558
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Beneficial Flavonoid in Foods and Anti-obesity Effect

, , &

References

  • WHO. Obesity and Overweight. WHO Fact Sheet N°311. World Health Organization Website. World Health Organization: Geneva, Switzerland, 2015. Accessed July 22, 2015 http://www.who.int/mediacentre/factsheets/fs311/en
  • Calle, E. E.; Rodriguez, C.; Walker-Thurmond, K.; Thun, M. J. Overweight, Obesity, and Mortality from Cancer in a Prospectively Studied Cohort of U.S. Adults. N. Engl. J. Med. 2003, 348(17), 1625–1638. DOI: 10.1056/NEJMoa021423.
  • Bray; George, A. Medications for Obesity: Mechanisms and Applications. Clin. Chest. Med. 2009, 30(3), 525–538. DOI: 10.1016/j.ccm.2009.05.014.
  • Jensen, M. D.; Ryan, D. H.; Apovian, C. M.; Ard, J. D.; Comuzzie, A. G.; Domato, K. A.; Hu, F. B.; Hubbard, V. S.; Jakicic, J. M.; Kushner, R. F.; et al. 2013 AHA/ACC/TOS Guideline for the Management of Overweight and Obesity in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Obesity Society. J. Am. Coll. Cardiol. 2014, 63(25), 2985–3023. DOI: 10.1016/j.jacc.2013.11.004.
  • Serrano, J. C.; S´anchez Gonz´alez, I. Trends in Functional Foods against Obesity: Functional Ingredients, Technologically Modified Foods and Full Diets. Rev. Esp. Nutr. Comunitaria. 2008, 14(3), 193–200. DOI: 10.5772/30927.
  • Al-Ishaq, R. K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and Their Anti-diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules. 2019, 9(9), 430. DOI: 10.3390/biom9090430.
  • Alvesalo, J.; Vuorela, H.; Tammela, P.; Leinonen, M.; Saikku, P.; Vuorela, P. Inhibitory Effect of Dietary Phenolic Compounds on Chlamydia Pneumoniae in Cell Cultures. Biochem. Pharmacol. 2006, 71(6), 735–741. DOI: 10.1016/j.bcp.2005.12.006.
  • Li, C.; Schluesener, H. Health-promoting Effects of the Citrus Flavanone Hesperidin. Crit. Rev. Food. Sci. Nutr. 2017, 57(3), 613–631. DOI: 10.1080/10408398.2014.906382.
  • Cook, N. C.; Samman, S. Flavonoids-chemistry, Metabolism, Cardioprotective Effects, and Dietary Sources. J. Nutr. Biochem. 1996, 7(2), 66–76. DOI: 10.1016/S0955-2863(95)00168-9.
  • Zhang, L.; Han, Y. J.; Zhang, X.; Wang, X.; Bao, B.; Qu, W.; Liu, J. Luteolin Reduces Obesity-associated Insulin Resistance in Mice by Activating AMPKα1 Signalling in Adipose Tissue Macrophages. Diabetologia. 2016, 59(10), 2219–2228. DOI: 10.1007/s00125-016-4039-8.
  • Kwon, E. Y.; Jung, U. J.; Park, T.; Yun, J. W.; Choi, M. S. Luteolin Attenuates Hepatic Steatosis and Insulin Resistance through the Interplay between the Liver and Adipose Tissue in Mice with Diet-induced Obesity. Diabetes. 2015, 64(5), 1658–1669. DOI: 10.2337/db14-0631.
  • Li, J.; Inoue, J.; Choi, J. M.; Nakamura, S.; Yan, Z.; Fushinobu, S.; Kamada, H.; Kato, H.; Hashidume, T.; Shimizu, M.; et al. Identification of the Flavonoid Luteolin as a Repressor of the Transcription Factor Hepatocyte Nuclear Factor 4α. J. Biol. Chem. 2015, 290(39), 24021–24035. DOI: 10.1074/jbc.M115.645200.
  • Kwon, E. Y.; Choi, M. S. Luteolin Targets the Toll-Like Receptor Signaling Pathway in Prevention of Hepatic and Adipocyte Fibrosis and Insulin Resistance in Diet-induced Obese Mice. Nutrients. 2018, 10(10), E1415. DOI: 10.3390/nu10101415.
  • Kim, M. S.; Hur, H. J.; Kwon, D. Y.; Hwang, J. T. Tangeretin Stimulates Glucose Uptake via Regulation of AMPK Signaling Pathways in C2C12 Myotubes and Improves Glucose Tolerance in High-fat Diet-induced Obese Mice. Mol. Cell. Endocrinol. 2012, 358, 127–134. DOI: 10.1016/j.mce.2012.03.013.
  • Chen, F.; Ma, Y.; Sun, Z.; Zhu, X. Tangeretin Inhibits High Glucose-induced Extracellular Matrix Accumulation in Human Glomerular Mesangial Cells. Biomed. Pharmacother. 2018, 102, 1077–1083. DOI: 10.1016/j.biopha.2018.03.169.
  • Xi, Y.; Wu, M.; Li, H.; Dong, S.; Luo, E.; Gu, M.; Shen, X.; Jiang, Y.; Liu, Y.; Liu, H. Baicalin Attenuates High Fat Diet-induced Obesity and Liver Dysfunction: Dose-response and Potential Role of CaMKKβ/AMPK/ACC Pathway. Cell. Physiol. Biochem. 2015, 35(6), 2349–2359. DOI: 10.1159/000374037.
  • Dai, J.; Liang, K.; Zhao, S.; Jia, W.; Liu, Y.; Wu, H.; Lv, J.; Cao, C.; Chen, T.; Zhuang, S.; et al. Chemoproteomics Reveals Baicalin Activates Hepatic CPT1 to Ameliorate Diet-induced Obesity and Hepatic Steatosis. Proc. Natl. Acad. Sci. U.S.A. 2018, 115(26), E5896–5905. DOI: 10.1073/pnas.1801745115.
  • Fang, P.; Yu, M.; Zhang, L.; Wan, D.; Shi, M.; Zhu, Y.; Bo, P.; Zhang, Z. Baicalin against Obesity and Insulin Resistance through Activation of AKT/AS160/GLUT4 Pathway. Mol. Cell. Endocrinol. 2017, 448, 77–86. DOI: 10.1016/j.mce.2017.03.027.
  • Myoung, H. J.; Kim, G.; Nam, K. W. Apigenin Isolated from the Seeds of Perilla Frutescens Britton Var Crispa (Benth.) Inhibits Food Intake in C57BL/6J Mice. Arch. Pharm. Res. 2010, 33(11), 1741–1746. DOI: 10.1007/s12272-010-1105-5.
  • Feng, X.; Weng, D.; Zhou, F.; Owen, Y. D.; Qin, H.; Zhao, J.; Wen, Y.; Huang, Y.; Chen, J.; Fu, H.; et al. Activation of PPARγ by a Natural Flavonoid Modulator, Apigenin Ameliorates Obesity-related Inflammation via Regulation of Macrophage Polarization. EBioMedicine. 2016, 9, 61–76. DOI: 10.1016/j.ebiom.2016.06.017.
  • Feng, X.; Yu, W.; Li, X.; Zhou, F.; Zhang, W.; Shen, Q.; Li, J.; Zhang, C.; Shen, P. Apigenin, a Modulator of PPARγ, Attenuates HFD-induced NAFLD by Regulating Hepatocyte Lipid Metabolism and Oxidative Stress via Nrf2 Activation. Biochem. Pharmacol. 2017, 136, 136–149. DOI: 10.1016/j.bcp.2017.04.014.
  • Escande, C.; Nin, V.; Price, N. L.; Capellini, V.; Gomes, A. P.; Barbosa, M. T.; O’Neil, L.; White, T. A.; Sinclair, D. A.; Chini, E. N. Flavonoid Apigenin Is an Inhibitor of the NAD+ Ase CD38: Implications for Cellular NAD+ Metabolism, Protein Acetylation, and Treatment of Metabolic Syndrome. Diabetes. 2013, 62(4), 1084–1093. DOI: 10.2337/db12-1139.
  • Lone, J.; Parray, H. A.; Yun, J. W. Nobiletin Induces Brown Adipocyte-like Phenotype and Ameliorates Stress in 3T3-L1 Adipocytes. Biochimie. 2018, 146, 97–104. DOI: 10.1016/j.biochi.2017.11.021.
  • Yen, J. H.; Weng, C. Y.; Li, S.; Lo, Y. H.; Pan, M. H.; Fu, S. H.; Ho, C. T.; Wu, M. J. Citrus Flavonoid 5-demethylnobiletin Suppresses Scavenger Receptor Expression in THP-1 Cells and Alters Lipid Homeostasis in HepG2 Liver Cells. Mol. Nutr. Food Res. 2011, 55, 733–748. DOI: 10.1002/mnfr.201000226.
  • Mulvihill, E. E.; Assini, J. M.; Lee, J. K.; Allister, E. M.; Sutherland, B. G.; Koppes, J. B.; Sawyez, C. G.; Edwards, J. Y.; Telford, D. E.; Charbonneau, A.; et al. Nobiletin Attenuates VLDL Overproduction, Dyslipidemia, and Atherosclerosis in Mice with Diet-induced Insulin Resistance. Diabetes. 2011, 60, 1446–1457. DOI: 10.2337/db10-0589.
  • Burke, A. C.; Sutherland, B. G.; Telford, D. E.; Morrow, M. R.; Sawyez, C. G.; Edwards, J. Y.; Drangova, M.; Huff, M. W. Intervention with Citrus Flavonoids Reverses Obesity and Improves Metabolic Syndrome and Atherosclerosis in Obese Ldlr-/- Mice. J Lipid Res. 2018, 59(9), 1714–1728. DOI: 10.1194/jlr.M087387.
  • Shin, J. E.; Joo, H. M.; Kim, D. H. 3-Methylethergalangin Isolated from Alpinia Officinarum Inhibits Pancreatic Lipase. Biol. Pharm. Bull. 2003, 26, 854–857. DOI: 10.1248/bpb.26.854.
  • Ahn, J.; Lee, H.; Kim, S.; Park, J.; Ha, T. The Anti-obesity Effect of Quercetin Is Mediated by the AMPK and MAPK Signaling Pathways. Biochem. Biophys. Res. Commun. 2008, 373(4), 545–549. DOI: 10.1016/j.bbrc.2008.06.077.
  • Kobori, M.; Takahashi, Y.; Sakurai, M.; Akimoto, Y.; Tsushida, T.; Oike, H.; Ippoushi, K. Quercetin Suppresses Immune Cell Accumulation and Improves Mitochondrial Gene Expression in Adipose Tissue of Diet-induced Obese Mice. Mol. Nutr. Food Res. 2016, 60(2), 300–312. DOI: 10.1002/mnfr.201500595.
  • Dong, J.; Zhang, X.; Zhang, L.; Bian, H. X.; Xu, N.; Bao, B.; Liu, J. Quercetin Reduces Obesity-associated ATM Infiltration and Inflammation in Mice: A Mechanism Including AMPKα1/SIRT1. J. Lipid. Res. 2014, 55(3), 363–374. DOI: 10.1194/jlr.M038786.
  • Alam, M. M.; Meerza, D.; Naseem, I. Protective Effect of Quercetin on Hyperglycemia, Oxidative Stress and DNA Damage in Alloxan Induced Type 2 Diabetic Mice. Life. Sci. 2014, 109, 8–14. DOI: 10.1016/j.lfs.2014.06.005.
  • Yuan, X.; Wei, G.; You, Y.; Huang, Y.; Lee, H. J.; Dong, M.; Lin, J.; Hu, T.; Zhang, H.; Zhang, C.; et al. Rutin Ameliorates Obesity through Brown Fat Activation. FASEB. J. 2017, 31(1), 333–345. DOI: 10.1096/fj.201600459RR.
  • Kappel, V. D.; Cazarolli, L. H.; Pereira, D. F.; Postal, B. G.; Zamoner, A.; Reginatto, F. H.; Silva, F. R. Involvement of Glut-4 in the Stimulatory Effect of Rutin on Glucose Uptake in Rat Soleus Muscle. J. Pharm. Pharmacol. 2013, 65, 1179–1186. DOI: 10.1111/jphp.12066.
  • Zhang, Y.; Liu, D. Flavonol Kaempferol Improves Chronic Hyperglycemia-impaired Pancreatic β-cell Viability and Insulin Secretory Function. Eur. J. Pharmacol. 2011, 670, 325–332. DOI: 10.1016/j.ejphar.2011.08.011.
  • Zhang, Y.; Zhen, W.; Maechler, P.; Liu, D. Small Molecule Kaempferol Modulates PDX-1 Protein Expression and Subsequently Promotes Pancreatic β-cell Survival and Function via CREB. J. Nutr. Biochem. 2013, 24, 638–646. DOI: 10.1016/j.jnutbio.2012.03.008.
  • Zanatta, L.; Rosso, A.; Folador, P.; Figueiredo, M. S.; Pizzolatti, M. G.; Leite, L. D.; Silva, F. R. Insulinomimetic Effect of Kaempferol 3-neohesperidoside on the Rat Soleus Muscle. J. Nat. Prod. 2008, 71(4), 532–535. DOI: 10.1021/np070358.
