804
Views
8
CrossRef citations to date
0
Altmetric
Research Article

A Review on Phytochemical Composition and Potential Health-promoting Properties of Walnuts

ORCID Icon & ORCID Icon

References

  • Williams, R. D.; Juglans Nigra, L., Black Walnut. Silvics of North America 1990, 2, 391–399.
  • United States Department of Agriculture. Tree Nuts: World Markets and Trade. https://downloads.usda.library.cornell.edu/usda-esmis/files/tm70mv16z/jm2155639/sq87c996m/Tree-Nuts.pdf (accessed July 4, 2019).
  • Gao, P.; Jin, J.; Liu, R.; Jin, Q.; Wang, X. Chemical Compositions of Walnut (Juglans Regia L.) Oils from Different Cultivated Regions in China. J. Am. Oil Chem.’ Soc. 2018, 95(7), 825–834. DOI: 10.1002/aocs.12097
  • Hammons Products Company, Black Walnut Comes to a Successful End: December 21, 2017, https://black-walnuts.com/pressrelease/black-walnut-harvest-comes-to-a-successful-end (accessed August 1, 2020).
  • Reid, W.; Coggeshall, M. V.; Hunt, K. L. Cultivar Evaluation and Development for Black Walnut Orchards. 2004.
  • United States Department of Agriculture. Agricultural Research Service. FoodData Central. https://fdc.nal.usda.gov/fdc-app.html#/food-details/170187/nutrients (accessed July 14, 2019).
  • Fukuda, T.; Ito, H.; Yoshida, T. Antioxidative Polyphenols from Walnuts (Juglans Regia L.). Phytochemistry 2003, 63(7), 795–801. DOI: 10.1016/S0031-9422(03)00333-9
  • Robbins, K. S.; Shin, E.-C.; Shewfelt, R. L.; Eitenmiller, R. R.; Pegg, R. B. Update on the Healthful Lipid Constituents of Commercially Important Tree Nuts. J. Agric. Food Chem. 2011, 59(22), 12083–12092. DOI: 10.1021/jf203187v
  • Hutchens, A. R.;, A Handbook of Native American Herbs: The Pocket Guide to 125 Medicinal Plants and Their Uses. Shambhala Publications: 1992.
  • Nolan, J. M.; Robbins, M. C. Ethnobotany and Ethnicity in the Ozarks: A Reply to Jones. Hum. Organ. 2000, 59(1), 140–142. DOI: 10.17730/humo.59.1.03740x304t275304
  • Ros, E.; Health Benefits of Nut Consumption. Nutrients 2010, 2(7), 652–682. DOI: 10.3390/nu2070652
  • Tindall, A. M.; Petersen, K. S.; Skulas‐Ray, A. C.; Richter, C. K.; Proctor, D. N.; Kris‐Etherton, P. M. Replacing Saturated Fat with Walnuts or Vegetable Oils Improves Central Blood Pressure and Serum Lipids in Adults at Risk for Cardiovascular Disease: A Randomized Controlled‐Feeding Trial. J. Am. Heart Assoc. 2019, 8 (9), e011512. DOI: 10.1161/JAHA.118.011512
  • Weihrauch, J. L.; Gardner, J. M. Sterol Content of Foods of Plant Origin. J. Am. Diet. Assoc. 1978, 73(1), 39–47.
  • Abdallah, I. B.; Tlili, N.; Martinez-Force, E.; Rubio, A. G. P.; Perez-Camino, M. C.; Albouchi, A.; Boukhchina, S. Content of Carotenoids, Tocopherols, Sterols, Triterpenic and Aliphatic Alcohols, and Volatile Compounds in Six Walnuts (Juglans Regia L.) Varieties. Food Chem. 2015, 173, 972–978. DOI: 10.1016/j.foodchem.2014.10.095
  • Phillips, K. M.; Ruggio, D. M.; Ashraf-Khorassani, M. Phytosterol Composition of Nuts and Seeds Commonly Consumed in the United States. J. Agric. Food Chem. 2005, 53(24), 9436–9445. DOI: 10.1021/jf051505h
  • Vu, D. C.; Lei, Z.; Sumner, L. W.; Coggeshall, M. V.; Lin, C.-H. Identification and Quantification of Phytosterols in Black Walnut Kernels. J. Food Compos. Anal. 2019, 75, 61–69. DOI: 10.1016/j.jfca.2018.09.016
  • Amaral, J. S.; Casal, S.; Pereira, J. A.; Seabra, R. M.; Oliveira, B. P. P. Determination of Sterol and Fatty Acid Compositions, Oxidative Stability, and Nutritional Value of Six Walnut (Juglans Regia L.) Cultivars Grown in Portugal. J. Agric. Food Chem. 2003, 51(26), 7698–7702. DOI: 10.1021/jf030451d
  • Rabadán, A.; Pardo, J. E.; Pardo-Giménez, A.; Álvarez-Ortí, M. Effect of Genotype and Crop Year on the Nutritional Value of Walnut Virgin Oil and Defatted Flour. Sci. Total Environ. 2018, 634, 1092–1099. DOI: 10.1016/j.scitotenv.2018.04.090
  • Crews, C.; Hough, P.; Godward, J.; Brereton, P.; Lees, M.; Guiet, S.; Winkelmann, W. Study of the Main Constituents of Some Authentic Walnut Oils. J. Agric. Food Chem. 2005, 53(12), 4853–4860. DOI: 10.1021/jf0478354
  • Gong, Y.; Pegg, R. B.; Carr, E. C.; Parrish, D. R.; Kellett, M. E.; Kerrihard, A. L. Chemical and Nutritive Characteristics of Tree Nut Oils Available in the US Market. Eur. J. Lipid Sci. Technol. 2017, 119 (8), 1600520. DOI: 10.1002/ejlt.201600520
