684
Views
4
CrossRef citations to date
0
Altmetric
Review

Millets as an alternative diet for gluten-sensitive individuals: A critical review on nutritional components, sensitivities and popularity of wheat and millets among consumers

ORCID Icon, &

References

  • Fathima, S. J.; Nallamuthu, I.; Khanum, F. Vitamins and Minerals Fortification Using Nanotechnology: Bioavailability and Recommended Daily Allowances. In Alexandru Mihai Grumezescu (eds)., Nutrient Delivery; Academic press, London (UK): 2017; pp. 457–496.
  • Sicherer, S. H.; Sampson, H. A. Food Allergy: Epidemiology, Pathogenesis, Diagnosis, and Treatment. J. Allergy Clin. Immunol. 2014, 133(291–307), e5. DOI: 10.1016/j.jaci.2013.11.020.
  • Yano, H. Recent Practical Researches in the Development of Gluten-free Breads. NPJ Sci. Food. 2019, 3, 1–8. DOI: 10.1038/s41538-019-0040-1.
  • Wieser, H. Chemistry of Gluten Proteins. Food Microbiol. 2007, 24, 115–119. DOI: 10.1016/j.fm.2006.07.004.
  • Biesiekierski, J. R. What Is Gluten? J. Gastroenterol. Hepatol. 2017, 32, 78–81. DOI: 10.1111/jgh.13703.
  • Jones, V. A.; Shorthouse, M.; McLaughlan, P.; Workman, E.; Hunter, J. Food Intolerance: A Major Factor in the Pathogenesis of Irritable Bowel Syndrome. Lancet. 1982, 320, 1115–1117. DOI: 10.1016/S0140-6736(82)92782-9.
  • Guarda, A.; Rosell, C.; Benedito, C.; Galotto, M. Different Hydrocolloids as Bread Improvers and Antistaling Agents. Food Hydrocolloids. 2004, 18, 241–247. DOI: 10.1016/S0268-005X(03)00080-8.
  • Ehren, J.; Govindarajan, S.; Morón, B.; Minshull, J.; Khosla, C. Protein Engineering of Improved Prolyl Endopeptidases for Celiac Sprue Therapy. Protein Eng., Des. Sel. 2008, 21, 699–707. DOI: 10.1093/protein/gzn050.
  • Sarita, E. S.; Singh, E. Potential of Millets: Nutrients Composition and Health Benefits. J. Sci. Innovative Res. 2016, 5, 46–50.
  • Miller, N. F.; Spengler, R. N.; Frachetti, M. Millet Cultivation across Eurasia: Origins, Spread, and the Influence of Seasonal Climate. Holocene. 2016, 26, 1566–1575. DOI: 10.1177/0959683616641742.
  • Shewry, P. R.; Lookhart, G. L. Wheat Gluten Protein Analysis; American Association of Cereal Chemists, St Paul, USA, 2003.
  • Kucek, L. K.; Veenstra, L. D.; Amnuaycheewa, P.; Sorrells, M. E. A Grounded Guide to Gluten: How Modern Genotypes and Processing Impact Wheat Sensitivity. Compr. Rev. Food Sci. Food Saf. 2015, 14, 285–302. DOI: 10.1111/1541-4337.12129.
  • Shewry, P. R. What Is Gluten-why Is It Special? Front. Nutrit. 2019, 6, 101. DOI: 10.3389/fnut.2019.00101.
  • Abdel-Aal, E.-S.; Salama, D.; Hucl, P.; Sosulski, F.; Cao, W. Electrophoretic Characterization of Spring Spelt Wheat Gliadins. J. Agric. Food Chem. 1996, 44, 2117–2123. DOI: 10.1021/jf950752q.
  • MacRitchie, F. Physicochemical Properties of Wheat Proteins in Relation to Functionality. In John E. Kinsella. (eds)., Advances in Food and Nutrition Research, California, Elsevier: Academic press, 1992; Vol. 36, pp. 1–87.
  • Wang, J.-S.; Zhao, M.-M.; Zhao, Q.-Z.; Jiang, Y.-M. Antioxidant Properties of Papain Hydrolysates of Wheat Gluten in Different Oxidation Systems. Food Chem. 2007, 101, 1658–1663. DOI: 10.1016/j.foodchem.2006.04.024.
  • Žilić, S.; Akıllıoğlu, G.; Serpen, A.; Barać, M.; Gökmen, V. Effects of Isolation, Enzymatic Hydrolysis, Heating, Hydratation and Maillard Reaction on the Antioxidant Capacity of Cereal and Legume Proteins. Food Res. Int. 2012, 49, 1–6. DOI: 10.1016/j.foodres.2012.06.031.
  • Day, L.; Augustin, M.; Batey, I.; Wrigley, C. Wheat-gluten Uses and Industry Needs. Trends Food Sci. Technol. 2006, 17, 82–90. DOI: 10.1016/j.tifs.2005.10.003.
  • Cauvain, S. The Use of Redox Agents. In Bread Making: Improving Quality; Wieser, H., Ed.; Woodhead: Cambridge, UK, 2003; pp. 424–443.
  • Zaidel, D. A.; Chin, N.; Rahman, R. A.; Karim, R. Rheological Characterisation of Gluten from Extensibility Measurement. J. Food Eng. 2008, 86, 549–556. DOI: 10.1016/j.jfoodeng.2007.11.005.
  • Piber, M.; Koehler, P. Identification of Dehydro-ferulic Acid-tyrosine in Rye and Wheat: Evidence for a Covalent Cross-link between Arabinoxylans and Proteins. J. Agric. Food Chem. 2005, 53, 5276–5284. DOI: 10.1021/jf050395b.
  • Tilley, K. A.; Benjamin, R. E.; Bagorogoza, K. E.; Okot-Kotber, B. M.; Prakash, O.; Kwen, H. Tyrosine Cross-links: Molecular Basis of Gluten Structure and Function. J. Agric. Food Chem. 2001, 49, 2627–2632. DOI: 10.1021/jf010113h.
  • Kasarda, D. D.; Autran, J.-C.; Lew, E. J.-L.; Nimmo, C. C.; Shewry, P. R. N-TERMINAL AMINO ACID SEQUENCES OF w-GLIADINS AND CJ-SECALINS. Biochim. Biophys. Acta. 1983, 747, 138–150. DOI: 10.1016/0167-4838(83)90132-2.
  • Žilić, S.; Barać, M.; Pešić, M.; Dodig, D.; Ignjatović-Micić, D. Characterization of Proteins from Grain of Different Bread and Durum Wheat Genotypes. Int. J. Mol. Sci. 2011, 12(9), 5878–5894. DOI: 10.3390/ijms12095878.
  • Žilić, S. Wheat Gluten: Composition and Health Effects. In Dane B. Walter (eds)., Gluten. Nova Science publisher, 2013, 71–86.
  • Tatham, A. S.; Shewry, P. R. The Conformation of Wheat Gluten Proteins. The Secondary Structures and Thermal Stabilities of α-, β-, γ-and ω-gliadins. J. Cereal Sci. 1985, 3, 103–113. DOI: 10.1016/S0733-5210(85)80021-7.
  • Sapirstein, H. D.; David, P.; Preston, K. R.; Dexter, J. Durum Wheat Breadmaking Quality: Effects of Gluten Strength, Protein Composition, Semolina Particle Size and Fermentation Time. J. Cereal Sci. 2007, 45, 150–161. DOI: 10.1016/j.jcs.2006.08.006.