  • Ninomiya, K.; Matsuda, H.; Kubo, M.; Morikawa, T.; Nishida, N.; Yoshikawa, M. Potent Anti-obese Principle from Rosa Canina: Structural Requirements and Mode of Action of Trans-tiliroside. Bioorg. Med. Chem. Lett. 2007, 17, 3059–3064. DOI: 10.1016/j.bmcl.2007.03.051.
  • Goto, T.; Teraminami, A.; Lee, J. Y.; Ohyama, K.; Funakoshi, K.; Kim, Y. I.; Hirai, S.; Uemura, T.; Yu, R.; Takahashi, N.; et al. Tiliroside, a Glycosidic Flavonoid, Ameliorates Obesity-induced Metabolic Disorders via Activation of Adiponectin Signaling Followed by Enhancement of Fatty Acid Oxidation in Liver and Skeletal Muscle in Obese-diabetic Mice. J. Nutr. Biochem. 2012, 23(7), 768–776. DOI: 10.1016/j.jnutbio.2011.04.001.
  • Demonty, I.; Lamarche, B.; Deshaies, Y.; Jacques, H. Role of Soy Isoflavones in the Hypotriglyceridemic Effect of Soy Protein in the Rat. J. Nutr. Biochem. 2002, 13(11), 671–677. DOI: 10.1016/S0955-2863(02)00214-0.
  • Choi, J. S.; Song, J. Effect of Genistein on Insulin Resistance, Renal Lipid Metabolism, and Antioxidative Activities in Ovariectomized Rats. Nutrition. 2009, 25, 676–685. DOI: 10.1016/j.nut.2008.11.027.
  • Mukund, V.; Mukunb, D.; Sharma, V.; Mannarapu, M.; Genistein:, A. A. Its Role in Metabolic Diseases and Cancer. Crit. Rev. Oncol. Hematol. 2017, 119, 13–22. DOI: 10.1016/j.critrevonc.2017.09.004.
  • Lee, S. J.; Kim, H. E.; Choi, S. E.; Shin, H. C.; Kwag, W. J.; Lee, B. K.; Cho, K. W.; Kang, Y. Involvement of Ca2+/calmodulin Kinase II (CAMK II) in Genistein-induced Potentiation of Leucine/glutamine-stimulated Insulin Secretion. Mol. Cells. 2009, 28, 167–174. DOI: 10.1007/s10059-009-0119-7.
  • Hayat, K.; Iqbal, H.; Malik, U.; Bilal, U.; Mushtaq, S. Tea and Its Consumption: Benefits and Risks. Crit. Rev. Food. Sci. Nutr. 2015, 55(7), 939–954. DOI: 10.1080/10408398.2012.678949.
  • Shixian, Q.; Vancrey, B.; Shi, J.; Kakuda, Y.; Jiang, Y. Green Tea Extract Thermogenesis Induced Weight Loss by Epigallocatechin Gallate Inhibition of catechol-Omethyltransferase. J. Med. Food. 2006, 9(4), 451–458. DOI: 10.1089/jmf.2006.9.451.
  • Hursel, R.; Westerterp-Plantenga, M. S. Thermogenic Ingredients and Body Weight Regulation. Int. J. Obes. 2010, 34, 659–669. DOI: 10.1038/ijo.2009.299.
  • Türközü, D.; Tek, N. A. A Minireview of Effects of Green Tea on Energy Expenditure. Crit. Rev. Food. Sci. Nutr. 2017, 57(2), 254–258. DOI: 10.1080/10408398.2014.986672.
  • Nakai, M.; Fukui, Y.; Asami, S. Inhibitory Effects of Oolong Tea Polyphenols on Pancreatic Lipase in Vitro. J. Agric. Food. Chem. 2005, 53, 4593–4598. DOI: 10.1021/jf047814.
  • Lee, H. E.; Yang, G.; Han, S. H.; Lee, J. H.; An, T. J.; Jang, J. K.; Lee, J. Y. Anti-obesity Potential of Glycyrrhiza Uralensis and Licochalcone A through Induction of Adipocyte Browning. Biochem. Biophys. Res. Commun. 2018, 503(3), 2117–2123. DOI: 10.1016/j.bbrc.2018.07.168.
  • Quan, H. Y.; Baek, N. I.; Chung, S. H. Licochalcone A Prevents Adipocyte Differentiation and Lipogenesis via Suppression of Peroxisome Proliferator-activated Receptor γ and Sterol Regulatory Element-binding Protein Pathways. J. Agric. Food. Chem. 2012, 60(20), 5112–5120. DOI: 10.1021/jf2050763.
  • Birar, I. R. B.; Gupta, S.; Mohan, C. G.; Bhutani, K. K. Antiobesity and Lipid Lowering Effects of Glycyrrhiza Chalcones: Experimental and Computational Studies. Phytomedicine. 2011, 18(8–9), 795–801. DOI: 10.1016/j.phymed.2011.01.002.
  • Shin, S. K.; Cho, S. J.; Jung, U. J.; Ryu, R.; Choi, M. S. Phlorizin Supplementation Attenuates Obesity, Inflammation, and Hyperglycemia in Diet-induced Obese Mice Fed a High-fat Diet. Nutrients. 2016, 8(2), 92. DOI: 10.3390/nu8020092.
  • Najafian, M.; Jahromi, M. Z.; Nowroznejhad, M. J.; Khajeaian, P.; Kargar, M. M.; Sadeghi, M.; Arasteh, A. Phloridzin Reduces Blood Glucose Levels and Improves Lipids Metabolism in Streptozotocin-induced Diabetic Rats. Mol. Biol. Rep. 2012, 39(5), 5299–5306. DOI: 10.1007/s11033-011-1328-7.
  • You, Y.; Yuan, X.; Liu, X.; Liang, C.; Meng, M.; Huang, Y.; Han, X.; Guo, J.; Guo, Y.; Ren, C.; et al. Cyanidin-3-glucoside Increases Whole Body Energy Metabolism by Upregulating Brown Adipose Tissue Mitochondrial Function. Mol. Nutr. Food Res. 2017, 61. DOI: 10.1002/mnfr.201700261.
  • Wei, X.; Wang, D.; Yang, Y.; Xia, M.; Li, D.; Li, G.; Zhu, Y.; Xiao, Y.; Ling, W. Cyanidin-3-O-β-glucoside Improves Obesity and Triglyceride Metabolism in KK-Ay Mice by Regulating Lipoprotein Lipase Activity. J. Sci. Food. Agric. 2011, 91(6), 1006–1013. DOI: 10.1002/jsfa.4275.
  • Kazazis, C. E.; Evangelopoulos, A. A.; Kollas, A.; Vallianou, N. G. The Therapeutic Potential of Milk Thistle in Diabetes. Rev. Diabet. Stud. 2014, 11(2), 167–174. DOI: 10.1900/RDS.2014.11.167.
  • Salomone, F.; Barbagallo, I.; Godos, J.; Lembo, V.; Currenti, W.; Cinà, D.; Avola, R.; D’Orazio, N.; Morisco, F.; Galvano, F.; et al. Silibinin Restores NAD⁺ Levels and Induces the SIRT1/AMPK Pathway in Non-alcoholic Fatty Liver. Nutrients. 2017, 9(10), E1086. DOI: 10.3390/nu9101086.
  • Zhang, H. T.; Shi, K.; Baskota, A.; Zhou, F. L.; Chen, Y. X.; Tian, H. M. Silybin Reduces Obliterated Retinal Capillaries in Experimental Diabetic Retinopathy in Rats. Eur. J. Pharmacol. 2014, 740, 233–239. DOI: 10.1016/j.ejphar.2014.07.033.
  • Xia, D. Z.; Yu, X. F.; Wang, H. M. Anti-obesity and Hypolipidemic Effects of Ethanolic Extract from Alpinia Officinarum Hance (Zingiberaceae) in Rats Fed High-fat Diet. J. Med. Food. 2010, 13, 785–791. DOI: 10.1089/jmf.2009.1235.
  • Jung, C. H.; Jang, S. J.; Ahn, J.; Gwon, S. Y.; Jeon, T. I.; Kim, T. W.; Ha, T. Y. Alpinia Officinarum Inhibits Adipocyte Differentiation and High-fat Diet-induced Obesity in Mice through Regulation of Adipogenesis and Lipogenesis. J. Med. Food. 2012, 15(11), 959–967. DOI: 10.1089/jmf.2012.2286.
  • Lin, L. Y.; Peng, C. C.; Yeh, X. Y.; Huang, B. Y.; Wang, H. E.; Chen, K. C.; Peng, R. Y. Antihyperlipidemic Bioactivity of Alpinia Officinarum (Hance) Farw Zingiberaceae Can Be Attributed to the Coexistance of Curcumin, Polyphenolics, Dietary Fibers and Phytosterols. Food Funct. 2015, 6(5), 1600–1610. DOI: 10.1039/c4fo00901k.
  • Kim, H. J.; Kim, B.; Mun, E. G.; Jeong, S. Y.; Cha, Y. S. The Antioxidant Activity of Steamed Ginger and Its Protective Effects on Obesity Induced by High-fat Diet in C57BL/6J Mice. Nutr. Res. Pract. 2018, 12(6), 503–511. DOI: 10.4162/nrp.2018.12.6.503.
  • Beattie, J. H.; Nicol, F.; Gordon, M. J.; Reid, M. D.; Cantlay, L.; Horgan, G. W.; Kwun, I. S.; Ahn, J. Y.; Ha, T. Y. Ginger Phytochemicals Mitigate the Obesogenic Effects of a High-fat Diet in Mice: A Proteomic and Biomarker Network Analysis. Mol. Nutr. Food Res. 2011, 55, 203–213. DOI: 10.1002/mnfr.201100193.
  • Anhê, F. F.; Nachbar, R. T.; Varin, T. V.; Vilela, V.; Dudonné, S.; Pilon, G.; Fournier, M.; Lecours, M. A.; Desjardins, Y.; Roy, D.; et al. A Polyphenol-rich Cranberry Extract Reverses Insulin Resistance and Hepatic Steatosis Independently of Body Weight Loss. Mol. Metab. 2017, 6(12), 1563–1573. DOI: 10.1016/j.molmet.2017.10.003.
  • Anhê, F. F.; Roy, D.; Pilon, G.; Dudonné, S.; Matamoros, S.; Varin, T. V.; Garofalo, C.; Moine, Q.; Desjardins, Y.; Levy, E.; et al. A Polyphenol-rich Cranberry Extract Protects from Diet-induced Obesity, Insulin Resistance and Intestinal Inflammation in Association with Increased Akkermansia Spp. Population in the Gut Microbiota of Mice. Gut. 2015, 64(6), 872–883. DOI: 10.1136/gutjnl-2014-307142.
  • Peixoto, T. C.; Moura, E. G.; De, O. E.; Soares, P. N.; Guarda, D. S.; Bernardino, D. N.; Ai, X. X.; Rodrigues, V. D. S. T.; De, S. G. R.; Da, S. A. J. R.; et al. Cranberry (Vaccinium Macrocarpon) Extract Treatment Improves Triglyceridemia, Liver Cholesterol, Liver Steatosis, Oxidative Damage and Corticosteronemia in Rats Rendered Obese by High Fat Diet. Eur. J. Nutr., 2018. 1829-1844, 57(5). DOI: 10.1007/s00394-017-1467-2.
  • Glisan, S. L.; Ryan, C.; Neilson, A. P.; Lambert, J. D. Cranberry Extract Attenuates Hepatic Inflammation in High-fat-fed Obese Mice. J. Nutr. Biochem. 2016, 37, 60–66. DOI: 10.1016/j.jnutbio.2016.07.009.
  • Ohta, M.; Fujinami, A.; Oishi, K.; Kobayashi, N.; Ohnishi, K.; Ohkura, N. Ashitaba (Angelica Keiskei) Exudate Prevents Increases in Plasminogen Activator Inhibitor-1 Induced by Obesity in Tsumura Suzuki Obese Diabetic Mice. J. Diet. Suppl. 2019, 16(3), 331–344. DOI: 10.1080/19390211.2018.1458366.
  • Ohnogi, H.; Hayami, S.; Kudo, Y.; Deguchi, S.; Mizutani, S.; Enoki, T.; Tanimura, Y.; Aoi, W.; Naito, Y.; Kato, I.; et al. Angelica Keiskei Extract Improves Insulin Resistance and Hypertriglyceridemia in Rats Fed a High-fructose Drink. Biosci. Biotechnol. Biochem. 2012, 96, 928–932. DOI: 10.1271/bbb.110927.
  • Kwon, E. Y.; Kim, S. Y.; Choi, M. S. Luteolin-enriched Artichoke Leaf Extract Alleviates the Metabolic Syndrome in Mice with High-fat Diet-induced Obesity. Nutrients. 2018, 10(8), E979. DOI: 10.3390/nu10080979.
  • Tang, X.; Wei, R.; Deng, A.; Lei, T. Protective Effects of Ethanolic Extracts from Artichoke, an Edible Herbal Medicine, against Acute Alcohol-induced Liver Injury in Mice. Nutrients. 2017, 9(9), E1000. DOI: 10.3390/nu9091000.