  • Martinez, M. L.; Mattea, M. A.; Maestri, D. M. Varietal and Crop Year Effects on Lipid Composition of Walnut (Juglans Regia) Genotypes. J. Am. Oil Chem.’ Soc. 2006, 83(9), 791–796. DOI: 10.1007/s11746-006-5016-z
  • Rabadán, A.; Álvarez-Ortí, M.; Pardo, J. E. A Comparison of the Effect of Genotype and Weather Conditions on the Nutritional Composition of Most Important Commercial Nuts. Sci. Hortic. 2019, 244, 218–224. DOI: 10.1016/j.scienta.2018.09.064
  • Verardo, V.; Riciputi, Y.; Sorrenti, G.; Ornaghi, P.; Marangoni, B.; Caboni, M. F. Effect of Nitrogen Fertilisation Rates on the Content of Fatty Acids, Sterols, Tocopherols and Phenolic Compounds, and on the Oxidative Stability of Walnuts. LWT 2013, 50(2), 732–738. DOI: 10.1016/j.lwt.2012.07.018
  • Gao, P.; Liu, R.; Jin, Q.; Wang, X. Comparative Study of Chemical Compositions and Antioxidant Capacities of Oils Obtained from Two Species of Walnut: Juglans Regia and Juglans Sigillata. Food Chem. 2019, 279, 279–287. DOI: 10.1016/j.foodchem.2018.12.016
  • Matthäus, B.; Özcan, M. M.; Al Juhaimi, F.; Adiamo, O. Q.; Alsawmahi, O. N.; Ghafoor, K.; Babiker, E. E. Effect of the Harvest Time on Oil Yield, Fatty Acid, Tocopherol and Sterol Contents of Developing Almond and Walnut Kernels. J. Oleo Sci. 2018, 67(1), 39–45. DOI: 10.5650/jos.ess17162
  • Shin, E.-C.; Pegg, R. B.; Phillips, R. D.; Eitenmiller, R. R. Commercial Peanut (Arachis Hypogaea L.) Cultivars in the United States: Phytosterol Composition. J. Agric. Food Chem. 2010, 58(16), 9137–9146. DOI: 10.1021/jf102150n
  • Maguire, L. S.; O’Sullivan, S. M.; Galvin, K.; O’Connor, T. P.; O’Brien, N. M. Fatty Acid Profile, Tocopherol, Squalene and Phytosterol Content of Walnuts, Almonds, Peanuts, Hazelnuts and the Macadamia Nut. Int. J. Food Sci. Nutr. 2004, 55(3), 171–178. DOI: 10.1080/09637480410001725175
  • Regueiro, J.; Sánchez-González, C.; Vallverdú-Queralt, A.; Simal-Gándara, J.; Lamuela-Raventós, R.; Izquierdo-Pulido, M. Comprehensive Identification of Walnut Polyphenols by Liquid Chromatography Coupled to Linear Ion trap–Orbitrap Mass Spectrometry. Food Chem. 2014, 152, 340–348. DOI: 10.1016/j.foodchem.2013.11.158
  • Anderson, K. J.; Teuber, S. S.; Gobeille, A.; Cremin, P.; Waterhouse, A. L.; Steinberg, F. M. Walnut Polyphenolics Inhibit in Vitro Human Plasma and LDL Oxidation. J. Nutr. 2001, 131(11), 2837–2842. DOI: 10.1093/jn/131.11.2837
  • Cerdá, B.; Tomás-Barberán, F. A.; Espín, J. C. Metabolism of Antioxidant and Chemopreventive Ellagitannins from Strawberries, Raspberries, Walnuts, and Oak-aged Wine in Humans: Identification of Biomarkers and Individual Variability. J. Agric. Food Chem. 2005, 53(2), 227–235. DOI: 10.1021/jf049144d
  • Gómez-Caravaca, A. M.; Verardo, V.; Segura-Carretero, A.; Caboni, M. F.; Fernández-Gutiérrez, A. Development of a Rapid Method to Determine Phenolic and Other Polar Compounds in Walnut by Capillary Electrophoresis–electrospray Ionization Time-of-flight Mass Spectrometry. J. Chromatogr. A 2008, 1209 (1–2), 238–245. DOI: 10.1016/j.chroma.2008.08.117
  • García-Villalba, R.; Espín, J. C.; Aaby, K.; Alasalvar, C.; Heinonen, M.; Jacobs, G.; Voorspoels, S.; Koivumäki, T.; Kroon, P. A.; Pelvan, E. Validated Method for the Characterization and Quantification of Extractable and Nonextractable Ellagitannins after Acid Hydrolysis in Pomegranate Fruits, Juices, and Extracts. J. Agric. Food Chem. 2015, 63(29), 6555–6566. DOI: 10.1021/acs.jafc.5b02062
  • Slatnar, A.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R.; Solar, A. Identification and Quantification of Phenolic Compounds in Kernels, Oil and Bagasse Pellets of Common Walnut (Juglans Regia L.). Food Res. Int. 2015, 67, 255–263. DOI: 10.1016/j.foodres.2014.11.016
  • Colaric, M.; Veberic, R.; Solar, A.; Hudina, M.; Stampar, F. Phenolic Acids, Syringaldehyde, and Juglone in Fruits of Different Cultivars of Juglans Regia L. J. Agric. Food Chem. 2005, 53(16), 6390–6396. DOI: 10.1021/jf050721n
  • Figueroa, F.; Marhuenda, J.; Zafrilla, P.; Villaño, D.; Martínez-Cachá, A.; Tejada, L.; Cerdá, B.; Mulero, J. High-performance Liquid Chromatography-diode Array Detector Determination and Availability of Phenolic Compounds in 10 Genotypes of Walnuts. Int. J. Food Prop. 2017, 20(5), 1074–1084. DOI: 10.1080/10942912.2016.1199036