  • Shewry, P. R.; Popineau, Y.; Lafiandra, D.; Belton, P. Wheat Glutenin Subunits and Dough Elasticity: Findings of the EUROWHEAT Project. Trends Food Sci. Technol. 2000, 11, 433–441. DOI: 10.1016/S0924-2244(01)00035-8.
  • Goesaert, H.; Brijs, K.; Veraverbeke, W.; Courtin, C.; Gebruers, K.; Delcour, J. Wheat Flour Constituents: How They Impact Bread Quality, and How to Impact Their Functionality. Trends Food Sci. Technol. 2005, 16, 12–30. DOI: 10.1016/j.tifs.2004.02.011.
  • Payne, P. Endosperm Proteins. In Anne D. BlonsteinPatrick J. King, (eds)., Plant Gene Research: A Genetic Approach to Plant Biochemistry. Blonstein, AD and King. P. J. Springer-Verlag: New York, 1986.
  • Müller, S.; Vensel, W.; Kasarda, D.; Köhler, P.; Wieser, H. Disulphide Bonds of Adjacent Cysteine Residues in Low Molecular Weight Subunits of Wheat Glutenin. J. Cereal Sci. 1998, 27, 109–116. DOI: 10.1006/jcrs.1997.0158.
  • Gianibelli, M. C.; Larroque, O. R.; MacRitchie, F.; Wrigley, C. W. Biochemical, Genetic, and Molecular Characterization of Wheat Glutenin and Its Component Subunits. Cereal Chem. 2001, 78, 635–646. DOI: 10.1094/CCHEM.2001.78.6.635.
  • Shewry, P.; Lafiandra, D.; Tamas, L.; Bekes, F. Genetic Manipulation of Gluten Structure and Function. Gliadin and glutenin: the unique balance of wheat quality, 363-385. American Association of Cereal Chemists (AACC), St Paul, MN. 2006.
  • Anjum, F. M.; Khan, M. R.; Din, A.; Saeed, M.; Pasha, I.; Arshad, M. U. Wheat Gluten: High Molecular Weight Glutenin Subunits—structure, Genetics, and Relation to Dough Elasticity. J. Food Sci. 2007, 72, R56–R63. DOI: 10.1111/j.1750-3841.2007.00292.x.
  • Wrigley, C. W. Giant Proteins with Flour Power. Nature. 1996, 381, 738–739. DOI: 10.1038/381738a0.
  • Kasarda, D. Glutenin Polymers: The in Vitro to in Vivo Transition. Cereal Foods World. 1999, 44, 566–571.
  • Cornish, G.; Békés, F.; Eagles, H.; Payne, P. Prediction of Dough Properties for Bread Wheats; Gliadin and glutenin: the unique balance of wheat quality, 243-280. , 2006.
  • Parzanese, I.; Qehajaj, D.; Patrinicola, F.; Aralica, M.; Chiriva-Internati, M.; Stifter, S.; Elli, L.; Grizzi, F. Celiac Disease: From Pathophysiology to Treatment. World J. Gastrointestinal Pathophysiol. 2017, 8, 27. DOI: 10.4291/wjgp.v8.i2.27.
  • Losowsky, M. S. A History of Coeliac Disease. Dig Dis. 2008, 26, 112–120. DOI: 10.1159/000116768.
  • Elli, L.; Branchi, F.; Tomba, C.; Villalta, D.; Norsa, L.; Ferretti, F.; Roncoroni, L.; Bardella, M. T. Diagnosis of Gluten Related Disorders: Celiac Disease, Wheat Allergy and Non-celiac Gluten Sensitivity. World J. Gastroenterol. 2015, 21, 7110. DOI: 10.3748/wjg.v21.i23.7110.
  • Biesiekierski, J. R.; Peters, S. L.; Newnham, E. D.; Rosella, O.; Muir, J. G.; Gibson, P. R. No Effects of Gluten in Patients with Self-reported Non-celiac Gluten Sensitivity after Dietary Reduction of Fermentable, Poorly Absorbed, Short-chain Carbohydrates. Gastroenterology. 2013, 145(320–28), e3. DOI: 10.1053/j.gastro.2013.04.051.
  • Vriezinga, S. L.; Schweizer, J. J.; Koning, F.; Mearin, M. L. Coeliac Disease and Gluten-related Disorders in Childhood. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 527. DOI: 10.1038/nrgastro.2015.98.
  • Green, P. H.; Lebwohl, B.; Greywoode, R. Celiac Disease. J. Allergy Clin. Immunol. 2015, 135, 1099–1106. DOI: 10.1016/j.jaci.2015.01.044.
  • Jeon, M. K.; Klaus, C.; Kaemmerer, E.; Gassler, N. Intestinal Barrier: Molecular Pathways and Modifiers. World J. Gastrointestinal Pathophysiol. 2013, 4, 94. DOI: 10.4291/wjgp.v4.i4.94.
  • Assimakopoulos, S. F.; Papageorgiou, I.; Charonis, A. Enterocytes’ Tight Junctions: From Molecules to Diseases. World J. Gastrointestinal Pathophysiol. 2011, 2, 123. DOI: 10.4291/wjgp.v2.i6.123.
  • Gayathri, D.; Rashmi, B. Development of Celiac Disease; Pathogenesis and Strategies to Control: A Molecular Approach. J. Nutr. Food Sci. 2014, 4, 1. DOI: 10.4172/2155-9600.1000310.
  • Cabanillas, B. Gluten-related Disorders: Celiac Disease, Wheat Allergy, and Nonceliac Gluten Sensitivity. Crit. Rev. Food Sci. Nutr. 2019, 60(15), 2606-2621
  • Visser, J.; Rozing, J.; Sapone, A.; Lammers, K.; Fasano, A. Tight Junctions, Intestinal Permeability, and Autoimmunity Celiac Disease and Type 1 Diabetes Paradigms. Ann. N Y Acad. Sci. 2009, 1165, 195. DOI: 10.1111/j.1749-6632.2009.04037.x.
  • van de Wal, Y.; Kooy, Y.; van Veelen, P.; Peña, S.; Mearin, L.; Papadopoulos, G.; Koning, F. Cutting Edge: Selective Deamidation by Tissue Transglutaminase Strongly Enhances Gliadin-specific T Cell Reactivity. J. Immunol. 1998, 161, 1585–1588.
  • Lorand, L.; Graham, R. M. Transglutaminases: Crosslinking Enzymes with Pleiotropic Functions. Nat. Rev. Mol. Cell Biol. 2003, 4, 140–156. DOI: 10.1038/nrm1014.
  • Tye-Din, J. A.; Stewart, J. A.; Dromey, J. A.; Beissbarth, T.; van Heel, D. A.; Tatham, A.; Henderson, K.; Mannering, S. I.; Gianfrani, C.; Jewell, D. P. Comprehensive, Quantitative Mapping of T Cell Epitopes in Gluten in Celiac Disease. Sci Transl Med. 2010, 2, 41ra51. DOI: 10.1126/scitranslmed.3001012.
  • Camarca, A.; Anderson, R. P.; Mamone, G.; Fierro, O.; Facchiano, A.; Costantini, S.; Zanzi, D.; Sidney, J.; Auricchio, S.; Sette, A. Intestinal T Cell Responses to Gluten Peptides are Largely Heterogeneous: Implications for a Peptide-based Therapy in Celiac Disease. J. Immunol. 2009, 182, 4158–4166. DOI: 10.4049/jimmunol.0803181.