  • Kim, N. H.; Jegal, J.; Kim, Y. N.; Heo, J. D.; Rho, J. R.; Yang, M. H.; Jeong, E. J. Chokeberry Extract and Its Active Polyphenols Suppress Adipogenesis in 3T3-L1 Adipocytes and Modulates Fat Accumulation and Insulin Resistance in Diet-induced Obese Mice. Nutrients. 2018, 10(11), E1734. DOI: 10.3390/nu10111734.
  • Qin, B.; Anderson, R. A. An Extract of Chokeberry Attenuates Weight Gain and Modulates Insulin, Adipogenic and Inflammatory Signalling Pathways in Epididymal Adipose Tissue of Rats Fed a Fructose-rich Diet. Br. J. Nutr. 2012, 108(4), 581–587. DOI: 10.1017/S000711451100599X.
  • Kim, H. K.; Kim, J. N.; Han, S. N.; Nam, J. H.; Na, H. N.; Ha, T. J. Black Soybean Anthocyanins Inhibit Adipocyte Differentiation in 3T3-L1 Cells. Nutr. Res. 2012, 32(10), 770–777. DOI: 10.1016/j.nutres.2012.06.008.
  • Jeon, Y.; Lee, M.; Cheon, Y. P. A Testa Extract of Black Soybean (Glycine Max (L.) Merr.) Suppresses Adipogenic Activity of Adipose-derived Stem Cells. Dev. Reprod. 2015, 19(4), 235–242. DOI: 10.12717/dr.2015.19.4.235.
  • Kurimoto, Y.; Shibayama, Y.; Inoue, S.; Soga, M.; Takikawa, M.; Ito, C.; Nanba, F.; Yoshida, T.; Yamashita, Y.; Ashida, H.; et al. Black Soybean Seed Coat Extract Ameliorates Hyperglycemia and Insulin Sensitivity via the Activation of AMP-activated Protein Kinase in Diabetic Mice. J. Agric. Food. Chem. 2013, 61(23), 5558–5564. DOI: 10.1021/jf401190y.
  • Kwon, J. H.; Hwang, S. Y.; Han, J. S. Bamboo (Phyllostachys Bambusoides) Leaf Extracts Inhibit Adipogenesis by Regulating Adipogenic Transcription Factors and Enzymes in 3T3-L1 Adipocytes. Food. Sci. Biotechnol. 2017, 26(4), 1037–1044. DOI: 10.1007/s10068-017-0150-y.
  • Kim, J.; Kim, Y. S.; Lee, H. A.; Lim, J. Y.; Kim, M.; Kwon, O.; Ko, H. C.; Kim, S. J.; Shin, J. H.; Kim, Y. Sasa Quelpaertensis Leaf Extract Improves High Fat Diet-induced Lipid Abnormalities and Regulation of Lipid Metabolism Genes in Rats. J. Med. Food. 2014, 17(5), 571–581. DOI: 10.1089/jmf.2013.2916.
  • Suzuki, R.; Okada, Y.; Okuyama, T. The Favorable Effect of Style of Zea Mays L. On Streptozotocin Induced Diabetic Nephropathy. Biol. Pharm. Bull. 2005, 28(5), 919–920. DOI: 10.1248/bpb.28.919.
  • Hsu, Y. A.; Kuo, Y. H.; Chen, C. S.; Chen, Y. C.; Huang, C. C.; Chang, C. Y.; Lin, C. J.; Lin, C. W.; Lin, H. J.; Liu, F. T.; et al. Galectin-12 Is Involved in Corn Silk-induced Anti-adipogenesis and Anti-obesity Effects. Am. J. Chin. Med. 2018, 46(5), 1045–1063. DOI: 10.1142/s0192415x18500544.
  • Zhang, Y.; Wu, L.; Ma, Z.; Cheng, J.; Anti-Diabetic, L. J. Anti-oxidant and Anti-hyperlipidemic Activities of Flavonoids from Corn Silk on STZ-induced Diabetic Mice. Molecules. 2015, 21(1), E7. DOI: 10.3390/molecules21010007.
  • Chaiittianan, R.; Sutthanut, K.; Rattanathongkom, A. Purple Corn Silk: A Potential Anti-obesity Agent with Inhibition on Adipogenesis and Induction on Lipolysis and Apoptosis in Adipocytes. J. Ethnopharmacol. 2017, 201, 9–16. DOI: 10.1016/j.jep.2017.02.044.
  • Ding, X.; Fan, S.; Lu, Y.; Zhang, Y.; Gu, M.; Zhang, L.; Liu, G.; Guo, L.; Jiang, D.; Lu, X.; et al. Citrus Ichangensis Peel Extract Exhibits Anti-metabolic Disorder Effects by the Inhibition of PPARgamma and LXR Signaling in High-fat Diet-induced C57BL/6 Mouse. Evid. Based. Complement. Altern. Med. 2012, 678592. DOI: 10.1155/2012/678592.
  • Lu, Y.; Xi, W.; Ding, X.; Fan, S.; Zhang, Y.; Jiang, D.; Li, Y.; Huang, C.; Zhou, Z. Citrange Fruit Extracts Alleviate Obesity-associated Metabolic Disorder in High-fat Diet-induced Obese C57BL/6 Mouse. Int. J. Mol. Sci. 2013, 14, 23736. DOI: 10.3390/ijms141223736.
  • Tung, Y. C.; Chang, W. T.; Li, S.; Wu, J. C.; Badmeav, V.; Ho, C. T.; Pan, M. H. Citrus Peel Extracts Attenuated. Obesity and Modulated Gut Microbiota in Mice with High-fat Diet-induced Obesity. Food Funct. 2018, 9(6), 3363–3373. DOI: 10.1039/c7fo02066j.
  • Kuo, D. H.; Yeh, C. H.; Shieh, P. C.; Cheng, K. C.; Chen, F. A.; Cheng, J. T. Effect of Shanzha, a Chinese Herbal Product, on Obesity and Dyslipidemia in Hamsters Receiving High-fat Diet. J. Ethnopharmacol. 2009, 124(3), 544–550. DOI: 10.1016/j.jep.2009.05.005.
  • Niu, C.; Chen, C.; Chen, L.; Cheng, K.; Yeh, C.; Cheng, J. Decrease of Blood Lipids Induced by Shan-Zha (Fruit of Crataegus Pinnatifida) Is Mainly Related to an Increase of PPARα in Liver of Mice Fed High-fat Diet. Horm. Metab. Res. 2011, 43(9), 625–630. DOI: 10.1055/s-0031-1283147.
  • Madak-Erdogan, Z.; Gong, P.; Zhao, Y. C.; Xu, L.; Wrobel, K. U.; Hartman, J. A.; Wang, M.; Cam, A.; Iwaniec, U. T.; Turner, R. T.; et al. Dietary Licorice Root Supplementation Reduces Diet-induced Weight Gain, Lipid Deposition, and Hepatic Steatosis in Ovariectomized Mice without Stimulating Reproductive Tissues and Mammary Gland. Mol. Nutr. Food Res. 2016, 60(2), 369–380. DOI: 10.1002/mnfr.201500445.
  • Yoshioka, Y.; Yamashita, Y.; Kishida, H.; Nakagawa, H.; Ashida, H. Licorice Flavonoid Oil Enhances Muscle Mass in KK-Ay Mice. Life. Sci. 2018, 205, 91–96. DOI: 10.1016/j.lfs.2018.05.024.
  • Mae, T.; Kishida, H.; Nishiyama, T.; Tsukagawa, M.; Konishi, E.; Kuroda, M.; Mimaki, Y.; Sashida, Y.; Takahashi, K.; Kawada, T.; et al. A Licorice Ethanolic Extract with Peroxisome Proliferator-activated Receptor-gamma Ligand-binding Activity Affects Diabetes in KK-Ay Mice, Abdominal Obesity in Diet-induced Obese C57BL Mice and Hypertension in Spontaneously Hypertensive Rats. J. Nutr. 2003, 133(11), 3369–3377. DOI: 10.1093/jn/133.11.3369.
  • Ahn, J.; Lee, H.; Jang, J.; Kim, S.; Ha, T. Anti-obesity Effects of Glabridin-rich Supercritical Carbon Dioxide Extract of Licorice in High-fat-fed Obese Mice. Food. Chem. Toxicol. 2013, 51, 439–445. DOI: 10.1016/j.fct.2012.08.048.
  • Jambocus, N. G. S.; Ismail, A.; Khatib, A.; Mahomoodally, F.; Saari, N.; Mumtaz, M. W.; Hamid, A. A. Morinda Citrifolia L. Leaf Extract Prevent Weight Gain in Sprague-Dawley Rats Fed a High Fat Diet. Food. Nutr. Res. 2017, 61(1), 1338919. DOI: 10.1080/16546628.2017.1338919.
  • Osman, W. N. W.; Mohamed, S. Standardized Morinda Citrifolia L. And Morinda Elliptica L. Leaf Extracts Alleviated Fatigue by Improving Glycogen Storage and Lipid/carbohydrate Metabolism. Phytother. Res. 2018, 32(10), 2078–2085. DOI: 10.1002/ptr.6151.
  • Moon, J.; Do, H. J.; Kim, O. Y.; Shin, M. J. Antiobesity Effects of Quercetin-rich Onion Peel Extract on the Differentiation of 3T3-L1 Preadipocytes and the Adipogenesis in High Fat-fed Rats. Food. Chem. Toxicol. 2013, 58, 347–354. DOI: 10.1016/j.fct.2013.05.006.
  • Bae, C. R.; Park, Y. K.; Cha, Y. S. Quercetin-rich Onion Peel Extract Suppresses Adipogenesis by Down-regulating Adipogenic Transcription Factors and Gene Expression in 3T3-L1 Adipocytes. J. Sci. Food. Agric. 2014, 94, 2655–2660. DOI: 10.1002/jsfa.6604.
  • Kim, O. Y.; Lee, S. M.; Do, H.; Moon, J.; Lee, K. H.; Cha, Y. J.; Shin, M. J. Influence of Quercetin-rich Onion Peel Extracts on Adipokine Expression in the Visceral Adipose Tissue of Rats. Phytother. Res. 2012, 26, 432–437. DOI: 10.1002/ptr.3570.
  • Im, R.; Mano, H.; Nakatani, S. Aqueous Extract of Kotahla Himbutu (Salacia Reticulata) Stems Promotes Oxygen Consumption and Supresses Body Fat Accumulation in Mice. J. Health. Sci. 2008, 54, 645–653. DOI: 10.1248/jhs.54.645.
  • Yoshikawa, M.; Shimoda, H.; Nishida, N.; Takada, M.; Matsuda, H. Salacia Reticulata and Its Polyphenolic Constituents with Lipase Inhibitory and Lipolytic Activities Have Mild Antiobesity Effects in Rats. J. Nutr. 2002, 132(7), 1819–1824. DOI: 10.1093/jn/132.7.1819.
  • Kishino, E.; Ito, T.; Fujita, K.; Kiuchi, Y. A Mixture of Salacia Reticulata (Kotala Himbutu) Aqueous Extract and Cyclodextrin Reduces Body Weight Gain, Visceral Fat Accumulation, and Total Cholesterol and Insulin Increases in Male Wistar Fatty Rats. Nutr. Res. 2009, 29, 55–63. DOI: 10.1016/j.nutres.2008.11.001.
  • NCHS. National Health and Nutrition Examination Survey. 2017-2018. https://www.cdc.gov/nchs/products/databriefs/db360.htm
  • Wang, Y.; Beydoun, M. A.; Min, J.; Xue, H.; Kaminsky, L. A.; Cheskin, L. J. Has the Prevalence of Overweight, Obesity and Central Obesity Levelled off in the United States? Trends, Patterns, Disparities, and Future Projections for the Obesity Epidemic. Int J Epidemiol. 2020, 49(3), 273. DOI: 10.1093/ije/dyz273.
  • Mi, Y. J.; Zhang, B.; Wang, H. J.; Yan, J.; Han, W.; Zhao, J.; Liu, D. W.; Tian, Q. B. Prevalence And. Secular Trends in Obesity among Chinese Adults, 1991-2011. Am J Prev Med. 2019, 49(5), 661–669. DOI: 10.1016/j.amepre.2015.05.005.
  • Tian, Y.; Jiang, C.; Wang, M.; Cai, R.; Zhang, Y.; He, Z.; Wang, H.; Wu, D.; Wang, F.; Liu, X.; et al. BMI, Leisure-time Physical Activity, and Physical Fitness in Adults in China: Results from a Series of National Surveys, 2000-14. Lancet Diabetes Endocrinol. 2016, 4(6), 487–497. DOI: 10.1016/S2213-8587(16)00081-4.
  • Jia, P.; Ma, S.; Qi, X.; Wang, Y. Spatial and Temporal Changes in Prevalence of Obesity Among. Chinese Children and Adolescents, 1985-2005. Prev Chronic Dis. 2019, 16, 190290. DOI: 10.5888/pcd16.190290.
  • Chen, Y.; Zhang, Y.; Wang, L. Low Diagnostic Accuracy of Body Mass Index-based and Waist. Circumference-based References of Childhood Overweight and Obesity in Identifying Overfat among Chinese Children and Adolescents. Biomed Res Int. 2018, 2018, 4570706. DOI: 10.1155/2018/4570706.