  • Trandafir, I.; Cosmulescu, S.; Nour, V. Phenolic Profile and Antioxidant Capacity of Walnut Extract as Influenced by the Extraction Method and Solvent. Int. J. Food Eng. 2017, 13 (1). DOI: 10.1515/ijfe-2015-0284
  • Vu, D. C.; Vo, P. H.; Coggeshall, M. V.; Lin, C.-H. Identification and Characterization of Phenolic Compounds in Black Walnut Kernels. J. Agric. Food Chem. 2018, 66(17), 4503–4511. DOI: 10.1021/acs.jafc.8b01181
  • Kumar, S.; Pandey, A. K. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013.DOI: 10.1155/2013/162750
  • Arranz, S.; Pérez-Jiménez, J.; Saura-Calixto, F. Antioxidant Capacity of Walnut (Juglans Regia L.): Contribution of Oil and Defatted Matter. Eur. Food Res. Technol. 2008, 227(2), 425–431. DOI: 10.1007/s00217-007-0737-2
  • Gunduc, N.; El, S. N. Assessing Antioxidant Activities of Phenolic Compounds of Common Turkish Food and Drinks on in Vitro Low‐density Lipoprotein Oxidation. J. Food Sci. 2003, 68(8), 2591–2595. DOI: 10.1111/j.1365-2621.2003.tb07066.x
  • Kornsteiner, M.; Wagner, K.-H.; Elmadfa, I. Tocopherols and Total Phenolics in 10 Different Nut Types. Food Chem. 2006, 98(2), 381–387. DOI: 10.1016/j.foodchem.2005.07.033
  • Yang, J.; Liu, R. H.; Halim, L. Antioxidant and Antiproliferative Activities of Common Edible Nut Seeds. LWT 2009, 42(1), 1–8. DOI: 10.1016/j.lwt.2008.07.007
  • Abe, L. T.; Lajolo, F. M.; Genovese, M. I. Comparison of Phenol Content and Antioxidant Capacity of Nuts. Food Sci. Technol. 2010, 30, 254–259. DOI: 10.1590/S0101-20612010000500038
  • Vinson, J. A.; Cai, Y. Nuts, Especially Walnuts, Have Both Antioxidant Quantity and Efficacy and Exhibit Significant Potential Health Benefits. Food Funct. 2012, 3(2), 134–140. DOI: 10.1039/C2FO10152A
  • Abdallah, I. B.; Macciola, V.; Boukhchina, S.; Fornell, R. D. L. T.; De Leonardis, A. The Negligible Role of Ellagic Acid in Preventing Fat Oxidation of Tunisian Walnuts (Juglans Regia L.). J. Food Meas. Charact. 2017, 11(3), 1406–1411. DOI: 10.1007/s11694-017-9519-0
  • Fuentealba, C.; Hernández, I.; Saa, S.; Toledo, L.; Burdiles, P.; Chirinos, R.; Campos, D.; Brown, P.; Pedreschi, R. Colour and in Vitro Quality Attributes of Walnuts from Different Growing Conditions Correlate with Key Precursors of Primary and Secondary Metabolism. Food Chem. 2017, 232, 664–672. DOI: 10.1016/j.foodchem.2017.04.029
  • Cohen, M.; Valancogne, C.; Dayau, S.; Ameglio, T.; Cruiziat, P.; In, A. P. Yield and Physiological Responses of Walnut Trees in Semi-arid Conditions: Application to Irrigation Scheduling, 1996; pp 273–280.
  • Lynch, C.; Koppel, K.; Reid, R. W. Sensory Profiles and Seasonal Variation of Black Walnut Cultivars. J. Food Sci. 2016, 81(3), S719–S727. DOI: 10.1111/1750-3841.13244
  • Toide, E.; Tajima, M. Polyphenolic Composition and Antioxidant Capacity of Japanese and American Walnuts in Vitro. J. Jpn. Soc. Food Sci. 2015, 62(1), 27–33. DOI: 10.3136/nskkk.62.27
  • Warmund, M. R.; Kernel Color of Three Black Walnut Cultivars after Delayed Hulling at Five Successive Harvest Dates. HortScience 2008, 43(7), 2256–2258. DOI: 10.21273/HORTSCI.43.7.2256
  • Christopoulos, M. V.; Tsantili, E. Effects of Temperature and Packaging Atmosphere on Total Antioxidants and Colour of Walnut (Juglans Regia L.) Kernels during Storage. Sci. Hortic. 2011, 131, 49–57. DOI: 10.1016/j.scienta.2011.09.026
  • Christopoulos, M. V.; Tsantili, E. Storage of Fresh Walnuts (Juglans Regia L.)–low Temperature and Phenolic Compounds. Postharvest Biol. Technol. 2012, 73, 80–88. DOI: 10.1016/j.postharvbio.2012.06.001
  • Amin, F.; Masoodi, F. A.; Baba, W. N.; Khan, A. A.; Ganie, B. A. Effect of Different Ripening Stages on Walnut Kernel Quality: Antioxidant Activities, Lipid Characterization and Antibacterial Properties. J. Food Sci. Technol. 2017, 54(12), 3791–3801. DOI: 10.1007/s13197-017-2776-4
  • Pycia, K.; Kapusta, I.; Jaworska, G. Impact of the Degree of Maturity of Walnuts (Juglans Regia L.) And Their Variety on the Antioxidant Potential and the Content of Tocopherols and Polyphenols. Molecules 2019, 24 (16), 2936. DOI: 10.3390/molecules24162936
  • Pycia, K.; Kapusta, I.; Jaworska, G.; Jankowska, A. Antioxidant Properties, Profile of Polyphenolic Compounds and Tocopherol Content in Various Walnut (Juglans Regia L.) Varieties. Eur. Food Res. Technol. 2019, 245(3), 607–616. DOI: 10.1007/s00217-018-3184-3