  • Vader, W.; Kooy, Y.; van Veelen, P.; de Ru, A.; Harris, D.; Benckhuijsen, W.; Peña, S.; Mearin, L.; Drijfhout, J. W.; Koning, F. The Gluten Response in Children with Celiac Disease Is Directed toward Multiple Gliadin and Glutenin Peptides. Gastroenterology. 2002, 122, 1729–1737. DOI: 10.1053/gast.2002.33606.
  • Shan, L.; Molberg, Ø.; Parrot, I.; Hausch, F.; Filiz, F.; Gray, G. M.; Sollid, L. M.; Khosla, C. Structural Basis for Gluten Intolerance in Celiac Sprue. Science. 2002, 297, 2275–2279. DOI: 10.1126/science.1074129.
  • Molberg, Ø.; Mcadam, S. N.; Körner, R.; Quarsten, H.; Kristiansen, C.; Madsen, L.; Fugger, L.; Scott, H.; Norén, O.; Roepstorff, P. Tissue Transglutaminase Selectively Modifies Gliadin Peptides that are Recognized by Gut-derived T Cells in Celiac Disease. Nat. Med. 1998, 4, pp. 713–717. DOI: 10.1038/nm0698-713.
  • van de Wal, Y.; Kooy, Y. M.; van Veelen, P.; Vader, W.; August, S. A.; Drijfhout, J. W.; Peña, S. A.; Koning, F. Glutenin Is Involved in the Gluten‐driven Mucosal T Cell Response. Eur. J. Immunol. 1999, 29, 3133–3139. DOI: 10.1002/(SICI)1521-4141(199910)29:10<3133::AID-IMMU3133>3.0.CO;2-G.
  • Khwaja, G. A.; Bohra, V.; Duggal, A.; Ghuge, V. V.; Chaudhary, N. Gluten Sensitivity–A Potentially Reversible Cause of Progressive Cerebellar Ataxia and Myoclonus-A Case Report. J. Clin. Diagn. Res. 2015, 9, OD07. DOI: 10.7860/JCDR/2015/13299.6743.
  • Mearns, E. S.; Taylor, A.; Craig, T.; Kelly, J.; Puglielli, S.; Cichewicz, A. B.; Leffler, D. A.; Sanders, D. S.; Lebwohl, B.; Hadjivassiliou, M. Neurological Manifestations of Neuropathy and Ataxia in Celiac Disease: A Systematic Review. Nutrients. 2019, 11, 380. DOI: 10.3390/nu11020380.
  • Briani, C.; Zara, G.; Alaedini, A.; Grassivaro, F.; Ruggero, S.; Toffanin, E.; Albergoni, M. P.; Luca, M.; Giometto, B.; Ermani, M. Neurological Complications of Celiac Disease and Autoimmune Mechanisms: A Prospective Study. J. Neuroimmunol. 2008, 195, 171–175. DOI: 10.1016/j.jneuroim.2008.01.008.
  • Hadjivassiliou, M.; Sanders, D. S.; Grünewald, R. A.; Woodroofe, N.; Boscolo, S.; Aeschlimann, D. Gluten Sensitivity: From Gut to Brain. Lancet Neurol. 2010, 9, 318–330. DOI: 10.1016/S1474-4422(09)70290-X.
  • Leffler, D. A.; Green, P. H.; Fasano, A. Extraintestinal Manifestations of Coeliac Disease. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 561. DOI: 10.1038/nrgastro.2015.131.
  • Hadjivassiliou, M.; Rao, D. G.; Grìnewald, R. A.; Aeschlimann, D. P.; Sarrigiannis, P. G.; Hoggard, N.; Aeschlimann, P.; Mooney, P. D.; Sanders, D. S. Neurological Dysfunction in Coeliac Disease and Non-coeliac Gluten Sensitivity. Am. J. Gastroenterol. 2016, 111, 561. DOI: 10.1038/ajg.2015.434.
  • Hadjivassiliou, M.; Williamson, C. A.; Woodroofe, N. The Immunology of Gluten Sensitivity: Beyond the Gut. Trends Immunol. 2004, 25, 578–582. DOI: 10.1016/j.it.2004.08.011.
  • Antiga, E.; Caproni, M. The Diagnosis and Treatment of Dermatitis Herpetiformis. Clin. Cosmet. Invest. Dermatol. 2015, 8, 257. DOI: 10.2147/CCID.S69127.
  • Yeh, S.; Ahmed, B.; Sami, N.; Ahmed, A. R. Blistering Disorders: Diagnosis and Treatment. Dermatologic Ther. 2003, 16, 214–223. DOI: 10.1046/j.1529-8019.2003.01631.x.
  • Lionel, F. Dermatitis Herpetiformis: Problems, Progress and Prospects. Eur. J. Dermatol. 2002, 12, 523–531.
  • Nicolas, M. E. O.; Krause, P. K.; Gibson, L. E.; Murray, J. A. Dermatitis Herpetiformis. Int. J. Dermatol. 2003, 42, 588–600. DOI: 10.1046/j.1365-4362.2003.01804.x.
  • Bonciolini, V.; Bonciani, D.; Verdelli, A.; D’Errico, A.; Antiga, E.; Fabbri, P.; Caproni, M. Newly Described Clinical and Immunopathological Feature of Dermatitis Herpetiformis. Clin. Dev. Immunol. 2012, 2012, Article ID 967974, 5. doi: 10.1155/2012/967974.
  • Flann, S.; Degiovanni, C.; Derrick, E.; Munn, S. Two Cases of Palmar Petechiae as a Presentation of Dermatitis Herpetiformis. Clin. Exp. Dermatol. 2010, 35, 206–208. DOI: 10.1111/j.1365-2230.2009.03757.x.
  • Heinlin, J.; Knoppke, B.; Kohl, E.; Landthaler, M.; Karrer, S. Dermatitis Herpetiformis Presenting as Digital Petechiae. Pediatr Dermatol. 2012, 29, 209–212. DOI: 10.1111/j.1525-1470.2011.01401.x.
  • Powell, G. R.; Bruckner, A. L.; Weston, W. L. Dermatitis Herpetiformis Presenting as Chronic Urticaria. Pediatr Dermatol. 2004, 21, 564–567. DOI: 10.1111/j.0736-8046.2004.21509.x.
  • Naylor, E.; Atwater, A.; Selim, M. A.; Hall, R.; Puri, P. K. Leukocytoclastic Vasculitis as the Presenting Feature of Dermatitis Herpetiformis. Arch Dermatol. 2011, 147. 1313–1316. DOI: 10.1001/archdermatol.2011.293.
  • Ohshima, Y.; Tamada, Y.; Matsumoto, Y.; Hashimoto, T. Dermatitis Herpetiformis Duhring with Palmoplantar Keratosis. Br. J. Dermatol. 2003, 149, 1300–1302. DOI: 10.1111/j.1365-2133.2003.05660.x.
  • Saito, M.; Böer, A.; Ishiko, A.; Nishikawa, T. Atypical Dermatitis Herpetiformis: A Japanese Case that Presented with Initial Lesions Mimicking Prurigo Pigmentosa. Clin. Exp. Dermatol. 2006, 31, 290–291. DOI: 10.1111/j.1365-2230.2005.02009.x.