  • Li, J. C.; Lyu, J.; Gao, M.; Yu, C. Q.; Guo, Y.; Bian, Z.; Pei, P.; Du, H. D.; Chen, J. S.; Chen, Z. M.; et al. Association of Body Mass Index and Waist Circumference with Major Chronic Diseases in Chinese Adults. Zhong Hua Liu Xing Bing Xue Za Zhi. 2019, 40(12), 1541–1547. DOI: 10.3760/cma.j.0254-6450.2019.12.007.
  • Jia, G.; Shu, X. O.; Liu, Y.; Li, H. L.; Cai, H.; Gao, J.; Gao, Y. T.; Wen, W.; Xiang, Y. B.; Zheng, W. Association of Adult Weight Gain with Major Health Outcomes among Middle-aged Chinese Persons with Low Bodyweight in Early Adulthood. JAMA Netw Open. 2019, 2(12), 1917371. DOI: 10.1001/jamanetworkopen.2019.17371.
  • WHO Coronavirus Disease (COVID-19) Dashboard. https://covid19.who.int. Accessed May 19, 2020.
  • Simonnet, A.; Chetboun, M.; Poissy, J.; Raverdy, V.; Noulette, J.; Duhamel, A.; Labreuche, J.; Mathieu, D.; Pattou, F.; Jourdain, M. Lille Intensive Care COVID-19 and Obesity Study Group. High Prevalence of Obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (Sars-cov-2) Requiring Invasive Mechanical Ventilation. Obesity. 2020, 28(7), 1195–1199. DOI: 10.1002/oby.22831.
  • Kass, D. A.; Duggal, P.; Cingolani, O. Obesity Could Shift Severe COVID-19 Disease to Younger Ages. Lancet. 2020, 395(10236), 1544–1545. DOI: 10.1016/S0140-6736(20)31024-2.
  • Onder, G.; Rezza, G.; Brusaferro, S. Case-fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA. 2020. DOI: 10.1001/jama.2020.4683.
  • Jennifer, L.; Michael, P.; Sarah, H.; Stephanie, S.; Diane, J.; Fritz, F.; Anna, S. Obesity in Patients Younger than 60 Years Is a Risk Factor for Covid-19 Hospital Admission. Clin Infect Dis. 2020, 9, 415. doi: 10.1093/cid/ciaa415.
  • Garg, S.; Kim, L.; Whitaker, M.; O’Halloran, A.; Cummings, C.; Holstein, R.; Prill, M.; Cha, I. S. J.; Kirley, P. D.; Alden, N. B.; et al. Hospitalization Rates and Characteristics of Patients Hospitalized with Laboratory-confirmed Coronavirus Disease 2019-COVID-NET, 14 States, March 1-30, 2020. MMWR Morb Mortal Wkly Rep. 2020, 69(15), 458–464. DOI: 10.15585/mmwr.mm6915e3.
  • Dixon, A. E.; Ubong, P. The Effect of Obesity on Lung Function. Expert Rev Respir Med. 2018, 12(9), 755–767. DOI: 10.1080/17476348.2018.1506331.
  • Bokov, P.; Delclaux, C. The Impact of Obesity on Respiratory Function. Rev Mal Respir. 2019, 36(9), 1057–1063. DOI: 10.1016/j.rmr.2019.07.009.
  • Honce, R.; Schultz-Cherry, S. Impact of Obesity on Influenza A Virus Pathogenesis, Immune Response, and Evolution. Front Immunol. 2019, 10, 1071. DOI: 10.3389/fimmu.2019.01071.
  • Mikiko, W.; Renata, R.; Dario, T.; Claudia, J. B.; Silvia, M.; Lucio, G. Obesity and SARS‐CoV‐2: A Population to Safeguard. Diabetes Metab Res Rev. 2020, 21, 3325. DOI: 10.1002/dmrr.3325.
  • Ranganath, M.; Sriram, G. COVID-19 Pandemic, Corona Viruses, and Diabetes Mellitus. Am J Physiol Endocrinol Metab. 2020, 318(5), E736–E741. Epub 2020 Mar 31. DOI: 10.1152/ajpendo.00124.2020.
  • Vincent, R. P.; Roux, C. W. L. New Agents in Development for the Management of Obesity. Int. J. Clin. Pract. 2007, 61(12), 2103–2112. DOI: 10.1111/j.1742-1241.2007.01558.x.
  • Trigueros, L.; Peña, S.; Ugidos, A. V.; Sayas-Barberá, E.; Pérez-Álvarez, J. A.; Sendra, E. Food Ingredients as Anti-obesity Agents: A Review. Crit. Rev. Food. Sci. Nutr. 2013, 53(9), 929–942. DOI: 10.1080/10408398.2011.574215.
  • Baskin, D. G.; Wilcox, B. J.; Figlewicz, D. P.; Dorsa, D. M. Insulin and Insulin-like Growth Factors in the CNS. Trends. Neurosci. 1988, 11(3), 107–111. DOI: 10.1016/0166-2236(88)90155-5.
  • Baskin, D.; Breininger, J.; Schwartz, M. Leptin Receptor mRNA Identifies a Subpopulation of Neuropeptide Y Neurons Activated by Fasting in Rat Hypothalamus. Diabetes. 1999, 48(4), 828–833. DOI: 10.2337/diabetes.48.4.828.
  • Woods, S.; Lotter, E.; McKay, L.; Porte, D. J. Chronic Intracerebroventricular Infusion of Insulin Reduces Food Intake and Body Weight of Baboons. Nature. 1979, 282(5738), 503–505. DOI: 10.1038/282503a0.
  • Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J. M. Positional Cloning of the Mouse Obese Gene and Its Human Homologue. Nature. 1994, 372(6505), 425–432. DOI: 10.1038/372425a0.
  • Bates, S. H.; Stearns, W. H.; Dundon, T. A.; Schubert, M.; Tso, A. W. K.; Wang, Y.; Banks, A. S.; Lavery, H. J.; Haq, A. K.; Maratos-Flier, E.; et al. STAT3 Signalling Is Required for Leptin Regulation of Energy Balance but Not Reproduction. Nature. 2003, 421(6925), 856–859. DOI: 10.1038/nature01388.
  • Valassi, E.; Scacchi, M.; Cavagnini, F. Neuroendocrine Control of Food Intake. Nutr. Metab. Cardiovasc. Dis. 2008, 18(2), 158–168. DOI: 10.1016/j.numecd.2007.06.004.
  • Gropp, E.; Shanabrough, M.; Borok, E.; Xu, A. W.; Janoschek, R.; Buch, T.; Plum, L.; Balthasar, N.; Hampel, B.; Waisman, A.; et al. Agouti-related Peptide-expressing Neurons are Mandatory for Feeding. Nat. Neurosci. 2005, 8, 1289–1291. DOI: 10.1038/nn1548.
  • Sternson, S. M.; Shepherd, G. M.; Friedman, J. M. Topographic Mapping of VMH Arcuate Nucleus Micro- Circuits and Their Reorganization by Fasting. Nat. Neurosci. 2005, 8, 1356–1363. DOI: 10.1038/nn1550.
  • Elmquist, J. K.; Maratos-Flier, E.; Saper, C. B.; Flier, J. S. Unraveling the Central Nervous System Pathways Underlying Responses to Leptin. Nat. Neurosci. 1998, 1(6), 445–450. DOI: 10.1038/2164.
  • Broberger, C.; Johansen, J.; Johasson, C.; Schalling, M.; Hokfelt, T. The Neuropeptide Y/agouti Generelated Protein (AGRP) Brain Circuitry in Normal, Anorectic, and Monosodium Glutamate-treated Mice. Proc. Natl. Acad. Sci. 1998, 95(25), 15043–15048. DOI: 10.1073/pnas.95.25.15043.
  • Le, C. E.; Nielsen, T.; Qin, J.; Prifti, E.; Hildebrand, F.; Falony, G.; Almeida, M.; Arumugam, M.; Batto, J. M.; Kennedy, S.; et al. Richness of Human Gut Microbiome Correlates with Metabolic Markers. Nature. 2013, 500(7464), 541–546. DOI: 10.1038/nature12506.
  • Kong, L. C.; Holmes, B. A.; Cotillard, A.; Habi-Rachedi, F.; Brazeilles, R.; Gougis, S.; Gausserès, N.; Cani, P. D.; Fellahi, S.; Bastard, J. P.; et al. Dietary Patterns Differently Associate with Inflammation and Gut Microbiota in Overweight and Obese Subjects. PLoS One. 2014, 9(10), e109434. DOI: 10.1371/journal.pone.0109434.
  • Dao, M. C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E. O.; Kayser, B. D.; Levenez, F.; Chilloux, J.; Hoyles, L.; et al. Akkermansia Muciniphila and Improved Metabolic Health during a Dietary Intervention in Obesity: Relationship with Gut Microbiome Richness and Ecology. Gut. 2016, 65(3), 426–436. DOI: 10.1136/gutjnl-2014-308778.
  • Cani, P. D.; Delzenne, N. M.; Amar, J.; Burcelin, R. Role of Gut Microflora in the Development of Obesity and Insulin Resistance following High-fat Diet Feeding. Pathol. Biol. 2008, 56(5), 305–309. DOI: 10.1016/j.patbio.2007.09.008.
  • Walle, T.;. Absorption and Metabolism of Flavonoids. Free. Radic. Biol. Med. 2004, 36, 829–837. DOI: 10.1016/j.freeradbiomed.2004.01.002.
  • Manach, C.; Donovan, J. L. Pharmacokinetics and Metabolism of Dietary Flavonoids in Humans. Free. Radic. Res. 2004, 38, 771–785. DOI: 10.1080/10715760410001727858.
  • Mozaffarian, D.; Wu, J. H. Flavonoids, Dairy Foods, and Cardiovascular and Metabolic Health: A Review of Emerging Biologic Pathways. Circ. Res. 2018, 122(2), 369–384. DOI: 10.1161/CIRCRESAHA.117.309008.
  • Espín, J. C.; González-Sarrías, A.; Tomás-Barberán, F. A. The Gut Microbiota: A Key Factor in the Therapeutic Effects of (Poly)phenols. Biochem Pharmacol. 2017, 139, 82–93. DOI: 10.1016/j.bcp.2017.04.033.
  • Serra, A.; Macià, A.; Romero, M. P.; Reguant, J.; Ortega, N.; Motilva, M.-J. Metabolic Pathways of the Colonic Metabolism of Flavonoids (Flavonols, Flavones and Flavanones) and Phenolic Acids. Food. Chem. 2012, 130(2), 383–393. DOI: 10.1016/j.foodchem.2011.07.055.
  • Martinez-Zapata, M. J.; Vernooij, R. W.; Tuma, S. M. U.; Stein, A. T.; Moreno, R. M.; Vargas, E., .; Capellà, D.; Bonfill, X. Phlebotonics for Venous Insufficiency. Cochrane. Database. Syst. Rev. 2016, 4, CD003229. DOI: 10.1002/14651858.CD003229.pub3.
  • Schneider, H.; Blaut, M. Anaerobic Degradation of Flavonoids by Eubacterium Ramulus. Arch. Microbiol. 2000, 173(1), 71–75. DOI: 10.1007/s002030050010.
  • Schoefer, L.; Mohan, R.; Schwiertz, A.; Braune, A.; Blaut, M. Anaerobic Degradation of Flavonoids by Clostridium Orbiscindens. Appl. Environ. Microbiol. 2003, 69, 5849–5854. DOI: 10.1128/aem.69.10.5849-5854.2003.
  • Miyake, Y.; Yamamoto, K.; Osawa, T. Metabolism of Antioxidant in Lemon Fruit (Citrus Limon BURM. F.) By Human Intestinal Bacteria. J. Agric. Food. Chem. 1997, 45, 3738–3742. DOI: 10.1021/jf970403r.
  • Braune, A.; Blaut, M. Bacterial Species Involved in the Conversion of Dietary Flavonoids in the Human Gut. Gut. Microbes. 2016, 7, 216–234. DOI: 10.1080/19490976.2016.1158395.
  • Braune, A.; Blaut, M. Intestinal Bacterium Eubacterium Cellulosolvens Deglycosylates Flavonoid C- and O-glucosides. Appl. Environ. Microbiol. 2012, 78(22), 8151. DOI: 10.1128/AEM.02115-12.
  • Bang, S. H.; Hyun, Y. J.; Shim, J.; Hong, S. W.; Kim, D. H. Metabolism of Rutin and Poncirin by Human Intestinal Microbiota and Cloning of Their Metabolizing a-L-rhamnosidase from Bifidobacterium Dentium. J. Microbiol. Biotechnol. 2015, 25, 18–25. DOI: 10.4014/jmb.1404.04060.
  • Schröder, C.; Matthies, A.; Engst, W.; Blaut, M.; Braune, A. Identification and Expression of Genes Involved in the Conversion of Daidzein and Genistein by the Equol-forming Bacterium Slackia Isoflavoniconvertens. Appl. Environ. Microbiol. 2013, 79, 3494–3502. DOI: 10.1128/AEM.03693-12.
  • Hur, H. G.; Lay, J. O.; Beger, R. D.; Freeman, J. P.; Rafii, F. Isolation of Human Intestinal Bacteria Metabolizing the Natural Isoflavone Glycosides Daidzin and Genistin. Arch. Microbiol. 2000, 174, 422–428. DOI: 10.1007/s002030000222.