  • Vu, D. C.; Park, J.; Ho, K.-V.; Sumner, L. W.; Lei, Z.; Greenlief, C. M.; Mooney, B.; Coggeshall, M. V.; Lin, C.-H. Identification of health-promoting bioactive phenolics in black walnut using cloud-based metabolomics platform. J. Food Meas. Charact. 2019, 1-8. DOI: 10.1007/s11694-019-00325-y
  • Zhang, Z.; Liao, L.; Moore, J.; Wu, T.; Wang, Z. Antioxidant phenolic compounds from walnut kernels (Juglans regia L.). Food Chem. 2009, 113 (1), 160-165. DOI: 10.1016/j.foodchem.2008.07.061
  • Ito, H.; Okuda, T.; Fukuda, T.; Hatano, T.; Yoshida, T. Two novel dicarboxylic acid derivatives and a new dimeric hydrolyzable tannin from walnuts. J. Agric. Food Chem. 2007, 55 (3), 672-679. DOI: 10.1021/jf062872b
  • Grace, M. H.; Warlick, C. W.; Neff, S. A.; Lila, M. A. Efficient preparative isolation and identification of walnut bioactive components using high-speed counter-current chromatography and LC-ESI-IT-TOF-MS. Food Chem. 2014, 158, 229-238. DOI: 10.1016/j.foodchem.2014.02.117
  • Ojeda-Amador, R. M.; Salvador, M. D.; Gómez-Alonso, S.; Fregapane, G. Characterization of virgin walnut oils and their residual cakes produced from different varieties. Food Res. Int. 2018, 108, 396-404. DOI: 10.1016/j.foodres.2018.03.066
  • Ho, K.-V.; Lei, Z.; Sumner, L.; Coggeshall, M.; Hsieh, H.-Y.; Stewart, G.; Lin, C.-H. Identifying Antibacterial Compounds in Black Walnuts (Juglans nigra) Using a Metabolomics Approach. Metabolites 2018, 8 (4), 58. DOI: 10.3390/metabo8040058
  • Haramiishi, R.; Okuyama, S.; Yoshimura, M.; Nakajima, M.; Furukawa, Y.; Ito, H.; Amakura, Y. Identification of the characteristic components in walnut and anti-inflammatory effect of glansreginin A as an indicator for quality evaluation. Biosci. Biotechnol. Biochem. 2019, 1-11. DOI: 10.1080/09168451.2019.1670046
  • Li, L.; Tsao, R.; Yang, R.; Liu, C.; Zhu, H.; Young, J. C. Polyphenolic profiles and antioxidant activities of heartnut (Juglans ailanthifolia var. cordiformis) and Persian walnut (Juglans regia L.). J. Agric. Food Chem. 2006, 54 (21), 8033-8040. DOI: 10.1021/jf0612171
  • Savage, G. P.; Dutta, P. C.; McNeil, D. L. Fatty acid and tocopherol contents and oxidative stability of walnut oils. J. Am. Oil Chem.' Soc. 1999, 76 (9), 1059-1063. DOI: 10.1007/s11746-999-0204-2
  • Zwarts, G. P. S. D. L. M. L. Fatty acid content of New Zealand-grown walnuts (Juglans regia L.). Int. J. Food Sci. Nutr. 1999, 50 (3), 189-194. DOI: 10.1080/096374899101229
  • Gharibzahedi, S. M. T.; Mousavi, S. M.; Hamedi, M.; Khodaiyan, F. Determination and characterization of kernel biochemical composition and functional compounds of Persian walnut oil. J. Food Sci. Technol. 2014, 51 (1), 34-42. DOI: 10.1007/s13197-011-0481-2
  • Bada, J. C.; León‐Camacho, M.; Prieto, M.; Copovi, P.; Alonso, L. Characterization of walnut oils (Juglans regia L.) from Asturias, Spain. J. Am. Oil Chem.' Soc. 2010, 87 (12), 1469-1474. DOI: 10.1007/s11746-010-1629-3
  • Amaral, J. S.; Alves, M. R.; Seabra, R. M.; Oliveira, B. P. P. Vitamin E composition of walnuts (Juglans regia L.): a 3-year comparative study of different cultivars. J. Agric. Food Chem. 2005, 53 (13), 5467-5472. DOI: 10.1021/jf050342u
  • Özrenk, K.; Javidipour, I.; Yarilgac, T.; Balta, F.; Gündoğdu, M. Fatty acids, tocopherols, selenium and total carotene of pistachios (P. vera L.) from Diyarbakır (Southestern Turkey) and walnuts (J. regia L.) from Erzincan (Eastern Turkey). Food Sci. Technol. Int. 2012, 18 (1), 55-62. DOI: 10.1177/1082013211414174
  • Martínez, M. L.; Penci, M. C.; Ixtaina, V.; Ribotta, P. D.; Maestri, D. Effect of natural and synthetic antioxidants on the oxidative stability of walnut oil under different storage conditions. LWT 2013, 51 (1), 44-50. DOI: 10.1016/j.lwt.2012.10.021
  • Stuetz, W.; Schlörmann, W.; Glei, M. B-vitamins, carotenoids and α-/γ-tocopherol in raw and roasted nuts. Food Chem. 2017, 221, 222-227. DOI: 10.1016/j.foodchem.2016.10.065
  • Panth, N.; Paudel, K. R.; Karki, R. Phytochemical profile and biological activity of Juglans regia. J. Integr. Med. 2016, 14 (5), 359-373. DOI: 10.1016/S2095-4964(16)60274-1
  • Ody, P., The Complete Medicinal Herbal: A Practical Guide to the Healing Properties of Herbs. Skyhorse Publishing, Inc.: 2017.