  • Junkins-Hopkins, J. M. Dermatitis Herpetiformis: Pearls and Pitfalls in Diagnosis and Management. J. Am. Acad. Dermatol. 2010, 63, 526–528. DOI: 10.1016/j.jaad.2010.05.027.
  • Waga, J.; Zientarski, J.; Czarnobilska, E.; Skoczowski, A. Purified Wheat Gliadin Proteins as Immunoglobulin E Binding Factors in Wheat Mediated Allergies. Am. J. Plant Sci. 2011, 2, 476. DOI: 10.4236/ajps.2011.23056.
  • Elli, L.; Roncoroni, L.; Bardella, M. T. Non-celiac Gluten Sensitivity: Time for Sifting the Grain. World J. Gastroenterol. 2015, 21, 8221. DOI: 10.3748/wjg.v21.i27.8221.
  • Elli, L.; Dolfini, E.; Bardella, M. T. Gliadin Cytotoxicity and in Vitro Cell Cultures. Toxicol. Lett. 2003, 146, 1–8. DOI: 10.1016/j.toxlet.2003.09.004.
  • Muir, J. G.; Gibson, P. R. The Low FODMAP Diet for Treatment of Irritable Bowel Syndrome and Other Gastrointestinal Disorders. Gastroenterol. Hepatol. 2013, 9, 450.
  • Junker, Y.; Zeissig, S.; Kim, S.-J.; Barisani, D.; Wieser, H.; Leffler, D. A.; Zevallos, V.; Libermann, T. A.; Dillon, S.; Freitag, T. L. Wheat Amylase Trypsin Inhibitors Drive Intestinal Inflammation via Activation of Toll-like Receptor 4. J. Exp. Med. 2012, 209, 2395–2408. DOI: 10.1084/jem.20102660.
  • Casella, G.; Villanacci, V.; Di Bella, C.; Bassotti, G.; Bold, J.; Rostami, K. Non Celiac Gluten Sensitivity and Diagnostic Challenges. Gastroenterol. Hepatol. Bed Bench. 2018, 11 197.
  • Sapone, A.; Bai, J.; Ciacci, C.; Dolinsek, J.; Green, P.; Hadjivassiliou, M.; Ullrich, R. Spectrum of Gluten-related Disorders: Consensus on New Nomenclature and Classification. BMC Med. 2012, 10, 13. DOI: 10.1186/1741-7015-10-13.
  • Uhde, M.; Ajamian, M.; Caio, G.; De Giorgio, R.; Indart, A.; Green, P. H.; Verna, E. C.; Volta, U.; Alaedini, A. Intestinal Cell Damage and Systemic Immune Activation in Individuals Reporting Sensitivity to Wheat in the Absence of Coeliac Disease. Gut. 2016, 65, 1930–1937. DOI: 10.1136/gutjnl-2016-311964.
  • Palová-Jelínková, L.; Dáňová, K.; Drašarová, H.; Dvořák, M.; Funda, D. P.; Fundová, P.; Kotrbová-Kozak, A.; Černá, M.; Kamanová, J.; Martin, S. F. Pepsin Digest of Wheat Gliadin Fraction Increases Production of IL-1β via TLR4/MyD88/TRIF/MAPK/NF-κB Signaling Pathway and an NLRP3 Inflammasome Activation. PloS One. 2013, 8(4), e62426. DOI: 10.1371/journal.pone.0062426.
  • Losurdo, G.; Giorgio, F.; Piscitelli, D.; Montenegro, L.; Covelli, C.; Fiore, M. G.; Giangaspero, A.; Iannone, A.; Principi, M.; Amoruso, A. May the Assessment of Baseline Mucosal Molecular Pattern Predict the Development of Gluten Related Disorders among Microscopic Enteritis? World J. Gastroenterol. 2016, 22, 8017. DOI: 10.3748/wjg.v22.i35.8017.
  • Dolfini, E.; Roncoroni, L.; Elli, L.; Fumagalli, C.; Colombo, R.; Ramponi, S.; Forlani, F.; Bardella, M. T. Cytoskeleton Reorganization and Ultrastructural Damage Induced by Gliadin in a Three-dimensional in Vitro Model. World J. Gastroenterol. 2005, 11, 7597. DOI: 10.3748/wjg.v11.i48.7597.
  • Roncoroni, L.; Elli, L.; Bardella, M. T.; Perrucci, G.; Ciulla, M.; Lombardo, V.; Tomba, C.; Conte, D.; Doneda, L. Extracellular Matrix Proteins and Displacement of Cultured Fibroblasts from Duodenal Biopsies in Celiac Patients and Controls. J. Transl. Med. 2013, 11, 91. DOI: 10.1186/1479-5876-11-91.
  • Dolfini, E.; Elli, L.; Roncoroni, L.; Costa, B.; Colleoni, M. P.; Lorusso, V.; Ramponi, S.; Braidotti, P.; Ferrero, S.; Falini, M. L. Damaging Effects of Gliadin on Three-dimensional Cell Culture Model. World J. Gastroenterol. 2005, 11, 5973. DOI: 10.3748/wjg.v11.i38.5973.
  • Chen, Z.; Jalabi, W.; Shpargel, K. B.; Farabaugh, K. T.; Dutta, R.; Yin, X.; Kidd, G. J.; Bergmann, C. C.; Stohlman, S. A.; Trapp, B. D. Lipopolysaccharide-induced Microglial Activation and Neuroprotection against Experimental Brain Injury Is Independent of Hematogenous TLR4. J. Neurosci. 2012, 32, 11706–11715. DOI: 10.1523/JNEUROSCI.0730-12.2012.
  • Cabrera-Chávez, F.; de La Barca, A. C. Trends in Wheat Technology and Modification of Gluten Proteins for Dietary Treatment of Coeliac Disease Patients. J. Cereal Sci. 2010, 52, 337–341. DOI: 10.1016/j.jcs.2010.06.020.
  • Taylor, J. R.; Emmambux, M. N. Gluten-free Foods and Beverages from Millets. In Gluten-free Cereal Products and Beverages; Editors: Elke Arendt, Fabio Dal Bello, Elsevier, 2008; pp. 119–V.
  • Longvah, T.; Anantan, I.; Bhaskarachary, K.; Venkaiah, K. Indian Food Composition Tables; National Institute of Nutrition, Indian Council of Medical Research Hyderabad, Hyderabad, India, 2017.
  • Chauhan, M.; Sonawane, S. K.; Arya, S. Nutritional and Nutraceutical Properties of Millets: A Review. Clin. J. Nutr. Diet. 2018, 1, 1–10.
  • Amadou, I.; Gounga, M. E.; Le, G.-W.; Le, G.-W. Millets: Nutritional Composition, Some Health Benefits and processing - A<br>Review. Emir. J. Food Agric. 2013, 25, 501–508. DOI: 10.9755/ejfa.v25i7.12045.
  • Anson, N. M.; Hemery, Y. M.; Bast, A.; Haenen, G. R. Optimizing the Bioactive Potential of Wheat Bran by Processing. Food Funct. 2012, 3, 362–375. DOI: 10.1039/c2fo10241b.
  • Kumar, A.; Tomer, V.; Kaur, A.; Kumar, V.; Gupta, K. Millets: A Solution to Agrarian and Nutritional Challenges. Agri. Food Sec. 2018, 7, 1–15. DOI: 10.1186/s40066-018-0183-3.