  • Bustos, I.; García-Cayuela, T.; Hernández-Ledesma, B.; Peláez, C.; Requena, T.; Martínez-Cuesta, M. C. Effect of Flavan-3-ols on the Adhesion of Potential Probiotic Lactobacilli to Intestinal Cells. J. Agric. Food. Chem. 2012, 60(36), 9082–9088. DOI: 10.1021/jf301133g.
  • Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P. Interaction of Dietary Compounds, Especially Polyphenols, with the Intestinal Microbiota: A Review. Eur. J. Nutr. 2015, 54(3), 325–341. DOI: 10.1007/s00394-015-0852-y.
  • Ankolekar, C.; Johnson, D.; Pinto, M. D. S.; Johnson, K.; Labbe, R.; Shetty, K. Inhibitory Potential of Tea Polyphenolics and Influence of Extraction Time against Helicobacter Pylori and Lack of Inhibition of Beneficial Lactic Acid Bacteria. J. Med. Food. 2011, 14(11), 1321–1329. DOI: 10.1089/jmf.2010.0237.
  • Nakayama, M.; Shigemune, N.; Tsugukuni, T.; Jun, H.; Matsushita, T.; Mekada, Y.; Kurahachi, M.; Miyamoto, T. Mechanism of the Combined Anti-bacterial Effect of Green Tea Extract and NaCl against Staphylococcus Aureus and Escherichia Coli O157: H7. Food Control. 2012, 25(1), 225–232. DOI: 10.1016/j.foodcont.2011.10.021.
  • Dueñas, M.; Muñoz-González, I.; Cueva, C.; Jiménez-Girón, A.; Sánchez-Patán, F.; Santos-Buelga, C.; Moreno-Arribas, M. V.; Bartolomé, B. A Survey of Modulation of Gut Microbiota by Dietary Polyphenols. Biomed. Res. Int. 2015, 2015, 1–15. DOI: 10.1155/2015/850902.
  • Bancirova, M.;. Comparison of the Antioxidant Capacity and the Antimicrobial Activity of Black and Green Tea. Food. Res. Int. 2010, 43, 1379–1382. DOI: 10.1016/j.foodres.2010.04.020.
  • Parkar, S. G.; Stevenson, D. E.; Skinner, M. A. The Potential Influence of Fruit Polyphenols on Colonic Microflora and Human Gut Health. Int. J. Food. Microbiol. 2008, 124(3), 295–298. DOI: 10.1016/j.ijfoodmicro.2008.03.017.
  • Selma, M. V.; Larrosa, M.; Beltran, D.; Lucas, R.; Morales, J. C.; Tomas-Barberan, F.; Espín, J. C. Resveratrol and Some Glucosyl-, Glucosyl-acyl- and Glucuronide Derivatives Reduce E. Coli O157: H7,S. Typhimurium and L. Monocytogenes Scott A Adhesion to Colonic Epithelial Cell Lines. J. Agric. Food. Chem. 2012, 60, 7367–7374. DOI: 10.1021/jf203967u.
  • Toivanen, M.; Huttunen, S.; Lapinjoki, S.; Tikkanen-Kaukanen, C. Inhibition of Adhesion of Neisseria Meningitidis to Human Epithelial Cells by Berry Juice Polyphenolic Fractions. Phytother. Res. 2011, 25, 828–832. DOI: 10.1002/ptr.3349.
  • Liu, Y.; Black, M. A.; Caron, L.; Camesano, T. A. Role of Cranberry Juice on Molecular-scale Surface Characteristics and Adhesion Behavior of Escherichia Coli. Biotechnol. Bioeng. 2006, 93, 297–305. DOI: 10.1002/bit.20675.
  • Pastene, E.; Speisky, H.; García, A.; Moreno, J.; Troncoso, M.; Figueroa, G. In Vitro and in Vivo Effects of Apple Peel Polyphenols against Helicobacter Pylori. J. Agric. Food. Chem. 2010, 58, 7172–7179. DOI: 10.1021/jf100274g.
  • Bartelt, A.; Heeren, J. Adipose Tissue Browning and Metabolic Health. Nat. Rev. Endocrinol. 2013, 10(1), 24–36. DOI: 10.1038/nrendo.2013.204.
  • Romieu, I.; Dossus, L.; Barquera, S.; Blottière, H. M.; Franks, P. W.; Gunter, M.; Hwalla, N.; Hursting, S. D.; Leitzmann, M.; Margetts, B.; et al. Energy Balance and Obesity: What are the Main Drivers? Cancer. Causes. Control. 2017, 28(3), 247–258. DOI: 10.1007/s10552-017-0869-z.
  • Hill, J. O.; Wyatt, H. R.; Peters, J. C. Energy Balance and Obesity. Circulation. 2012, 126(1), 126–132. DOI: 10.1161/CIRCULATIONAHA.111.087213.
  • Nedergaard, J.; Cannon, B. The Browning of White Adipose Tissue: Some Burning Issues. Cell. Metab. 2014, 20(3), 396–407. DOI: 10.1016/j.cmet.2014.07.005.
  • Neyrinck, A. M.; Bindels, L. B.; Geurts, L.; Van Hul, M.; Cani, P. D.; Delzenne, N. M. A Polyphenolic Extract from Green Tea Leaves Activates Fat Browning in High-fat-diet Induced Obese Mice. J. Nutr. Biochem. 2017, 49, 15–21. DOI: 10.1016/j.jnutbio.2017.07.008.
  • Zou, T.; Wang, B.; Yang, Q.; Avila, J. M. D.; Zhu, M. J.; You, J.; Chen, D.; Du, M. Raspberry Promotes Brown and Beige Adipocyte Development in Mice Fed High-fat Diet through Activation of AMP-activated Protein Kinase (AMPK) α1. J. Nutr. Biochem. 2018, 55, 157–164. DOI: 10.1016/j.jnutbio.2018.02.005.
  • Pascual-Serrano, A.; Bladé, C.; Suárez, M.; Arola-Arnal, A. Grape Seed Proanthocyanidins Improve White Adipose Tissue Expansion during Diet-induced Obesity Development in Rats. Int. J. Mol. Sci. 2018, 19(9), 2632. DOI: 10.3390/ijms19092632.
  • Xu, L.; Nagata, N.; Ota, T. Glucoraphanin: A Broccoli Sprout Extract that Ameliorates Obesity-induced Inflammation and Insulin Resistance. Adipocyte. 2018, 7(3), 218–225. DOI: 10.1080/21623945.2018.1474669.
  • Antonio, G.; Andrea, F.; Saverio, C. Convertible Visceral Fat as a Therapeutic Target to Curb. Obesity. Nat Rev Drug Discov. 2016, 15(6), 405–424. DOI: 10.1038/nrd.2016.31.
  • Rosen, E. D.; MacDougald, O. A. Adipocyte Differentiation from the inside Out. Nat. Rev. Mol. Cell Biol. 2006, 7(12), 885–896. DOI: 10.1038/nrm2066.
  • Elayne, H.; Meritxell, R.; Julieta, D. D.; Yolanda, O.; Maria, M.; Roser, I.; Francesc, V.; Marta, G. Peroxisome Proliferator-activated Receptor α (PPARα) Induces PPARγ Coactivator 1α (PGC-1α) Gene Expression and Contributes to Thermogenic Activation of Brown Fat: Involvement of PRDM16. J. Biol. Chem. 2011, 286(50), 43112–43122. DOI: 10.1074/jbc.M111.252775.
  • Dempersmier, J.; Sambeat, A.; Gulyaeva, O.; Paul, S. M.; Hudak, C. S.; Raposo, H. F.; Kwan, H. Y.; Kang, C.; Wong, R. H.; Sul, H. S. Cold-inducible Zfp516 Activates UCP1 Transcription to Promote Browning of White Fat and Development of Brown Fat. Mol Cell. 2015, 57(2), 235–246. DOI: 10.1016/j.molcel.2014.12.005.
  • Haruya, O.; Kosaku, S.; Bruce, M. S.; Shingo, K. PPARg Agonists Induce a White-to-brown Fat. Conversion through Stabilization of PRDM16 Protein. Cell Metab. 2012, 15(3), 395–404. DOI: 10.1016/j.cmet.2012.01.019.
  • Jager, S.; Handschin, C.; St-Pierre, J.; Spiegelman, B. M. AMP-activated Protein Kinase (AMPK) Action in Skeletal Muscle via Direct Phosphorylation of PGC‑1α. Proc. Natl Acad. Sci. USA. 2007, 104, 12017–12022. DOI: 10.1073/pnas.0705070104.
  • Hondares, E.; Iglesias, R.; Giralt, A.; Gonzalez, F. J.; Giralt, M.; Mampel, T.; Villarroya, F. Thermogenic Activation Induces FGF21 Expression and Release in Brown Adipose Tissue. J Biol Chem. 2011, 286(15), 12983–12990. DOI: 10.1074/jbc.M110.215889.
  • Sun, K.; Kusminski, C. M.; Scherer, P. E. Adipose Tissue Remodeling and Obesity. J. Clin. Invest. 2011, 121, 2094–2101. DOI: 10.1172/JCI45887.
  • Fu, C.; Jiang, Y.; Guo, J.; Su, Z. Natural Products with Anti-obesity Effects and Different Mechanisms of Action. J. Agric. Food. Chem. 2016, 64(51), 9571–9585. DOI: 10.1021/acs.jafc.6b04468.
  • Kang, S. I.; Shin, H. S.; Kim, H. M.; Hong, Y. S.; Yoon, S. A.; Kang, S. W.; Kim, J. H.; Kim, M. H.; Ko, H. C.; Kim, S. J. Immature Citrus Sunki Peel Extract Exhibits Antiobesity Effects by β-oxidation and Lipolysis in High-fat Diet-induced Obese Mice. Biol. Pharm. Bull. 2012, 35(2), 223–230. DOI: 10.1248/bpb.35.223.
  • Huang, C. C.; Tung, Y. T.; Huang, W. C.; Chen, Y. M.; Hsu, Y. J.; Hsu, M. C. Beneficial Effects of Cocoa, Coffee, Green Tea, and Garcinia Complex Supplement on Diet Induced Obesity in Rats. BMC. Complement. Altern. Med. 2016, 16, 100–110. DOI: 10.1186/s12906-016-1077-1.
  • Jeon, S. M.; Lee, S. A.; Choi, M. S. Antiobesity and Vasoprotective Effects of Resveratrol in apoE-deficient Mice. J. Med. Food. 2014, 17, 310–316. DOI: 10.1089/jmf.2013.2885.
  • Buchholz, T.; Matthias, F. M. Polyphenolic Compounds as Pancreatic Lipase Inhibitors. Planta. Med. 2015, 81, 771–783. DOI: 10.1055/s-0035-1546173.
  • Assini, J. M.; Mulvihill, E. E.; Huff, M. W. Citrus Flavonoids and Lipid Metabolism. Curr. Opin. Lipidol. 2013, 24, 34–40. DOI: 10.1097/MOL.0b013e32835c07fd.
  • Batubara, I.; Kuspradini, H.; Muddathir, A. M.; Mitsunaga, T. Intsia Palembanica Wood Extracts and Its Isolated Compounds as Propionibacterium Acnes Lipase Inhibitor. J. Wood. Sci. 2014, 60, 169–174. DOI: 10.1007/s10086-013-1388-5.
  • Liu, P. K.; Weng, Z. M.; Ge, G. B.; Li, H. L.; Ding, L. L.; Dai, Z. R.; Hou, X. D.; Leng, Y. H.; Yu, Y.; Hou, J. Biflavones from Ginkgo Biloba as Novel Pancreatic Lipase Inhibitors: Inhibition Potentials and Mechanism. Int. J. Biol. Macromol. 2018, 118, 2216–2223. DOI: 10.1016/j.ijbiomac.2018.07.085.
  • Bustos, A. S.; Hakansson, A.; Linares-Pasten, J. A.; Penarrieta, J. M.; Nilsson, L. Interaction between Phenolic Compounds and Lipase: The Influence of Solubility and Presence of Particles in the IC50 Value. J. Food. Sci. 2018, 83, 2071–2076. DOI: 10.1111/1750-3841.14217.
  • Haslam, E. Plant Polyphenols: Vegetable Tannins revisited In: Chemistry and Pharmacology of natural Products University of Cambridge Oriental Publications; Phillipson, J. D., Ayres, D. C. and Baxter H., Eds. Cambridge: CUP Archive, 1989. pp 230. DOI: 10.1002/bies.950120912
  • Marrelli, M.; Loizzo, M. R.; Nicoletti, M.; Menichini, F.; Conforti, F. In Vitro Investigation of the Potential Health Benefits of Wild Mediterranean Dietary Plants as Anti-obesity Agents with α-amylase and Pancreatic Lipase Inhibitory Activities. J. Sci. Food. Agric. 2014, 94(11), 2217–2224. DOI: 10.1002/jsfa.6544.
  • Yoshikawa, M.; Sugimoto, S.; Kato, Y.; Nakamura, S.; Wang, T.; Yamashita, C.; Matsuda, H. Acylated Oleanane-type Triterpene Saponins with Acceleration of Gastrointestinal Transit and Inhibitory Effect on Pancreatic Lipase from Flower Buds of Chinese Tea Plant (Camellia Sinensis). Chem. Biodivers. 2009, 6(6), 903–915. DOI: 10.1002/cbdv.200800153.