  • Sánchez-González, C.; Noé, V.; Izquierdo-Pulido, M. Walnut polyphenol metabolites, urolithins A and B, inhibit the expression of the prostate-specific antigen and the androgen receptor in prostate cancer cells. Food Funct. 2014, 5 (11), 2922-2930. DOI: 10.1039/C4FO00542B
  • Hayes, D.; Angove, M. J.; Tucci, J.; Dennis, C. Walnuts (Juglans regia) Chemical Composition and Research in Human Health. Crit. Rev. Food Sci. Nutr. 2016, 56 (8), 1231-1241. DOI: 10.1080/10408398.2012.760516
  • Huang, M.-T.; Ho, C.-T.; Lee, C. Y., Phenolic compounds in food and their effects on health II: antioxidants and cancer prevention. ACS Publications: 1992. DOI: 10.1021/bk-1992-0507.ch001
  • Cook, N. C.; Samman, S. Flavonoids—chemistry, metabolism, cardioprotective effects, and dietary sources. J. Nutr. Biochem. 1996, 7 (2), 66-76. DOI: 10.1016/S0955-2863(95)00168-9
  • Negi, A. S.; Luqman, S.; Srivastava, S.; Krishna, V.; Gupta, N.; Darokar, M. P. Antiproliferative and antioxidant activities of Juglans regia fruit extracts. Pharm. Biol. 2011, 49 (6), 669-673. DOI: 10.3109/13880209.2010.537666
  • Arranz, S.; Cert, R.; Pérez-Jiménez, J.; Cert, A.; Saura-Calixto, F. Comparison between free radical scavenging capacity and oxidative stability of nut oils. Food Chem. 2008, 110 (4), 985-990. DOI: 10.1016/j.foodchem.2008.03.021
  • Carvalho, M.; Ferreira, P. J.; Mendes, V. S.; Silva, R.; Pereira, J. A.; Jerónimo, C.; Silva, B. M. Human cancer cell antiproliferative and antioxidant activities of Juglans regia L. Food Chem. Toxicol. 2010, 48 (1), 441-447. DOI: 10.1016/j.fct.2009.10.043
  • Karmowski, J.; Hintze, V.; Kschonsek, J.; Killenberg, M.; Böhm, V. Antioxidant activities of tocopherols/tocotrienols and lipophilic antioxidant capacity of wheat, vegetable oils, milk and milk cream by using photochemiluminescence. Food Chem. 2015, 175, 593-600. DOI: 10.1016/j.foodchem.2014.12.010
  • Muthaiyah, B.; Essa, M. M.; Chauhan, V.; Chauhan, A. Protective effects of walnut extract against amyloid beta peptide-induced cell death and oxidative stress in PC12 cells. Neurochem. Res. 2011, 36 (11), 2096-2103. DOI: 10.1007/s11064-011-0533-z
  • Fukuda, T.; Ito, H.; Yoshida, T. Effect of the walnut polyphenol fraction on oxidative stress in type 2 diabetes mice. Biofactors 2004, 21 (1‐4), 251-253. DOI: 10.1002/biof.552210148
  • Qamar, W.; Sultana, S. Polyphenols from Juglans regia L.(walnut) kernel modulate cigarette smoke extract induced acute inflammation, oxidative stress and lung injury in Wistar rats. Hum. Exp. Toxicol. 2011, 30 (6), 499-506. DOI: 10.1177/0960327110374204
  • Beigh, S.; Rashid, H.; Sharma, S.; Parvez, S.; Raisuddin, S. Bleomycin-induced pulmonary toxicopathological changes in rats and its prevention by walnut extract. Biomed. Pharmacother. 2017, 94, 418-429. DOI: 10.1016/j.biopha.2017.07.124
  • Bati, B.; Celik, I.; Dogan, A. Determination of hepatoprotective and antioxidant role of walnuts against ethanol-induced oxidative stress in rats. Cell Biochem. Biophys. 2015, 71 (2), 1191-1198. DOI: 10.1007/s12013-014-0328-3
  • Soussi, A.; Gargouri, M.; El Feki, A. Potential immunomodulatory and antioxidant effects of walnut Juglans regia vegetable oil against lead‐mediated hepatic damage and their interaction with lipase activity in rats. Environ. Toxicol. 2018. DOI: 10.1002/tox.22634
  • Papoutsi, Z.; Kassi, E.; Chinou, I.; Halabalaki, M.; Skaltsounis, L.; Moutsatsou, P. Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483. Br. J. Nutr. 2008, 99 (04), 715-722. DOI: 10.1017/S0007114507837421
  • Laubertová, L.; Koňariková, K.; Gbelcová, H.; Ďuračková, Z.; Žitňanová, I. Effect of walnut oil on hyperglycemia-induced oxidative stress and pro-inflammatory cytokines production. Eur. J. Nutr. 2015, 54 (2), 291-299. DOI: 10.1007/s00394-014-0710-3
  • Koh, S.-J.; Choi, Y.-I.; Kim, Y.; Kim, Y.-S.; Choi, S. W.; Kim, J. W.; Kim, B. G.; Lee, K. L. Walnut phenolic extract inhibits nuclear factor kappaB signaling in intestinal epithelial cells, and ameliorates experimental colitis and colitis-associated colon cancer in mice. Eur. J. Nutr. 2018, 1-11. DOI: 10.1007/s00394-018-1704-3
  • Ho, K.-V.; Schreiber, K. L.; Vu, D. C.; Rottinghaus, S. M.; Jackson, D. E.; Brown, C. R.; Lei, Z.; Sumner, L. W.; Coggeshall, M. V.; Lin, C.-H. Black Walnut (Juglans nigra) Extracts Inhibit Proinflammatory Cytokine Production From Lipopolysaccharide-Stimulated Human Promonocytic Cell Line U-937. Front. Pharmacol. 2019, 10. DOI: 10.3389/fphar.2019.01059