  • Kalinová, J. Nutritionally Important Components of Proso Millet (Panicum Miliaceum L.). Food. 2007, 1, 91–100.
  • Adekunle, A.; Ellis-Jones, J.; Ajibefun, I.; Nyikal, R.; Bangali, S.; Fatunbi, A. Angé A Agricultural Innovation in sub-Saharan Africa: Experiences from Multiple Stakeholder Approaches; Accra, Ghana: Forum for Agricultural Research in Africa (FARA), Accra, Ghana, 2013.
  • Yang, X.; Wan, Z.; Perry, L.; Lu, H.; Wang, Q.; Zhao, C.; Li, J.; Xie, F.; Yu, J.; Cui, T. (2012) Early Millet Use in Northern China. Proceedings of the National Academy of Sciences 109 (10), 3726–3730
  • Devi, P. B.; Vijayabharathi, R.; Sathyabama, S.; Malleshi, N. G.; Priyadarisini, V. B. Health Benefits of Finger Millet (Eleusine Coracana L.) Polyphenols and Dietary Fiber: A Review. J. Food Sci. Technol. 2014, 51, 1021–1040. DOI: 10.1007/s13197-011-0584-9.
  • Rachic, K.; Peters, L. V. The Eleusines: A Review of the World Literature; International Crops Research Institute for the Semi-Arid Tropics, ICRISAT, Patancheru, A.P. (India), 1977.
  • Obilana, A. B.; Manyasa, E. Millets. Pseudocereals and Less Common Cereals; Berlin, Heidelberg (Germany): Springer, 2002; pp. 177–217.
  • Rao, M. The Small Millets: Their Importance, Present Status and Outlook. Small Millets. 1989.
  • Chethan, S.; Malleshi, N. Finger Millet Polyphenols: Optimization of Extraction and the Effect of pH on Their Stability. Food Chem. 2007, 105, 862–870. DOI: 10.1016/j.foodchem.2007.02.012.
  • Thompson, L. U. Potential Health Benefits and Problems Associated with Antinutrients in Foods. Food Res. Int. 1993, 26, 131–149.
  • McKeown, N. M.; Meigs, J. B.; Liu, S.; Wilson, P. W.; Jacques, P. F. Whole-grain Intake Is Favorably Associated with Metabolic Risk Factors for Type 2 Diabetes and Cardiovascular Disease in the Framingham Offspring Study. Am. J. Clin. Nutr. 2002, 76, 390–398. DOI: 10.1093/ajcn/76.2.390.
  • Antony, U.; Sripriya, G.; Chandra, T. Effect of Fermentation on the Primary Nutrients in Finger Millet (Eleusine Coracana). J. Agric. Food Chem. 1996, 44, 2616–2618. DOI: 10.1021/jf950787q.
  • Ferguson, L. R. Role of Plant Polyphenols in Genomic Stability. Mutat. Res. 2001, 475, pp. 89–111. DOI: 10.1016/S0027-5107(01)00073-2.
  • Jaybhaye, R.; Pardeshi, I.; Vengaiah, P.; Srivastav, P. Processing and Technology for Millet Based Food Products: A Review. J. Ready Eat Food. 2014, 1, 32–48.
  • Hanna, W. Utilization of Wild Relatives of Pearl Millet. In: Proceedings of the international pearl millet workshop, 1986. pp. 7–11
  • Hulse, J. H.; Laing, E. M.; Pearson, O. E. Sorghum and the Millets: Their Composition and Nutritive Value; London (UK): Academic Press, 1980.
  • Bhattacharjee, R.; Khairwal, I.; Bramel, P. J.; Reddy, K. Establishment of a Pearl Millet [Pennisetum Glaucum (L.) R. BR.] Core Collection Based on Geographical Distribution and Quantitative Traits. Euphytica. 2007, 155, 35–45. DOI: 10.1007/s10681-006-9298-x.
  • Rathore, S.; Singh, K.; Kumar, V. Millet Grain Processing, Utilization and Its Role in Health Promotion: A Review. Int. J. Nutr. Food Sci. 2016, 5, 318–329. DOI: 10.11648/j.ijnfs.20160505.12.
  • Ram, K.; Meena, R. Evaluation of Pearl Millet and Mungbean Intercropping Systems in Arid Region of Rajasthan (India). Bangladesh J. Bot. 2014, 43, 367–370. DOI: 10.3329/bjb.v43i3.21616.
  • Sade, F. O. Proximate, Antinutritional Factors and Functional Properties of Processed Pearl Millet (Pennisetum Glaucum). J. Food Technol. 2009, 7, 92–97.
  • Kavitha, S.; Parimalavalli, R. Effect of Processing Methods on Proximate Composition of Cereal and Legume Flours. J. Hum. Nutr. Food Sci. 2014, 2, 1051.
  • Ahmed, K.; Shoaib, M.; Akhtar, M. N.; Iqbal, Z. Chemical Analysis of Different Cereals to Access Nutritional Components Vital for Human Health. Int. J. Chem. Biochem. Sci. 2014, 6, 61–67.
  • Awadelkareem, A. M.; Hassan, E. G.; Fageer, A. S. M.; Sulieman, A. M. E.; Mustafa, A. M. I. The Nutritive Value of Two Sorghum Cultivar. Int. J. Food Nutritional Sci. 2015, 4, 1.
  • Yadav, D. N.; Sharma, M.; Chikara, N.; Anand, T.; Bansal, S. Quality Characteristics of Vegetable-blended Wheat–pearl Millet Composite Pasta. Agric. Res. 2014, 3, 263–270. DOI: 10.1007/s40003-014-0117-7.
  • Florence, S.; Urooj, A. Impact of Household Processing Methods on the Nutritional Characteristics of Pearl Millet (Pennisetumtyphoideum): A Review. MOJ Food Process. Technol. 2017, 4, 28–32.
  • Emmambux, M. N.; Taylor, J. R. Morphology, Physical, Chemical, and Functional Properties of Starches from Cereals, Legumes, and Tubers Cultivated in Africa: A Review. Starch‐Stärke. 2013, 65, 715–729. DOI: 10.1002/star.201200263.
  • Dias-Martins, A. M.; Pessanha, K. L. F.; Pacheco, S.; Rodrigues, J. A. S.; Carvalho, C. W. P. Potential Use of Pearl Millet (Pennisetum glaucum (L.) R. BR.) In Brazil: Food Security, Processing, Health Benefits and Nutritional Products. Food Res. Int. 2018, 109, 175–186. DOI: 10.1016/j.foodres.2018.04.023.
  • Habiyaremye, C.; Matanguihan, J. B.; D’Alpoim Guedes, J.; Ganjyal, G. M.; Whiteman, M. R.; Kidwell, K. K.; Murphy, K. M. Proso Millet (Panicum miliaceum L.) And Its Potential for Cultivation in the Pacific Northwest, US: A Review. Front. Plant Sci. 2017, 7, 1961. DOI: 10.3389/fpls.2016.01961.
  • Changmei, S.; Dorothy, J. Millet-the Frugal Grain. Int. J. Sci. Res. Rev. 2014, 3, 75–90.
  • Bettinger, R. L.; Barton, L.; Morgan, C. The Origins of Food Production in North China: A Different Kind of Agricultural Revolution. Evol. Anthropol. 2010, 19, 9–21. DOI: 10.1002/evan.20236.
  • Nass, U. Quick Stats; Crop production 2015 summary, USDA-NASS, SW Washington, DC. 2016.