  • Eidenberger, T.; Selg, M.; Fuerst, S.; Krennhuber, K. In-vitro Inhibition of Human Lipase PS by Polyphenols from Kiwi Fruit. J. Food. Res. 2014, 3, 71–77. DOI: 10.5539/jfr.v3n4p71.
  • Marrelli, M.; Morrone, F.; Argentieri, M. P.; Gambacorta, L.; Conforti, F.; Avato, P. Phytochemical and Biological Profile of Moricandia Arvensis (L.) DC.: An Inhibitor of Pancreatic Lipase. Molecules. 2018, 23(11), E2829. DOI: 10.3390/molecules23112829.
  • Saltiel, A. R.; Olefsky, J. M. Inflammatory Mechanisms Linking Obesity and Metabolic Disease. J. Clin. Invest. 2017, 127(1), 1–4. DOI: 10.1172/JCI92035.
  • Cox, A. J.; West, N. P.; Cripps, A. W. Obesity, Inflammation, and the Gut Microbiota. Lancet Diabetes Endocrinol. 2015, 3(3), 207–215. DOI: 10.1016/S2213-8587(14)70134-2.
  • Saad, M. J.; Santos, A.; Prada, P. O. Linking Gut Microbiota and Inflammation to Obesity and Insulin Resistance. Physiology. 2016, 31(4), 283–293. DOI: 10.1152/physiol.00041.2015.
  • Daine, M.;. Immunological Goings-on in Visceral Adipose Tissue. Cell Metab. 2013, 17(6), 851–859. DOI: 10.1016/j.cmet.2013.05.008.
  • Zhang, X.; Zhang, Q. X.; Wang, X.; Zhang, L.; Qu, W.; Bao, B.; Liu, C. A.; Liu, J. Dietary Luteolin Activates Browning and Thermogenesis in Mice through an AMPK/PGC1α Pathway-mediated Mechanism. Int. J. Obes. (Lond). 2016, 40(12), 1841–1849. DOI: 10.1038/ijo.2016.108.
  • Li, J.; Dong, J. Z.; Ren, Y. L.; Zhu, J. J.; Cao, J. N.; Zhang, J.; Pan, L. L. Luteolin Decreases Atherosclerosis in LDL Receptor-deficient Mice via a Mechanism Including Decreasing AMPK-SIRT1 Signaling in Macrophages. Exp. Ther. Med. 2018, 16(3), 2593–2599. DOI: 10.3892/etm.2018.6499.
  • Qiao, W.; Zhao, C.; Qin, N.; Zhai, H. Y.; Duan, H. Q. Identification of Trans-tiliroside as Active Principle with Anti-hyperglycemic, Anti-hyperlipidemic and Antioxidant Effects from Potentilla Chinesis. J. Ethnopharmacol. 2011, 135(2), 515–521. DOI: 10.1016/j.jep.2011.03.062.
  • Lalmansingh, A. S.; Uht, R. M. Estradiol Regulates Corticotropin Releasing Hormone Gene (Crh) Expression in a Rapid and Phasic Manner that Parallels Estrogen receptor-α and -β Recruitment to a 3′,5′-cyclic Adenosine 5′-monophosphate Regulatory Region of the Proximal Crh Promoter. Endocrinology. 2008, 149, 346–357. DOI: 10.1210/en.2007-0372.
  • Pelletier, G.; Li, S.; Luu-The, V.; Labrie, F. Oestrogenic Regulation of Pro-opiomelanocortin, Neuropeptide Y and Corticotrophin-releasing Hormone mRNAs in Mouse Hypothalamus. J. Neuroendocrinology. 2007, 19, 426–431. DOI: 10.1111/j.1365-2826.2007.01548.x.
  • Adlercreutz, H.; Mazur, W. Phyto-oestrogens and Western Diseases. Ann. Med. 1997, 29, 95–120. DOI: 10.3109/07853899709113696.
  • Fujitani, M.; Mizushige, T.; Bhattarai, K.; Iwahara, A.; Aida, R.; Segawa, T.; Kishida, T. Dynamics of Appetite-mediated Gene Expression in Daidzein-fed Female Rats in the Meal-feeding Method. Biosci. Biotechnol Biochem. 2015, 79(8), 1342–1349. DOI: 10.1080/09168451.2015.1025034.
  • Imran, K. M.; Yoon, D.; Kim, Y. S. A Pivotal Role of AMPK Signaling in Medicarpin-mediated Formation of Brown and Beige. Biofactors. 2018, 44(2), 168–179. DOI: 10.1002/biof.1392.
  • Cabrera, C.; Artacho, R.; Giménez, R. Beneficial Effects of Green Tea - A Review. J. Am. Coll. Nutr. 2006, 25, 79–99. DOI: 10.1080/07315724.2006.10719518.
  • Varela, C. E.; Rodriguez, A.; Romero-Valdovinos, M.; Mendoza-Lorenzo, P.; Mansour, C.; Ceballos, G.; Villarreal, F.; Ramirez-Sanchez, I. Browning Effects of (-)-epicatechin on Adipocytes and White Adipose Tissue. Eur. J. Pharmacol. 2017, 811, 48–59. DOI: 10.1016/j.ejphar.2017.05.051.
  • Moreno-Ulloa, A.; Cid, A.; Rubio-Gayosso, I.; Ceballos, G.; Villarreal, F.; Ramirez-Sanchez, I. Effects of (-)-epicatechin and Derivatives on Nitric Oxide Mediated Induction of Mitochondrial Proteins. Bioorg. Med. Chem. Lett. 2013, 23(15), 4441–4446. DOI: 10.1016/j.bmcl.2013.05.079.
  • Lee, M. S.; Shin, Y.; Jung, S.; Kim, Y. Effects of Epigallocatechin-3-gallate on Thermogenesis and Mitochondrial Biogenesis in Brown Adipose Tissues of Diet-induced Obese Mice. Food. Nutr. Res. 2017, 61, 1325307. DOI: 10.1080/16546628.2017.1325307.
  • Kao, Y. H.; Hiipakka, R. A.; Liao, S. Modulation of Endocrine Systems and Food Intake by Green Tea Epigallocatechin Gallate. Endocrinology. 2000, 141(3), 980–987. DOI: 10.1210/endo.141.3.7368.
  • Li, H.; Kek, H. C.; Lim, J.; Gelling, R. W.; Han, W. Green Tea (-)-epigallocatechin-3-gallate Counteracts Daytime Overeating Induced by High-fat Diet in Mice. Mol. Nutr. Food Res. 2016, 60(12), 2565–2575. DOI: 10.1002/mnfr.201600162.
  • Kirkwood, J. S.; Legette, L. L.; Miranda, C. L.; Jiang, Y.; Stevens, J. F. A Metabolomics-driven Elucidation of the Anti-obesity Mechanisms of Xanthohumol. J. Biol. Chem. 2013, 288(26), 19000–19013. DOI: 10.1074/jbc.M112.445452.
  • Nizamutdinova, I. T.; Jin, Y. C.; Chung, J. I.; Shin, S. C.; Lee, S. J.; Seo, H. G.; Lee, J. H.; Chang, K. C.; Kim, H. J. The Anti-diabetic Effect of Anthocyanins in Streptozotocin-induced Diabetic Rats through Glucose Transporter 4 Regulation and Prevention of Insulin Resistance and Pancreatic Apoptosis. Mol. Nutr. Food Res. 2009, 53, 1419–1429. DOI: 10.1002/mnfr.200800526.
  • Serrano, J.; Casanova-Martí, À.; Blay, M.; Terra, X.; Ardévol, A.; Pinent, M. Defining Conditions for Optimal Inhibition of Food Intake in Rats by a Grape-seed Derived Proanthocyanidin Extract. Nutrients. 2016, 20, 652. DOI: 10.3390/nu8100652.
  • Ibars, M.; Ardid-Ruiz, A.; Suarez, M.; Muguerza, B.; Blade, C.; Aragones, G. Proanthocyanidins Potentiate Hypothalamic leptin/STAT3 Signalling and Pomc Gene Expression in Rats with Diet-induced Obesity. Int. J. Obes. (Lond). 2017, 41(1), 129–136. DOI: 10.1038/ijo.2016.169.
  • Tushar; Basak, S.; Sarma, G. C.; Rangan, L. Ethnomedical Uses of Zingiberaceous Plants of Northeast India. J. Ethnopharmacol. 2010, 132, 286–296. DOI: 10.1016/j.jep.2010.08.032.
  • Abubakar, I. B.; Malami, I.; Yahaya, Y.; Sule, S. M. A Review on the Ethnomedicinal Uses, Phytochemistry and Pharmacology of Alpinia Officinarum Hance. J. Ethnopharmacol. 2018, 224, 45–62. DOI: 10.1016/j.jep.2018.05.027.
  • Xin, M.; Guo, S.; Zhang, W.; Geng, Z.; Liang, J. Chemical Constituents of Supercritical Extracts from Alpinia Officinarum and the Feeding Deterrent Activity against Tribolium Castaneum. Molecules. 2017, 22, E647. DOI: 10.3390/molecules22040647.
  • Mukherjee, M.; Bandyopadhyay, P.; Kundu, D. Exploring the Role of Cranberry Polyphenols in Periodontits: A Brief Review. J. Indian. Soc. Periodontol. 2014, 18, 136–139. DOI: 10.4103/0972-124X.131301.
  • Zhang, T.; Yamashita, Y.; Yasuda, M.; Yamamoto, N.; Ashida, H. Ashitaba (Angelica Keiskei) Extract Prevents Adiposity in High-fat Diet-fed C57BL/6 Mice. Food. Funct. 2015, 6, 135–145. DOI: 10.1039/c4fo00525b.
  • Nagata, J.; Morino, T.; Saito, M. Effects of Dietary Angelica Keiskei on Serum and Liver Lipid Profiles, and Body Fat Accumulations in Rats. J. Nutr. Sci. Vitaminol. 2007, 53, 133–137. DOI: 10.3177/jnsv.53.133.
  • Negro, D.; Montesano, V.; Grieco, S.; Crupi, P.; Sarli, G.; Sonnante, G. Polyphenol Compounds in Artichoke Plant Tissues and Varieties. J. Food. Sci. 2012, 77(2), 244–252. DOI: 10.1111/j.1750-3841.2011.02531.x.
  • Lupattelli, G.; Marchesi, S.; Lombardini, R.; Roscini, A. R.; Trinca, F.; Gemelli, F.; Vaudo, G.; Mannarino, E. Artichoke Juice Improves Endothelial Function in Hyperlipemia. Life Sci. 2004, 76(7), 775–782. DOI: 10.1016/j.lfs.2004.07.018.
  • Roghani-Dehkordi, F.; Kamkhah, A. F. Artichoke Leaf Juice Contains Antihypertensive Effect in Patients with Mild Hypertension. J. Diet. Suppl. 2009, 6(4), 328–341. DOI: 10.3109/19390210903280207.
  • Santos, H. O.; Bueno, A. A.; Mota, J. F. The Effect of Artichoke on Lipid Profile: A Review of Possible Mechanisms of Action. Pharmacol. Res. 2018, 137, 170–178. DOI: 10.1016/j.phrs.2018.10.007.
  • Kapci, B.; Neradová, E.; Cížková, H.; Voldˇrich, M.; Rajchl, A.; Capanoglu, E. Investigating the Antioxidant Potential of Chokeberry (Aronia Melanocarpa) Products. J. Food. Nutr. Res. 2013, 52, 219–229. DOI: 10.3402/fnr.v57i0.22754.
  • Benvenuti, S.; Pellati, F.; Melegari, M.; Bertelli, D. Polyphenols, Anthocyanins, Ascorbic Acid, and Radical Scavenging Activity of Rubus, Ribes, and Aronia. J. Food. Sci. 2004, 69, 164–169. DOI: 10.1111/j.1365-2621.2004.tb13352.x.
  • Rop, O.; Mlcek, J.; Jurikova, T.; Valsikova, M.; Sochor, J.; Reznicek, V.; Kramarova, D. Phenolic Content, Antioxidant Capacity, Radical Oxygen Species Scavenging and Lipid Peroxidation Inhibiting Activities of Extracts of Five Black Chokeberry (Aronia Melanocarpa (Michx.) Elliot) Cultivars. J. Med. Plants. Res. 2010, 22, 2432–2437. DOI: 10.5897/JMPR10.576.
  • Valcheva-Kuzmanova, S. V.; Belcheva, A. Current Knowledge of Aronia Melanocarpa as a Medicinal Plant. Folia. Med. 2006, 48, 11–17.
  • Kokotkiewicz, A.; Jaremicz, Z.; Luczkiewicz, M. Aronia Plants: A Review of Traditional Use, Biological Activities, and Perspectives for Modern Medicine. J. Med. Food. 2010, 13, 255–269. DOI: 10.1089/jmf.2009.0062.
  • Sikora, J.; Broncel, M.; Markowicz, M.; Chałubi´nski, M.; Wojdan, K.; Mikiciuk-Olasik, E. Short-term Supplementation with Aronia Melanocarpa Extract Improves Platelet Aggregation, Clotting, and Fibrinolysis in Patients with Metabolic Syndrome. Eur. J. Nutr. 2012, 51, 549–556. DOI: 10.1007/s00394-011-0238-8.