  • Willis, L. M.; Bielinski, D. F.; Fisher, D. R.; Matthan, N. R.; Joseph, J. A. Walnut extract inhibits LPS-induced activation of BV-2 microglia via internalization of TLR4: possible involvement of phospholipase D2. Inflammation 2010, 33 (5), 325-333. DOI: 10.1007/s10753-010-9189-0
  • Thangthaeng, N.; Poulose, S. M.; Fisher, D. R.; Shukitt-Hale, B. Walnut extract modulates activation of microglia through alteration in intracellular calcium concentration. Nutr. Res. 2018, 49, 88-95. DOI: 10.1016/j.nutres.2017.10.016
  • Fisher, D. R.; Poulose, S. M.; Bielinski, D. F.; Shukitt-Hale, B. Serum metabolites from walnut-fed aged rats attenuate stress-induced neurotoxicity in BV-2 microglial cells. Nutr. Neurosci. 2017, 20 (2), 103-109. DOI: 10.1179/1476830514Y.0000000150
  • Poulose, S. M.; Bielinski, D. F.; Shukitt-Hale, B. Walnut diet reduces accumulation of polyubiquitinated proteins and inflammation in the brain of aged rats. J. Nutr. Biochem. 2013, 24 (5), 912-919. DOI: 10.1016/j.jnutbio.2012.06.009
  • Zheng, L. T.; Ryu, G.-M.; Kwon, B.-M.; Lee, W.-H.; Suk, K. Anti-inflammatory effects of catechols in lipopolysaccharide-stimulated microglia cells: inhibition of microglial neurotoxicity. Eur. J. Pharmacol. 2008, 588 (1), 106-113. DOI: 10.1016/j.ejphar.2008.04.035
  • Poulose, S. M.; Fisher, D. R.; Larson, J.; Bielinski, D. F.; Rimando, A. M.; Carey, A. N.; Schauss, A. G.; Shukitt-Hale, B. Anthocyanin-rich açai (Euterpe oleracea Mart.) fruit pulp fractions attenuate inflammatory stress signaling in mouse brain BV-2 microglial cells. J. Agric. Food Chem. 2012, 60 (4), 1084-1093. DOI: 10.1021/jf203989k
  • Sun, G. Y.; Chen, Z.; Jasmer, K. J.; Chuang, D. Y.; Gu, Z.; Hannink, M.; Simonyi, A. Quercetin attenuates inflammatory responses in BV-2 microglial cells: role of MAPKs on the Nrf2 pathway and induction of heme oxygenase-1. PloS one 2015, 10 (10), e0141509. DOI: 10.1371/journal.pone.0141509
  • Khan, S.; Parvez, S.; Chaudhari, B.; Ahmad, F.; Anjum, S.; Raisuddin, S. Ellagic acid attenuates bleomycin and cyclophosphamide-induced pulmonary toxicity in Wistar rats. Food Chem. Toxicol. 2013, 58, 210-219. DOI: 10.1016/j.fct.2013.03.046
  • Tsui, V. W. K.; Wong, R. W. K.; Rabie, A. B. M. The inhibitory effects of naringin on the growth of periodontal pathogens in vitro. Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives 2008, 22 (3), 401-406. DOI: 10.1002/ptr.2338
  • Özçelik, B.; Kartal, M.; Orhan, I. Cytotoxicity, antiviral and antimicrobial activities of alkaloids, flavonoids, and phenolic acids. Pharm. Biol. 2011, 49 (4), 396-402. DOI: 10.3109/13880209.2010.519390
  • Abuelsaad, A. S. A.; Mohamed, I.; Allam, G.; Al-Solumani, A. A. Antimicrobial and immunomodulating activities of hesperidin and ellagic acid against diarrheic Aeromonas hydrophila in a murine model. Life Sci. 2013, 93 (20), 714-722. DOI: 10.1016/j.lfs.2013.09.019
  • Borges, A.; Ferreira, C.; Saavedra, M. J.; Simoes, M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb. Drug Resist. 2013, 19 (4), 256-265. DOI: 10.1089/mdr.2012.0244
  • Nakayama, M.; Shimatani, K.; Ozawa, T.; Shigemune, N.; Tsugukuni, T.; Tomiyama, D.; Kurahachi, M.; Nonaka, A.; Miyamoto, T. A study of the antibacterial mechanism of catechins: Isolation and identification of Escherichia coli cell surface proteins that interact with epigallocatechin gallate. Food Control 2013, 33 (2), 433-439. DOI: 10.1016/j.foodcont.2013.03.016
  • Pereira, J. A.; Oliveira, I.; Sousa, A.; Ferreira, I. C. F. R.; Bento, A.; Estevinho, L. Bioactive properties and chemical composition of six walnut (Juglans regia L.) cultivars. Food Chem. Toxicol. 2008, 46 (6), 2103-2111. DOI: 10.1016/j.fct.2008.02.002
  • Amarowicz, R.; Dykes, G. A.; Pegg, R. B. Antibacterial activity of tannin constituents from Phaseolus vulgaris, Fagoypyrum esculentum, Corylus avellana and Juglans nigra. Fitoterapia 2008, 79 (3), 217-219. DOI: 10.1016/j.fitote.2007.11.019
  • Davis, P. A.; Vasu, V. T.; Gohil, K.; Kim, H.; Khan, I. H.; Cross, C. E.; Yokoyama, W. A High-fat Diet Containing Whole Walnuts (Juglans Regia) Reduces Tumour Size and Growth along with Plasma Insulin-like Growth Factor 1 in the Transgenic Adenocarcinoma of the Mouse Prostate Model. Br. J. Nutr. 2012, 108(10), 1764–1772. DOI: 10.1017/S0007114511007288
  • Heidegger, I.; Kern, J.; Ofer, P.; Klocker, H.; Massoner, P. Oncogenic Functions of IGF1R and INSR in Prostate Cancer Include Enhanced Tumor Growth, Cell Migration and Angiogenesis. Oncotarget 2014, 5 (9), 2723. DOI: 10.18632/oncotarget.1884