  • Usda, F.; (2012) Increased US Millet Exports to the Netherlands. Global Agricultural Information Network Report Number: NL2009:1–2
  • Kalinova, J.; Moudry, J. Content and Quality of Protein in Proso Millet (Panicum miliaceum L.) Varieties. Plant Foods Human Nutr. 2006, 61, 43. DOI: 10.1007/s11130-006-0013-9.
  • Lorenz, K.; Dilsaver, W.; Bates, L. Proso Millets. Milling Characteristics, Proximate Compositions, Nutritive Value of Flours. Cereal Chem. 1980, 57, 16–20.
  • Bagdi, A.; Balázs, G.; Schmidt, J.; Szatmári, M.; Schoenlechner, R.; Berghofer, E.; Tömösközia, S. Protein Characterization and Nutrient Composition of Hungarian Proso Millet Varieties and the Effect of Decortication. Acta Aliment. 2011, 40, 128–141. DOI: 10.1556/AAlim.40.2011.1.15.
  • Gélinas, P.; McKinnon, C. M.; Mena, M. C.; Méndez, E. Gluten Contamination of Cereal Foods in Canada. Int. J. Food Sci. Tech. 2008, 43, 1245–1252. DOI: 10.1111/j.1365-2621.2007.01599.x.
  • Zhang, L.; Liu, R.; Niu, W. Phytochemical and Antiproliferative Activity of Proso Millet. PloS One. 2014, 9(8), e104058
  • Coulibaly, A.; Kouakou, B.; Chen, J. Phytic Acid in Cereal Grains: Structure, Healthy or Harmful Ways to Reduce Phytic Acid in Cereal Grains and Their Effects on Nutritional Quality. Am. J. Plant Nutr. Fertilization Technol. 2011, 1, 1–22. DOI: 10.3923/ajpnft.2011.1.22.
  • Sharma, N.; Niranjan, K. Foxtail Millet: Properties, Processing, Health Benefits, and Uses. Food Rev. Int. 2018, 34, 329–363. DOI: 10.1080/87559129.2017.1290103.
  • Krishna, K. R. Agroecosystems: Soils, Climate, Crops, Nutrient Dynamics and Productivity; Oakville, Canada: Apple Academic Press, 2013.
  • Yang, X.-S.; Wang, -L.-L.; Zhou, X.-R.; Shuang, S.-M.; Zhu, Z.-H.; Li, N.; Li, Y.; Liu, F.; Liu, S.-C.; Lu, P. Determination of Protein, Fat, Starch, and Amino Acids in Foxtail Millet [Setaria italica (L.) Beauv.] By Fourier Transform Near-infrared Reflectance Spectroscopy. Food Sci. Biotechnol. 2013, 22, 1495–1500. DOI: 10.1007/s10068-013-0243-1.
  • Ravi, S. B. Neglected Millets that Save the Poor from Starvation. LEISA India. 2004, 6, 1–8.
  • Pradeep, P.; Sreerama, Y. N. Impact of Processing on the Phenolic Profiles of Small Millets: Evaluation of Their Antioxidant and Enzyme Inhibitory Properties Associated with Hyperglycemia. Food Chem. 2015, 169, 455–463. DOI: 10.1016/j.foodchem.2014.08.010.
  • Ushakumari, S. R.; Latha, S.; Malleshi, N. G. The Functional Properties of Popped, Flaked, Extruded and Roller‐dried Foxtail Millet (Setaria italica). Int. J. Food Sci. Tech. 2004, 39, 907–915. DOI: 10.1111/j.1365-2621.2004.00850.x.
  • Kamara, M.; Zhou, H.; Zhu, K.; Amadou, I.; Tarawalie, F. Comparative Study of Chemical Composition and Physicochemical Properties of Two Varieties of Defatted Foxtail Millet Flour Grown in China. Am. J. Food Technol. 2009, 4, 255–267. DOI: 10.3923/ajft.2009.255.267.
  • Mohamed, T. K.; Zhu, K.; Issoufou, A.; Fatmata, T.; Zhou, H. Functionality, in Vitro Digestibility and Physicochemical Properties of Two Varieties of Defatted Foxtail Millet Protein Concentrates. Int. J. Mol. Sci. 2009, 10, 5224–5238. DOI: 10.3390/ijms10125224.
  • Bangoura, M. L.; Ming, Z. H.; Atindana, J.; Xue, Z. K.; Tolno, M. B.; Wei, P. Extraction and Fractionation of Insoluble Fibers from Foxtail Millet (Setaria italica (L.) P. Beauv). Am. J. Food Technol. 2011, 6, 1034–1044. DOI: 10.3923/ajft.2011.1034.1044.
  • Zhang, L. Z.; Liu, R. H. Phenolic and Carotenoid Profiles and Antiproliferative Activity of Foxtail Millet. Food Chem. 2015, 174, 495–501. DOI: 10.1016/j.foodchem.2014.09.089.
  • Mohamed, T.; Issoufou, A.; Zhou, H. Antioxidant Activity of Fractionated Foxtail Millet Protein Hydrolysate. Int. Food Res. J. 2012, 19, 207.
  • Shen, R.; Yang, S.; Zhao, G.; Shen, Q.; Diao, X. Identification of Carotenoids in Foxtail Millet (Setaria italica) and the Effects of Cooking Methods on Carotenoid Content. J. Cereal Sci. 2015, 61, 86–93. DOI: 10.1016/j.jcs.2014.10.009.
  • Choi, -Y.-Y.; Osada, K.; Ito, Y.; Nagasawa, T.; Choi, M.-R.; Nishizawa, N. Effects of Dietary Protein of Korean Foxtail Millet on Plasma Adiponectin, HDL-cholesterol, and Insulin Levels in Genetically Type 2 Diabetic Mice. Biosci., Biotechnol., Biochem. 2005, 69, 31–37. DOI: 10.1271/bbb.69.31.
  • Bangoura, M. L.; Nsor-Atindana, J.; Ming, Z. H. Solvent Optimization Extraction of Antioxidants from Foxtail Millet Species’ Insoluble Fibers and Their Free Radical Scavenging Properties. Food Chem. 2013, 141, 736–744. DOI: 10.1016/j.foodchem.2013.03.029.
  • Saleh, A. S.; Zhang, Q.; Chen, J.; Shen, Q. Millet Grains: Nutritional Quality, Processing, and Potential Health Benefits. Compr. Rev. Food Sci. Food Saf. 2013, 12, 281–295. DOI: 10.1111/1541-4337.12012.
  • Chaudhary, P.; Kapoor, A. C. Changes in the Nutritional Value of Pearl Millet Flour during Storage. J. Sci. Food Agric. 1984, 35, 1219–1224. DOI: 10.1002/jsfa.2740351113.
  • Rani, S.; Singh, R.; Sehrawat, R.; Kaur, B. P.; Upadhyay, A. Pearl Millet Processing: A Review. Nutr. Food Sci. 2018, 48, 30–44. DOI: 10.1108/NFS-04-2017-0070.
  • Goyal, P.; Chugh, L. Shelf Life Determinants and Enzyme Activities of Pearl Millet: A Comparison of Changes in Stored Flour of Hybrids, CMS Lines, Inbreds and Composites. J. Food Sci. Technol. 2017, 54, 3161–3169. DOI: 10.1007/s13197-017-2752-z.