  • Horszwald, A.; Julien, H.; Andlauer, W. Characterisation of Aronia Powders Obtained by Different Drying Processes. Food. Chem. 2013, 141, 2858–2863. DOI: 10.1016/j.foodchem.2013.05.103.
  • Tao, W.; Deqin, Z.; Yuhong, L.; Hong, L.; Zhanbiao, L.; Chunfeng, Z.; Limin, H.; Xiumei, G. Regulation Effects on Abnormal Glucose and Lipid Metabolism of TZQ-F, a New Kind of Traditional Chinese Medicine. J. Ethnopharmacol. 2010, 128, 575–582. DOI: 10.1016/j.jep.2010.01.044.
  • Chowdhury, S. S.; Islam, M. N.; Jung, H. A.; Choi, J. S. In Vitro Antidiabetic Potential of the Fruits of Crataegus Pinnatifida. Res. Pharm. Sci. 2014, 9, 11–22.
  • Badshah, H.; Ullah, I.; Kim, S. E.; Kim, T.; Lee, H. Y.; Kim, O. M. Anthocyanins Attenuate Body Weight Gain via Modulating Neuropeptide. Neuropeptides. 2013, 47(5), 347–353. DOI: 10.1016/j.npep.2013.06.001.
  • Abdelrazek, H. M. A.; Mahmoud, M. M. A.; Tag, H. M.; Greish, S. M.; Eltamany, D. A.; Soliman, M. T. A. Soy Isoflavones Ameliorate Metabolic and Immunological Alterations of Ovariectomy in Female Wistar Rats: Antioxidant and Estrogen Sparing Potential. Oxid. Med. Cell. Longev. 2019, 10, 5713606. DOI: 10.1155/2019/5713606.
  • Yuan, J. X.;. Research on the Production and Botanical Origin of Bamboo Juice in Eastern China. Zhong. Yao. Tong. Bao. 1983, 8, 10–12.
  • Yang, J. H.; Choi, M. H.; Yang, S. H.; Cho, S. S.; Park, S. J.; Shin, H. J.; Ki, S. H. Potent Anti-inflammatory and Antiadipogenic Properties of Bamboo (Sasa Coreana Nakai) Leaves Extract and Its Major Constituent Flavonoids. J. Agric. Food. Chem. 2017, 65(31), 6665–6673. DOI: 10.1021/acs.jafc.7b02203.
  • McIntosh, C. A.; Owens, D. K. Advances in Flavonoid Glycosyltransferase Research: Integrating Recent Findings with Long-term Citrus Studies. Phytochem. Rev. 2016, 15(6), 1075–1091. DOI: 10.1007/s11101-016-9460-6.
  • Alam, M. A.; Subhan, N.; Rahman, M. M.; Uddin, S. J.; Reza, H. M.; Sarker, S. D. Effect of Citrus Flavonoids, Naringin and Naringenin, on Metabolic Syndrome and Their Mechanisms of Action. Adv. Nutr. 2014, 5(4), 404–417. DOI: 10.3945/an.113.005603.
  • Zeng, S. L.; Li, S. Z.; Lai, C. J.; Wei, M. Y.; Chen, B. Z.; Li, P.; Zheng, G. D.; Liu, E. H. Evaluation of Anti-lipase Activity and Bioactive Flavonoids in the Citri Reticulatae Pericarpium from Different Harvest Time. Phytomedicine. 2018, 43, 103–109. DOI: 10.1016/j.phymed.2018.04.008.
  • Dehghani, S.; Mehri, S.; Hosseinzadeh, H. The Effects of Crataegus Pinnatifida (Chinese Hawthorn) on Metabolic Syndrome: A Review. Iran. J. Basic. Med. Sci. 2019, 22(5), 460–468. DOI: 10.22038/IJBMS.2019.31964.7678.
  • Wu, J.; Peng, W.; Qin, R.; Zhou, H. Crataegus Pinnatifida: Chemical Constituents, Pharmacology, and Potential Applications. Molecules. 2014, 19(2), 1685–1712. DOI: 10.3390/molecules19021685.
  • Li, G. H.; Sun, J. Y.; Zhang, X. L. Experimental Studies on Antihyperlipidemia Effects of Two Compositions from Hawthorn in Mice. Chin. Tradit. Herbal. Drugs. 2002, 33, 50–52.
  • Sahib, N. G.; Hamid, A. A.; Kitts, D.; Purnama, M.; Saari, N.; Abas, F. The Effects of Morinda Citrifolia, Momordica Charantia and Centella Asiatica Extracts on Lipoprotein Lipase and 3T3-L1 Preadipocytes. J. Food Biochem. 2011, 35, 1186–1205. DOI: 10.1111/j.1745-4514.2010.00444.x.
  • Pratap, U. P.; Priyanka, H. P.; Ramanathan, K. R.; Raman, V.; Hima, L.; Thyagarajan, S. Noni (Morinda Citrifolia L.) Fruit Juice Delays Immunosenescence in the Lymphocytes in Lymph Nodes of Old F344 Rats. J. Integr. Med. 2018, 16(3), 199–207. DOI: 10.1016/j.joim.2018.04.002.
  • Pak-Dek, M. S.; Abdul-Hamid, A.; Osman, A.; Soh, C. S. Inhibitory Effect of Morinda Citrifolia L. On Lipoprotein Lipase Activity. J. Food. Sci. 2008, 73, C595–C598. DOI: 10.1111/j.1750-3841.2008.00929.x.
  • Lee, S. G.; Parks, J. S.; Kang, H. W. Quercetin, a Functional Compound of Onion Peel, Remodels White Adipocytes to Brown-like Adipocytes. J. Nutr. Biochem. 2017, 42, 62–71. DOI: 10.1016/j.jnutbio.2016.12.018.
  • Anurakumara, K. K. I. U.; Subasinghe, S. Salacia Reticulata Wight: A Review of Botany, Phyochemistry and Pharmacology. Trop Agric Res Extension. 2010, 13(2), 41–45. DOI: 10.4038/tare.v13i2.3137.
  • Shimada, T.; Nagai, E.; Harasawa, Y. Metabolic Disease Prevention and Suppression of Fat Accumulation by Salacia Reticulata. J. Nat. Med. 2010, 64, 266–274. DOI: 10.1007/s11418-010-0401-1.
  • Dallas, C.; Gerbi, A.; Elbez, Y.; Caillard, P.; Zamaria, N.; Cloarec, M. Clinical Study to Assess the Efficacy and Safety of a Citrus Polyphenolic Extract of Red Orange, Grapefruit, and Orange (Sinetrol-xpur) on Weight Management and Metabolic Parameters in Healthy Overweight Individuals. Phytother. Res. 2014, 28(2), 212–218. DOI: 10.1002/ptr.4981.
  • Rangel-Huerta, O. D.; Aguilera, C. M.; Martin, M. V.; Soto, M. J.; Rico, M. C.; Vallejo, F.; Tomas-Barberan, F.; Perez-de-la-cruz, A. J.; Gil, A.; Mesa, M. D. Normal or High Polyphenol Concentration in Orange Juice Affects Antioxidant Activity, Blood Pressure, and Body Weight in Obese or Overweight Adults. J. Nutr. 2015, 145(8), 1808–1816. DOI: 10.3945/jn.115.213660.
  • Dow, C. A.; Going, S. B.; Chow, H. H.; Patil, B. S.; Thomson, C. A. The Effects of Daily Consumption of Grapefruit on Body Weight, Lipids, and Blood Pressure in Healthy, Overweight Adults. Metabolism. 2012, 61(7), 1026–1035. DOI: 10.1016/j.metabol.2011.12.004.
  • Silver, H. J.; Dietrich, M. S.; Niswender, K. D. Effects of Grapefruit, Grapefruit Juice and Water Preloads on Energy Balance, Weight Loss, Body Composition, and Cardiometabolic Risk in Free-living Obese Adults. Nutr. Metab. (Lond). 2011, 8, 8. DOI: 10.1186/1743-7075-8-8.
  • Johnson, S. A.; Figueroa, A.; Navaei, N.; Wong, A.; Kalfon, R.; Ormsbee, L. T.; Feresin, R. G.; Elam, M. L.; Hooshmand, S.; Payton, M. E.; et al. Daily Blueberry Consumption Improves Blood Pressure and Arterial Stiffness in Postmenopausal Women with Pre- and Stage 1-hypertension: A Randomized, Double-blind, Placebo-controlled Clinical Trial. J. Acad. Nutr. Diet. 2015, 115(3), 369–377. DOI: 10.1016/j.jand.2014.11.001.
  • Kerimi, A.; Nyambe-Silavwe, H.; Gauer, J. S.; Tomás-Barberán, F. A.; Williamson, G. Pomegranate Juice, but Not an Extract, Confers a Lower Glycemic Response on a High-glycemic Index Food: Randomized, Crossover, Controlled Trials in Healthy Subjects. Am. J. Clin. Nutr. 2017, 106(6), 1384–1393. DOI: 10.3945/ajcn.117.161968.
  • Aaby, K.; Ekeberg, D.; Skrede, G. Characterization of Phenolic Compounds in Strawberry (Fragaria Ananassa) Fruits by Different Hplc Detectors and Contribution of Individual Compounds to Total Antioxidant Capacity. J. Agric. Food. Chem. 2007, 55, 4395–4406. DOI: 10.1021/jf0702592.
  • Moazen, S.; Amani, R.; Homayouni, R. A.; Shahbazian, H.; Ahmadi, K.; Taha, J. M. Effects of Freeze-dried Strawberry Supplementation on Metabolic Biomarkers of Atherosclerosis in Subjects with Type 2 Diabetes: A Randomized Double-blind Controlled Trial. Ann. Nutr. Metab. 2013, 63(3), 256–264. DOI: 10.1159/000356053.
  • Basu, A.; Fu, D. X.; Wilkinson, M.; Simmons, B.; Wu, M.; Betts, N. M.; Du, M.; Lyons, T. J. Strawberries Decrease Atherosclerotic Markers in Subjects with Metabolic Syndrome. Nutr. Res. 2010, 30, 462–469. DOI: 10.1016/j.nutres.2010.06.016.
  • Vendrame, S.; Guglielmetti, S.; Riso, P.; Arioli, S.; Klimis-Zacas, D.; Porrini, M. Six-week Consumption of a Wild Blueberry Powder Drink Increases Bifidobacteria in the Human Gut. J. Agric. Food. Chem. 2011, 59(24), 12815–12820. DOI: 10.1021/jf2028686.
  • Basu, A.; Du, M.; Leyva, M. J.; Sanchez, K.; Betts, N. M.; Wu, M.; Aston, C. E.; Lyons, T. J. Blueberries Decrease Cardiovascular Risk Factors in Obese Men and Women with Metabolic Syndrome. J. Nutr. 2010, 140, 1582–1587. DOI: 10.3945/jn.110.124701.
  • Stull, A. J.; Cash, K. C.; Johnson, W. D.; Champagne, C. M.; Cefalu, W. T. Bioactives in Blueberries Improve Insulin Sensitivity in Obese, Insulin-resistant Men and Women. J. Nutr. 2010, 140, 1764–1768. DOI: 10.3945/jn.110.125336.
  • Nair, A. R.; Mariappan, N.; Stull, A. J.; Francis, J. Blueberry Supplementation Attenuates Oxidative Stress within Monocytes and Modulates Immune Cell Levels in Adults with Metabolic Syndrome: A Randomized, Double-blind, Placebo-controlled Trial. Food. Funct. 2017, 8(11), 4118–4128. DOI: 10.1039/c7fo00815e.
  • Lee, I. T.; Chan, Y. C.; Lin, C. W.; Lee, W. J.; Sheu, W. H. Effect of Cranberry Extracts on Lipid Profiles in Subjects with Type 2 Diabetes. Diabet. Med. 2008, 25(12), 1473–1477. DOI: 10.1111/j.1464-5491.2008.02588.x.
  • Wilson, T.; Luebke, J. L.; Morcomb, E. F.; Carrell, E. J.; Leveranz, M. C.; Kobs, L.; Schmidt, T. P.; Limburg, P. J.; Vorsa, N.; Singh, A. P. Glycemic Responses to Sweetened Dried and Raw Cranberries in Humans with Type 2 Diabetes. J. Food. Sci. 2010, 75, 218–223. DOI: 10.1111/j.1750-3841.2010.01800.x.
  • Basu, A.; Betts, N. M.; Ortiz, J.; Simmons, B.; Wu, M.; Lyons, T. J. Low-energy Cranberry Juice Decreases Lipid Oxidation and Increases Plasma Antioxidant Capacity Inwomen with Metabolic Syndrome. Nutr. Res. 2011, 31, 190–196. DOI: 10.1016/j.nutres.2011.02.003.
  • Basu, A.; Sanchez, K.; Leyva, M. J.; Wu, M.; Betts, N. M.; Aston, C. E.; Lyons, T. J. Green Tea Supplementation Affects Body Weight, Lipids, and Lipid Peroxidation in Obese Subjects with Metabolic Syndrome. J. Am. Coll. Nutr. 2010, 29, 31–40.
  • Nagao, T.; Komine, Y.; Soga, S.; Meguro, S.; Hase, T.; Tanaka, Y.; Tokimitsu, I. Ingestion of a Tea Rich in Catechins Leads to a Reduction in Body Fat and Malondialdehyde-modified LDL in Men. Am. J. Clin. Nutr. 2005, 81(1), 122–129. DOI: 10.1093/ajcn/81.1.122.