  • Heidegger, I.; Massoner, P.; Sampson, N.; Klocker, H. The Insulin-like Growth Factor (IGF) Axis as an Anticancer Target in Prostate Cancer. Cancer Lett. 2015, 367(2), 113–121. DOI: 10.1016/j.canlet.2015.07.026
  • Reiter, R. J.; Tan, D.-X.; Manchester, L. C.; Korkmaz, A.; Fuentes-Broto, L.; Hardman, W. E.; Rosales-Corral, S. A.; Qi, W. A Walnut-enriched Diet Reduces the Growth of LNCaP Human Prostate Cancer Xenografts in Nude Mice. Cancer Invest. 2013, 31(6), 365–373. DOI: 10.3109/07357907.2013.800095
  • Schlörmann, W.; Lamberty, J.; Ludwig, D.; Lorkowski, S.; Glei, M. In Vitro–fermented Raw and Roasted Walnuts Induce Expression of CAT and GSTT2 Genes, Growth Inhibition, and Apoptosis in LT97 Colon Adenoma Cells. Nutr. Res. 2017, 47, 72–80. DOI: 10.1016/j.nutres.2017.09.004
  • Chung, J.; Kim, Y.-S.; Lee, J.; Lee, J. H.; Choi, S.-W.; Kim, Y. Compositional Analysis of Walnut Lipid Extracts and Properties as an Anti-cancer Stem Cell Regulator via Suppression of the Self-renewal Capacity. Food Sci. Biotechnol. 2016, 25(2), 623–629. DOI: 10.1007/s10068-016-0087-6
  • Lee, J.; Kim, Y.-S.; Lee, J.; Heo, S. C.; Lee, K. L.; Choi, S.-W.; Kim, Y. Walnut Phenolic Extract and Its Bioactive Compounds Suppress Colon Cancer Cell Growth by Regulating Colon Cancer Stemness. Nutrients 2016, 8 (7), 439. DOI: 10.3390/nu8070439
  • Nagel, J. M.; Brinkoetter, M.; Magkos, F.; Liu, X.; Chamberland, J. P.; Shah, S.; Zhou, J.; Blackburn, G.; Mantzoros, C. S. Dietary Walnuts Inhibit Colorectal Cancer Growth in Mice by Suppressing Angiogenesis. Nutrition 2012, 28(1), 67–75. DOI: 10.1016/j.nut.2011.03.004
  • Tsoukas, M. A.; Ko, B.-J.; Witte, T. R.; Dincer, F.; Hardman, W. E.; Mantzoros, C. S. Dietary Walnut Suppression of Colorectal Cancer in Mice: Mediation by miRNA Patterns and Fatty Acid Incorporation. J. Nutr. Biochem. 2015, 26(7), 776–783. DOI: 10.1016/j.jnutbio.2015.02.009
  • Nakanishi, M.; Chen, Y.; Qendro, V.; Miyamoto, S.; Weinstock, E.; Weinstock, G. M.; Rosenberg, D. W. Effects of Walnut Consumption on Colon Carcinogenesis and Microbial Community Structure. Cancer Prev. Res. 2016, (8), 692–703. DOI: 10.1158/1940-6207.CAPR-16-0026
  • Michalak, A.; Mosińska, P.; Fichna, J. Polyunsaturated Fatty Acids and Their Derivatives: Therapeutic Value for Inflammatory, Functional Gastrointestinal Disorders, and Colorectal Cancer. Front. Pharmacol. 2016, 7, 459. DOI: 10.3389/fphar.2016.00459
  • Zhang, C.; Yu, H.; Shen, Y.; Ni, X.; Shen, S.; Das, U. N. Polyunsaturated Fatty Acids Trigger Apoptosis of Colon Cancer Cells through a Mitochondrial Pathway. Arch. Med. Sci. 2015, 11(5), 1081–1094. DOI: 10.5114/aoms.2015.54865
  • Marín, M.; Giner, R. M.; Ríos, J.-L.; Recio, M. C. Intestinal Anti-inflammatory Activity of Ellagic Acid in the Acute and Chronic Dextrane Sulfate Sodium Models of Mice Colitis. J. Ethnopharmacol. 2013, 150(3), 925–934. DOI: 10.1016/j.jep.2013.09.030
  • Pandurangan, A. K.; Mohebali, N.; Esa, N. M.; Looi, C. Y.; Ismail, S.; Saadatdoust, Z. Gallic Acid Suppresses Inflammation in Dextran Sodium Sulfate-induced Colitis in Mice: Possible Mechanisms. Int. Immunopharmacol. 2015, 28(2), 1034–1043. DOI: 10.1016/j.intimp.2015.08.019
  • Pandurangan, A. K.; Mohebali, N.; Norhaizan, M. E.; Looi, C. Y. Gallic Acid Attenuates Dextran Sulfate Sodium-induced Experimental Colitis in BALB/c Mice. Drug Des. Dev. Ther. 2015, 9, 3923. DOI: 10.2147/DDDT.S86345
  • Heuvel, J. P. V.; Belda, B. J.; Hannon, D. B.; Kris-Etherton, P. M.; Grieger, J. A.; Zhang, J.; Thompson, J. T. Mechanistic Examination of Walnuts in Prevention of Breast Cancer. Nutr. Cancer 2012, 64(7), 1078–1086. DOI: 10.1080/01635581.2012.717679
  • Swales, K. E.; Korbonits, M.; Carpenter, R.; Walsh, D. T.; Warner, T. D.; Bishop-Bailey, D. The Farnesoid X Receptor Is Expressed in Breast Cancer and Regulates Apoptosis and Aromatase Expression. Cancer Res. 2006, 66(20), 10120–10126. DOI: 10.1158/0008-5472.CAN-06-2399
  • Hardman, W. E.; Ion, G. Suppression of Implanted MDA-MB 231 Human Breast Cancer Growth in Nude Mice by Dietary Walnut. Nutr. Cancer 2008, 60(5), 666–674. DOI: 10.1080/01635580802065302
  • Choi, J.; Park, G.; Kim, H.; Oh, D.-S.; Kim, H.; Oh, M. In Vitro and in Vivo Neuroprotective Effects of Walnut (Juglandis Semen) in Models of Parkinson’s Disease. Int. J. Mol. Sci. 2016, 17 (1), 108. DOI: 10.3390/ijms17010108
  • Nagatsu, T.; Sawada, M., Molecular Mechanism of the Relation of Monoamine Oxidase B and Its Inhibitors to Parkinson’s Disease: Possible Implications of Glial Cells. In Oxidative Stress and Neuroprotection, Springer: 2006; pp 53–65. DOI: 10.1007/978-3-211-33328-0_7
