, Hoffman C, Bhagyaraj E, Voigt A, Abbott JR, Nguyen CQ, et al. Stimulation of regulatory T cells with Lactococcus lactis expressing enterotoxigenic E. coli colonization factor antigen 1 retains salivary flow in a genetic model of Sjögren’s syndrome. Arthritis Res Ther. 2021;23(1):1–16. doi:10.1186/s13075-021-02475-1.
  • Bermudez-Humaraan LG, Nouaille S, Zilberfarb V, Corthier G, Gruss A, Langella P, Issad T. Effects of intranasal administration of a leptin-secreting lactococcus lactis recombinant on food intake, body weight, and immune response of mice. Appl Environ Microb. 2007;73(16):5300–5307. doi:10.1128/AEM.00295-07.
  • Steidler L, Hans W, Schotte L, Neirynck S, Obermeier F, Falk W, Fiers W, Remaut E. Treatment of murine colitis by lactococcus lactis secreting interleukin-10. Science. 2000;289(5483):1352–1355. doi:10.1126/science.289.5483.1352.
  • Steidler L, Neirynck S, Huyghebaert N, Snoeck V, Vermeire A, Goddeeris B, Cox E, Remon JP, Remaut E. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat Biotechnol. 2003;21(7):785–789. doi:10.1038/nbt840.
  • Braat H, Rottiers P, Hommes DW, Huyghebaert N, Remaut E, Remon JP, van Deventer SJH, Neirynck S, Peppelenbosch MP, Steidler L, et al. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin Gastroenterol Hepatol. 2006;4(6):754–759. doi:10.1016/j.cgh.2006.03.028.
  • Vandenbroucke K, Hans W, Van Huysse J, Neirynck S, Demetter P, Remaut E, Rottiers P, Steidler L. Active delivery of trefoil factors by genetically modified Lactococcus lactis prevents and heals acute colitis in mice. Gastroenterology. 2004;127(2):502–513. doi:10.1053/j.gastro.2004.05.020.
  • Caluwaerts S, Vandenbroucke K, Steidler L, Neirynck S, Vanhoenacker P, Corveleyn S, Watkins B, Sonis S, Coulie B, Rottiers P, et al. AG013, a mouth rinse formulation of Lactococcus lactis secreting human Trefoil Factor 1, provides a safe and efficacious therapeutic tool for treating oral mucositis. Oral Oncol. 2010;46(7):564–570. doi:10.1016/j.oraloncology.2010.04.008.
  • Motta J-P, Bermudez-Humaran LG, Deraison C, Martin L, Rolland C, Rousset P, Boue J, Dietrich G, Chapman K, Kharrat P, et al. Food-grade bacteria expressing elafin protect against inflammation and restore colon homeostasis. Sci Transl Med. 2012;4(158):158ra44. doi:10.1126/scitranslmed.3004212.