  • Yadav, D. N.; Anand, T.; Kaur, J.; Singh, A. K. Improved Storage Stability of Pearl Millet Flour through Microwave Treatment. Agric. Res. 2012, 1, 399–404. DOI: 10.1007/s40003-012-0040-8.
  • Akinola, S. A.; Badejo, A. A.; Osundahunsi, O. F.; Edema, M. O. Effect of Preprocessing Techniques on Pearl Millet Flour and Changes in Technological Properties. Int. J. Food Sci. Tech. 2017, 52, 992–999. DOI: 10.1111/ijfs.13363.
  • Kapoor, R.; Kapoor, A. C. Effect of Different Treatments on Keeping Quality of Pearl Millet Flour. Food Chem. 1990, 35, 277–286. DOI: 10.1016/0308-8146(90)90017-X.
  • Sharma, B.; Chugh, L.; Singh, V. K.; Shekhar, C.; Tanwar, N. Characterization of Rancidity Indicators in Selected Pearl Millet Genotypes by Multivariate Analysis. Plant Archives Vol. 20, Special Issue, 2020, 229-235
  • Thakur, M.; Tiwari, P. Millets: The Untapped and Underutilized Nutritious Functional Foods. Plant Archives. 2019, 19, 875–883.
  • Asrani, P.; Patial, V.; Asrani, R. K. Production of Fermented Beverages: Shedding Light on Indian Culture and Traditions. In Alexandru Mihai Grumezescu and Alina Maria Holban (eds)., Production and Management of Beverages; Duxford, United Kingdom: Woodhead Publishing, Elsevier, 2019; pp. 409–437.
  • Hotel, A. C. P.; Cordoba, A. Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Prevention. 2001, 5, 1–10.
  • Ezekiel, C. N.; Ayeni, K. I.; Misihairabgwi, J. M.; Somorin, Y. M.; Chibuzor‐Onyema, I. E.; Oyedele, O. A.; Abia, W. A.; Sulyok, M.; Shephard, G. S.; Krska, R. Traditionally Processed Beverages in Africa: A Review of the Mycotoxin Occurrence Patterns and Exposure Assessment. Compr. Rev. Food Sci. Food Saf. 2018, 17, 334–351. DOI: 10.1111/1541-4337.12329.
  • Lei, V.; Friis, H.; Michaelsen, K. F. Spontaneously Fermented Millet Product as a Natural Probiotic Treatment for Diarrhoea in Young Children: An Intervention Study in Northern Ghana. Int. J. Food Microbiol. 2006, 110, 246–253. DOI: 10.1016/j.ijfoodmicro.2006.04.022.
  • Lei, V.; Jakobsen, M. Microbiological Characterization and Probiotic Potential of Koko and Koko Sour Water, African Spontaneously Fermented Millet Porridge and Drink. J. Appl. Microbiol. 2004, 96, 384–397. DOI: 10.1046/j.1365-2672.2004.02162.x.
  • Amadou, I.; Gbadamosi, O.; Le, G.-W. Millet-based Traditional Processed Foods and beverages—A Review. Cereal Foods World. 2011, 56, 115.
  • Salem, M.; Hippen, A.; Salem, M.; Assem, F.; El-Aassar, M. Survival of Probiotic Lactobacillus casei and Enterococcus fecium in Domiaticheese of High Conjugated Linoleic Acid Content. Emir. J. Food Agric. 2012, 24 (2), 98–104.
  • Achi, O. K.; Ukwuru, M. Cereal-based Fermented Foods of Africa as Functional Foods. Int. J. Microbiol. Appl. 2015, 2, 71–83.
  • Rivera-Espinoza, Y.; Gallardo-Navarro, Y. Non-dairy Probiotic Products. Food Microbiol. 2010, 27, 1–11. DOI: 10.1016/j.fm.2008.06.008.
  • McSweeney, M. B.; Seetharaman, K.; Dan Ramdath, D.; Duizer, L. M. Chemical and Physical Characteristics of Proso Millet (Panicum miliaceum)‐Based Products. Cereal Chem. 2017, 94, 357–362. DOI: 10.1094/CCHEM-07-16-0185-R.
  • Gashe, B. A. Tef Fermentation. 1. The Role of Microorganisms in Fermentation and Their Effect on the Nitrogen Content of Tef. An Ethiopian J Sci. 1982, 5, 69–71.
  • Yetneberk, S.; de Kock, H. L.; Rooney, L. W.; Taylor, J. R. Effects of Sorghum Cultivar on Injera Quality. Cereal Chem. 2004, 81, 314–321. DOI: 10.1094/CCHEM.2004.81.3.314.
  • Badi, S.; Bureng, P.; Monowar, L. (1988)Commercial Production: A Breakthrough in Kisra Technology. In: ICC 4th Quadrennial Symposium on Sorghum and Millets. Dendy, D.A.V., ed. International Association for Cereal Science. pp. 31–45
  • Murty, D.; Kumar, K. Traditional Uses of Sorghum and Millets. Sorghum Millets. 1995, 221.
  • Malleshi, N.; Hadimani, N. Nutritional and Technological Characteristics of Small Millets and Preparation of Value Added Products from Them. In: KW Riley, SC Gupta, A Seetharam, JN Mushanga (Eds). Advances in Small millets. Oxford and IBH Publishing, Co. Pvt. Ltd., New Delhi. 270-287, 1993.
  • Subramanian, V.; Jambunathan, R. Traditional Methods of Processing of Sorghum (Sorghum bicolor) and Pearl Millet (Pennisetum americanum) Grains in India. Rep. Int. Assoc. Cereal Chem. 1980, 10, 115–118.
  • Lin, R.; Li, W.; Corke, H. Spotlight on Shanxi Province China: Its Minor Crops and Specialty Foods. Cereal Foods World. 1998, 43, 189–192.
  • Rai, K.; Gowda, C.; Reddy, B.; Sehgal, S. Adaptation and Potential Uses of Sorghum and Pearl Millet in Alternative and Health Foods. Compr. Rev. Food Sci. Food Saf. 2008, 7, 320–396.
  • Sachdev, N.; Goomer, S. The Forgotten Foods: Millet Based Food Products and Technological Advances in Its Processing for Strengthening the Green Economy. Ambient Sci. 2018, 5. DOI: 10.21276/ambi.2018.05.sp2.ga02.
  • Hadimani, N.; Malleshi, N. Studies on Milling, Physico-chemical Properties, Nutrient Composition and Dietary Fibre Content of Millets. J. Food Sci. Technol. 1993, 30, 17–20.
  • Chandrasekara, A.; Naczk, M.; Shahidi, F. Effect of Processing on the Antioxidant Activity of Millet Grains. Food Chem. 2012, 133, 1–9. DOI: 10.1016/j.foodchem.2011.09.043.
  • Malleshi, N.; Desikachar, H. Nutritive Value of Malted Millet Flours. Plant Foods Hum. Nutr. 1986, 36, 191–196. DOI: 10.1007/BF01092036.
  • Elshewaya, A.; (2003) A Study on Malting Conditions of Millet and Sorghum Grains and the Use of the Malt in Bread Making. Sc Theis U of K, Sudan
  • Arora, S.; Jood, S.; Khetarpaul, N. Effect of Germination and Probiotic Fermentation on Nutrient Profile of Pearl Millet Based Food Blends. Br. Food J. 2011, 113(4), 470–481. DOI: 10.1108/00070701111123952.