  • Essa, M. M.; Subash, S.; Dhanalakshmi, C.; Manivasagam, T.; Al-Adawi, S.; Guillemin, G. J.; Thenmozhi, A. J. Dietary Supplementation of Walnut Partially Reverses 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine Induced Neurodegeneration in a Mouse Model of Parkinson’s Disease. Neurochem. Res. 2015, 40(6), 1283–1293. DOI: 10.1007/s11064-015-1593-2
  • Shabani, M.; Nazeri, M.; Parsania, S.; Razavinasab, M.; Zangiabadi, N.; Esmaeilpour, K.; Abareghi, F. Walnut Consumption Protects Rats against Cisplatin-induced Neurotoxicity. Neurotoxicology 2012, 33(5), 1314–1321. DOI: 10.1016/j.neuro.2012.08.004
  • Haider, S.; Batool, Z.; Ahmad, S.; Siddiqui, R. A.; Haleem, D. J. Walnut Supplementation Reverses the Scopolamine-induced Memory Impairment by Restoration of Cholinergic Function via Mitigating Oxidative Stress in Rats: A Potential Therapeutic Intervention for Age Related Neurodegenerative Disorders. Metab. Brain Dis. 2018, 33(1), 39–51. DOI: 10.1007/s11011-017-0120-3
  • Spencer, J. P. E.; The Impact of Fruit Flavonoids on Memory and Cognition. Br. J. Nutr. 2010, 104 (S3), S40–S47. DOI: 10.1017/S0007114510003934
  • Sabate, J.; Fraser, G. E.; Burke, K.; Knutsen, S. F.; Bennett, H.; Lindsted, K. D. Effects of Walnuts on Serum Lipid Levels and Blood Pressure in Normal Men. N. Engl. J. Med. 1993, 328(9), 603–607. DOI: 10.1056/NEJM199303043280902
  • Iwamoto, M.; Sato, M.; Kono, M.; Hirooka, Y.; Sakai, K.; Takeshita, A.; Imaizumi, K. Retracted: Walnuts Lower Serum Cholesterol in Japanese Men and Women. J. Nutr. 2000, 130(2), 171–176. DOI: 10.1093/jn/130.2.171
  • Rajaram, S.; Haddad, E. H.; Mejia, A.; Sabaté, J. Walnuts and Fatty Fish Influence Different Serum Lipid Fractions in Normal to Mildly Hyperlipidemic Individuals: A Randomized Controlled Study. Am. J. Clin. Nutr. 2009, 89(5), 1657S–1663S. DOI: 10.3945/ajcn.2009.26736S
  • Zambón, D.; Sabaté, J.; Munoz, S.; Campero, B.; Casals, E.; Merlos, M.; Laguna, J. C.; Ros, E. Substituting Walnuts for Monounsaturated Fat Improves the Serum Lipid Profile of Hypercholesterolemic Men and Women: A Randomized Crossover Trial. Ann. Intern. Med. 2000, 132(7), 538–546. DOI: 10.7326/0003-4819-132-7-200004040-00005
  • Torabian, S.; Haddad, E.; Cordero-macintyre, Z.; Tanzman, J.; Fernandez, M. L.; Sabate, J. Long-term Walnut Supplementation without Dietary Advice Induces Favorable Serum Lipid Changes in Free-living Individuals. Eur. J. Clin. Nutr. 2010, 64 (3), 274. DOI: 10.1038/ejcn.2009.152
  • Lavedrine, F.; Zmirou, D.; Ravel, A.; Balducci, F.; Alary, J. Blood Cholesterol and Walnut Consumption: A Cross-sectional Survey in France. Prev. Med. 1999, 28(4), 333–339. DOI: 10.1006/pmed.1999.0460
  • Tapsell, L. C.; Gillen, L. J.; Patch, C. S.; Batterham, M.; Owen, A.; Baré, M.; Kennedy, M. Including Walnuts in a Low-fat/modified-fat Diet Improves HDL Cholesterol-to-total Cholesterol Ratios in Patients with Type 2 Diabetes. Diabetes Care 2004, 27(12), 2777–2783. DOI: 10.2337/diacare.27.12.2777
  • Zibaeenezhad, M. J.; Farhadi, P.; Attar, A.; Mosleh, A.; Amirmoezi, F.; Azimi, A. Effects of Walnut Oil on Lipid Profiles in Hyperlipidemic Type 2 Diabetic Patients: A Randomized, Double-blind, Placebo-controlled Trial. Nutr. Diabetes 2017, 7 (4), e259. DOI: 10.1038/nutd.2017.8
  • Wu, L.; Piotrowski, K.; Rau, T.; Waldmann, E.; Broedl, U. C.; Demmelmair, H.; Koletzko, B.; Stark, R. G.; Nagel, J. M.; Mantzoros, C. S. Walnut-enriched Diet Reduces Fasting non-HDL-cholesterol and Apolipoprotein B in Healthy Caucasian Subjects: A Randomized Controlled Cross-over Clinical Trial. Metabolism 2014, 63(3), 382–391. DOI: 10.1016/j.metabol.2013.11.005
  • Bamberger, C.; Rossmeier, A.; Lechner, K.; Wu, L.; Waldmann, E.; Stark, R.; Altenhofer, J.; Henze, K.; Parhofer, K. A Walnut-enriched Diet Reduces Lipids in Healthy Caucasian Subjects, Independent of Recommended Macronutrient Replacement and Time Point of Consumption: A Prospective, Randomized, Controlled Trial. Nutrients 2017, 9 (10), 1097. DOI: 10.3390/nu9101097
  • Galus, S.; Kadzińska, J. Whey Protein Edible Films Modified with Almond and Walnut Oils. Food Hydrocolloids 2016, 52, 78–86. DOI:10.1016/j.foodhyd.2015.06.013
  • Shamaei, S.; Seiiedlou, S. S.; Aghbashlo, M.; Tsotsas, E.; Kharaghani, A. Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules. Innovative Food Science & Emerging Technologies 2017, 39, 101-112.
  • Duke, J. A., Handbook of Nuts. CRC Press: 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.