  • Brown, A. L.; Lane, J.; Coverly, J.; Stocks, J.; Jackson, S.; Stephen, A.; Bluck, L.; Coward, A.; Hemdrickx, H. Effects of Dietary Supplementation with the Green Tea Polyphenol Epigallocatechin-3-gallate on Insulin Resistance and Associated Metabolic Risk Factors: Randomized Controlled Trial. Br. J. Nutr. 2009, 101, 886–894. DOI: 10.1017/s0007114508047727.
  • Huang, L. H.; Liu, C. Y.; Wang, L. Y.; Huang, C. J.; Hsu, C. H. Effects of Green Tea Extract on Overweight and Obese Women with High Levels of Low Density-lipoprotein-cholesterol (LDL-C): A Randomised, Double-blind, and Cross-over Placebo-controlled Clinical Trial. BMC. Complement. Altern. Med. 2018, 18(1), 294. DOI: 10.1186/s12906-018-2355-x.
  • Sapper, T. N.; Mah, E.; Ahn-Jarvis, J.; McDonald, J. D.; Chitchumroonchokchai, C.; Reverri, E. J.; Vodovotz, Y.; Bruno, R. S. A Green Tea-containing Starch Confection Increases Plasma Catechins without Protecting against Postprandial Impairments in Vascular Function in Normoglycemic Adults. Food, Funct. 2016, 7(9), 3843–3853. DOI: 10.1039/c6fo00639f.
  • McMorrow, A. M.; Connaughton, R. M.; Magalhães, T. R.; McGillicuddy, F. C.; Hughes, M. F.; Cheishvili, D.; Morine, M. J.; Ennis, S.; Healy, M. L.; Roche, E. F.; et al. Personalized Cardio-metabolic Responses to an Anti-inflammatory Nutrition Intervention in Obese Adolescents: A Randomized Controlled Crossover Trial. Mol. Nutr. Food Res. 2018, 62(10), 1701008. DOI: 10.1002/mnfr.201701008.
  • Balsan, G.; Pellanda, L. C.; Sausen, G.; Galarraga, T.; Zaffari, D.; Pontin, B.; Portal, V. L. Effect of Yerba Mate and Green Tea on Paraoxonase and Leptin Levels in Patients Affected by Overweight or Obesity and Dyslipidemia: A Randomized Clinical Trial. Nutr. J. 2019, 18(1), 5. DOI: 10.1186/s12937-018-0426-y.
  • Córdova, M. P.; Avello, L. M.; Morales, L. F.; Fernández, R. P.; Villa, Z. L.; Pastene, N. E. Effects of Bauhinia Forficata Link Tea on Lipid Profile in Diabetic Patients. J. Med. Food. 2019, 22(3), 321–323. DOI: 10.1089/jmf.2018.0111.
  • Greenberg, J. A.; O’Donnell, R.; Shurpin, M.; Kordunova, D. Epicatechin, Procyanidins, Cocoa, and Appetite: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2016, 104(3), 613–619. DOI: 10.3945/ajcn.115.129783.
  • Tominaga, Y.; Nakagawa, K.; Mae, T.; Kitano, M.; Yokota, S.; Arai, T.; Ikematsu, H.; Inoue, S. Licorice Flavonoid Oil Reduces Total Body Fat and Visceral Fat in Overweight Subjects: A Randomized, Double-blind, Placebo-controlled Study. Obes. Res. Clin. Pract. 2009, 3(3), I–IV. DOI: 10.1016/j.orcp.2009.04.005.
  • Hollis, J. H.; Houchins, J. A.; Blumberg, J. B.; Mattes, R. D. Effects of Concord Grape Juice on Appetite, Diet, Body Weight, Lipid Profile, and Antioxidant Status of Adults. J. Am. Coll. Nutr. 2009, 28, 574–582. DOI: 10.1080/07315724.2009.10719789.
  • Cases, J.; Romain, C.; Dallas, C.; Gerbi, A.; Rouanet, J. M. A 12-week Randomized Double-blind Parallel Pilot Trial of Sinetrol XPur on Body Weight, Abdominal Fat, Waist Circumference, A 12-week Randomized Double-blind Parallel Pilot Trial of Sinetrol XPur on Body Weight, Abdominal Fat, Waist Circumference, and Muscle Metabolism in Overweight Men. Int. J. Food. Sci. Nutr. 2015, 66(4), 471–477. DOI: 10.3109/09637486.2015.1042847.
  • Grosso, G.; Galvano, F.; Mistretta, A.; Marventano, S.; Nolfo, F.; Calabrese, G.; Buscemi, S.; Drago, F.; Veronesi, U.; Scuderi, A. Red Orange: Experimental Models and Epidemiological Evidence of Its Benefits on Human Health. Oxid. Med. Cell. Longev. 2013, 1–11. DOI: 10.1155/2013/157240.
  • Toth, P. P.; Patti, A. M.; Nikolic, D.; Giglio, R. V.; Castellino, G.; Biancucci, T.; Geraci, F.; David, S.; Montalto, G.; Rizvi, A.; et al. Bergamot Reduces Plasma Lipids, Atherogenic Small Dense LDL, and Subclinical Atherosclerosis in Subjects with Moderate Hypercholesterolemia: A 6 Months Prospective Study. Front. Pharmacol. 2016, 6, 299. DOI: 10.3389/fphar.2015.00299.
  • Gavrilova, V.; Kajdzanoska, M.; Gjamovski, V.; Stefova, M. Separation, Characterization and Quantification of Phenolic Compounds in Blueberries and Red and Black Currants by HPLC-DAD-ESI-MSn. J. Agric. Food. Chem. 2011, 59, 4009–4018. DOI: 10.1021/jf104565y.
  • Nagao, T.; Hase, T.; Tokimitsu, I. A Green Tea Extract High in Catechins Reduces Body Fat and Cardiovascular Risks in Humans. Obesity. 2007, 15, 1473–1483. DOI: 10.1080/07315724.2010.10719814.
  • Bogdanski, P.; Suliburska, J.; Szulinska, M.; Stepien, M.; Pupek-Musialik, D.; Jablecka, A. Green Tea Extract Reduces Blood Pressure, Inflammatory Biomarkers, and Oxidative Stress and Improves Parameters Associated with Insulin Resistance in Obese, Hypertensive Patients. Nutr. Res. 2012, 32, 421–427. DOI: 10.1016/j.nutres.2012.05.007.
  • Diepvens, K.; Kovacs, E. M.; Nijs, I. M.; Vogels, N.; Westerterp-Plantenga, M. S. Effect of Green Tea on Resting Energy Expenditure and Substrate Oxidation during Weight Loss in Overweight Females. Br. J. Nutr. 2005, 94, 1026–1034. DOI: 10.1079/bjn20051580.
  • Hill, A. M.; Coates, A. M.; Buckley, J. D.; Ross, R.; Thielecke, F.; Howe, P. R. Can EGCG Reduce Abdominal Fat in Obese Subjects? J. Am. Coll. Nutr. 2007, 26, 396S–402S. DOI: 10.1080/07315724.2007.10719628.
  • Hsu, C. H.; Tsai, T. H.; Kao, Y. H.; Hwang, K. C.; Tseng, T. Y.; Chou, P. Effect of Green Tea Extract on Obese Women: A Randomized, Double-blind, Placebo-controlled Clinical Trial. Clin. Nutr. 2008, 27, 363–370. DOI: 10.1016/j.clnu.2008.03.007.
  • Murota, K.; Nakamura, Y.; Uehara, M. Flavonoid Metabolism: The Interaction of Metabolites and Gut Microbiota. Biosci Biotechnol Biochem. 2018, 82(4), 600–610. DOI: 10.1080/09168451.2018.1444467.
  • Thilakarathna, S. H.; Rupasinghe, H. P. Flavonoid Bioavailability and Attempts for Bioavailability Enhancement. Nutrients. 2013, 5(9), 3367–3387. DOI: 10.3390/nu5093367.
  • Dinda, B.; Dinda, M.; Roy, A.; Dinda, S. Dietary Plant Flavonoids in Prevention of Obesity and Diabetes. Adv. Protein. Chem. Struct. Biol. 2020, 120, 159–235. DOI: 10.1016/bs.apcsb.2019.08.006.
  • Ma, T.; Dai, Y. Q.; Li, N.; Huo, Q.; Li, H. M.; Zhang, Y. X.; Piao, Z. H.; Wu, C. Z. Enzymatic Biosynthesis of Novel Neobavaisoflavone Glucosides via Bacillus UDP-glycosyltransferase. Chin. J. Nat. Med. 2017, 15(4), 281–287. DOI: 10.1016/S1875-5364(17)30045-6.
  • Sordon, S.; Popłoński, J.; Huszcza, E. Microbial Glycosylation of Flavonoids. Pol. J. Microbiol. 2016, 65(2), 137–151. DOI: 10.5604/17331331.1204473.
  • Bumke-Vogt, C.; Osterhoff, M. A.; Borchert, A.; Guzman-Perez, V.; Sarem, Z.; Birkenfeld, A. L.; Bahr, V.; Pfeiffer, A. F. The Flavones Apigenin and Luteolin Induce FOXO1 Translocation but Inhibit Gluconeogenic and Lipogenic Gene Expression in Human Cells. PLoS One. 2014, 9(8), 104321. DOI: 10.1371/journal.pone.0104321.
  • Tong, F.; Liu, S.; Yan, B.; Li, X.; Ruan, S.; Yang, S. Quercetin Nanoparticle Complex Attenuated Diabetic Nephropathy via Regulating the Expression Level of ICAM-1 on Endothelium. Int J Nanomed. 2017, 12, 7799–7813. DOI: 10.2147/IJN.S146978.
  • Hussain, T.; Tan, B.; Murtaza, G.; Liu, G.; Rahu, N.; Saleem, K. M.; Hussain, K. D.; Adebowale, T. O.; Usman Mazhar, M.; Rehman, Z. U.; et al. Flavonoids and Type 2 Diabetes: Evidence of Efficacy in Clinical and Animal Studies and Delivery Strategies to Enhance Their Therapeutic Efficacy. Pharmacol Res. 2020, 152, 104629. DOI: 10.1016/j.phrs.2020.104629.
  • Musika, J.; Chudapongse, N. Development of Lipid-based Nanocarriers for Increasing Gastrointestinal Absorption of Lupinifolin. Planta Med. 2020. DOI: 10.1055/a-1095-1129.
  • Chauhan, A. S.;. Dendrimers for Drug Delivery. Molecules. 2018, 23, 938–946. DOI: 10.3390/molecules23040938.
  • Gu, L.; Wu, Z.; Qi, X.; He, H.; Ma, X.; Chou, X.; Wen, X.; Zhang, M.; Jiao, F. Polyamidomine Dendrimers: An Excellent Drug Carrier for Improving the Solubility and Bioavailability of Puerarin. Pharm Dev Technol. 2013, 18, 1051–1057. DOI: 10.3109/10837450.2011.653822.
  • Hossen, M. N.; Kajimoto, K.; Akita, H.; Hyodo, M.; Harashima, H. Vasculartargeted Nanotherapy for Obesity: Unexpected Passive Targeting Mechanism to Obese Fat for the Enhancement of Active Drug Delivery. J. Control. Release. 2012, 163(2), 101–110. DOI: 10.1016/j.jconrel.2012.09.002.
  • Xue, Y.; Xu, X.; Zhang, X. Q.; Farokhzad, O. C.; Langer, R. Preventing Diet-induced Obesity in Mice by Adipose Tissue Transformation and Angiogenesis Using Targeted Nanoparticles. Proc. Natl. Acad. Sci. U. S.A. 2016, 113(20), 5552–5557. DOI: 10.1073/pnas.1603840113.
  • Sibuyi, N. R. S.; Moabelo, K. L.; Meyer, M.; Onani, M. O.; Dube, A.; Madiehe, A. M. Nanotechnology Advances Towards Development of Targeted-treatment for Obesity. J. Nanobiotechnology. 2019, 17(1), 122. DOI: 10.1186/s12951-019-0554-3.
  • Payab, M.; Goodarzi, P.; Foroughi, H. N.; Hadavandkhani, M.; Zarei, Z.; Falahzadeh, K.; Larijani, B.; Rahim, F.; Arjmand, B. Stem Cell and Obesity: Current State and Future Perspective. Adv Exp Med Biol. 2018, 1089, 1–22. DOI: 10.1007/5584_2018_227.
  • Yue, J. P.; Gou, X. W.; Li, Y. Y.; Wicksteed, B.; Wu, X. Y. Engineered Epidermal Progenitor Cells Can Correct Diet-induced Obesity and Diabetes. Cell. Stem. Cell. 2017, 21(2), 256–263. DOI: 10.1016/j.stem.2017.06.016.
  • Yin, J. L.; Yang, L. F.; Mou, L. S.; Dong, K. L.; Jiang, J.; Xue, S.; Xu, Y.; Wang, X. Y.; Lu, Y.; Ye, H. F. A Green Tea-triggered Genetic Control System for Treating Diabetes in Mice and Monkeys. Sci. Transl. Med. 2019, 11(515), eaav8826. DOI: 10.1126/scitranslmed.aav8826.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.