  • Lee, F. A. The Blanching Process. Adv. Food Res. 1958, 8, 63–109. Elsevier
  • Choudhury, M.; Das, P.; Baroova, B. Nutritional Evaluation of Popped and Malted Indigenous Millet of Assam. J. Food Sci. Technol. 2011, 48, 706–711. DOI: 10.1007/s13197-010-0157-3.
  • Bora, P.; Ragaee, S.; Marcone, M. Effect of Parboiling on Decortication Yield of Millet Grains and Phenolic Acids and in Vitro Digestibility of Selected Millet Products. Food Chem. 2019, 274, 718–725. DOI: 10.1016/j.foodchem.2018.09.010.
  • Singh, P.; Singh, G.; Srivastava, S.; Agarwal, P. Physico-chemical Characteristics of Wheat Flour and Millet Flour Blends. J. Food Sci. Technol. Mysore. 2005, 42, 340–343.
  • Seth, D.; Rajamanickam, G. Development of Extruded Snacks Using Soy, Sorghum, Millet and Rice blend–A Response Surface Methodology Approach. Int. J. Food Sci. Tech. 2012, 47, 1526–1531. DOI: 10.1111/j.1365-2621.2012.03001.x.
  • Tumwine, G.; Atukwase, A.; Tumuhimbise, G. A.; Tucungwirwe, F.; Linnemann, A. Production of Nutrient‐enhanced Millet‐based Composite Flour Using Skimmed Milk Powder and Vegetables. Food Sci. Nutr. 2019, 7, 22–34. DOI: 10.1002/fsn3.777.
  • Lehmann, U.; Robin, F. Slowly Digestible Starch–its Structure and Health Implications: A Review. Trends Food Sci. Technol. 2007, 18, 346–355. DOI: 10.1016/j.tifs.2007.02.009.
  • Nirmala, M.; Rao, M. S.; Muralikrishna, G. Carbohydrates and Their Degrading Enzymes from Native and Malted Finger Millet (Ragi, Eleusine coracana, Indaf-15). Food Chem. 2000, 69, 175–180. DOI: 10.1016/S0308-8146(99)00250-2.
  • Ushakumari, S.; Rastogi, N.; Malleshi, N. Optimization of Process Variables for the Preparation of Expanded Finger Millet Using Response Surface Methodology. J. Food Eng. 2007, 82, 35–42. DOI: 10.1016/j.jfoodeng.2007.01.012.
  • Shukla, S.; Gupta, O.; Sharma, Y.; Sawarkar, N. Puffing Quality Characteristics of Some Ragi (Eleusine coracana) Cultivars. J. Food Sci. Technol. (Mysore). 1986, 23, 329–330.
  • Shukla, K.; Srivastava, S. Evaluation of Finger Millet Incorporated Noodles for Nutritive Value and Glycemic Index. J. Food Sci. Technol. 2014, 51, 527–534. DOI: 10.1007/s13197-011-0530-x.
  • Devaraju, B.; Begum, M. J.; Begum, S.; Vidhya, K. Effect of Temperature on Physical Properties of Pasta from Finger Millet Composite Flour. J. Food Sci. Technol. Mysore. 2006, 43, 341–343.
  • Devi, G. S.; Palanimuthu, V.; Arunkumar, H.; Arunkumar, P. Processing, Packaging and Storage of Pasta from Proso Millet. Int. J. Agric. Eng. 2013, 6, 151–156.
  • Sangita, K.; Sarita, S. Nutritive Value of Malted Flours of Finger Millet Genotypes and Their Use in the Preparation of Burfi. J. Food Sci. Technol. (Mysore). 2000, 37, 419–422.
  • Adebiyi, J. A.; Obadina, A. O.; Mulaba-Bafubiandi, A. F.; Adebo, O. A.; Kayitesi, E. Effect of Fermentation and Malting on the Microstructure and Selected Physicochemical Properties of Pearl Millet (Pennisetum glaucum) Flour and Biscuit. J. Cereal Sci. 2016, 70, 132–139. DOI: 10.1016/j.jcs.2016.05.026.
  • Pelembe, L.; Erasmus, C.; Taylor, J. Development of a Protein-rich Composite Sorghum–cowpea Instant Porridge by Extrusion Cooking Process. LWT Food Sci. Technol. 2002, 35, 120–127. DOI: 10.1006/fstl.2001.0812.
  • Desai, A. D.; Kulkarni, S. S.; Sahoo, A.; Ranveer, R.; Dandge, P. Effect of Supplementation of Malted Ragi Flour on the Nutritional and Sensorial Quality Characteristics of Cake. Adv. J. Food Sci. Technol. 2010, 2, 67–71.
  • Krishnan, R.; Dharmaraj, U.; Malleshi, N. G. Influence of Decortication, Popping and Malting on Bioaccessibility of Calcium, Iron and Zinc in Finger Millet. LWT Food Sci. Technol. 2012, 48, 169–174. DOI: 10.1016/j.lwt.2012.03.003.
  • Malleshi, N.; Klopfenstein, C. Nutrient Composition and Amino Acid Contents of Malted Sorghum, Pearl Millet and Finger Millet and Their Milling Fractions. J. Food Sci. Technol. 1998, 35, 247–249.
  • Rai, S.; Kaur, A.; Singh, B. Quality Characteristics of Gluten Free Cookies Prepared from Different Flour Combinations. J. Food Sci. Technol. 2014, 51, 785–789. DOI: 10.1007/s13197-011-0547-1.
  • Anu, S. S.; Kawatra, A. Use of Pearl Millet and Green Gram Flours in Biscuits and Their Sensory and Nutritional Quality. J. Food Sci. Technol. Mysore. 2007, 44, 536–538.
  • Saha, S.; Gupta, A.; Singh, S.; Bharti, N.; Singh, K.; Mahajan, V.; Gupta, H. Compositional and Varietal Influence of Finger Millet Flour on Rheological Properties of Dough and Quality of Biscuit. LWT Food Sci. Technol. 2011, 44, 616–621. DOI: 10.1016/j.lwt.2010.08.009.
  • Hasler, C. M. Functional Foods: Their Role in Disease Prevention and Health Promotion. Food Technol. Champaign Then Chicago. 1998, 52, 63–147.
  • Sripriya, G.; Chandrasekharan, K.; Murty, V.; Chandra, T. ESR Spectroscopic Studies on Free Radical Quenching Action of Finger Millet (Eleusine coracana). Food Chem. 1996, 57, 537–540. DOI: 10.1016/S0308-8146(96)00187-2.
  • Odusola, K.; Ilesanmi, F.; Akinloye, O. Assessment of Nutritional Composition and Antioxidant Ability of Pearl Millet (Pennisetum glaucum). Am. J. Res. Commun. 2013, 1, 262–272.
  • Nambiar, V. S.; Sareen, N.; Daniel, M.; Gallego, E. B. Flavonoids and Phenolic Acids from Pearl Millet (Pennisetum glaucum) Based Foods and Their Functional Implications. Funct. Foods Health Dis. 2012, 2, 251–264. DOI: 10.31989/ffhd.v2i7.85.
  • Shobana, S.; Usha Kumari, S. R.; Malleshi, N. G.; Ali, S. Z. Glycemic Response of Rice, Wheat and Finger Millet Based Diabetic Food Formulations in Normoglycemic Subjects. Int. J. Food Sci. Nutr. 2007, 58, 363–372. DOI: 10.1080/09637480701252229.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.