137
Views
0
CrossRef citations to date
0
Altmetric
Review

Evaluate the Protective Effect of Antioxidants on Retinal Pigment Cell Hazard Induced by Blue Light: A Mini-Review

&

References

  • Kuse, Y.; Ogawa, K.; Tsuruma, K.; Shimazawa, M.; Hara, H. Damage of Photoreceptor-Derived Cells in Culture Induced by Light Emitting Diode-Derived Blue Light. Sci. Rep. 2014, 4(1), 1–12.
  • Kim, T. G.; Chung, J.; Han, J.; Jin, K. H.; Shin, J. H., and Moon, S. W. Photochemical Retinopathy Induced by Blue Light Emitted from a Light-Emitting diode Face Mask: A Case Report and Literature Review. Medicine. 2020, 99(24), e20568.
  • Van Norren, D.; Vos, J. J. Light Damage to the Retina: An Historical Approach. Eye. 2016, 30(2), 169–172.
  • Contín, M. A.; Arietti, M. M.; Benedetto, M. M.; Bussi, C.; Guido, M. E. Photoreceptor Damage Induced by Low- Intensity Light: Model of Retinal Degeneration in Mammals. Mol. Vis. 2013, 19, 1614–1625.
  • Jaadane, I.; Boulenguez, P.; Chahory, S.; Carré, S.; Savoldelli, M.; Jonet, L.; Behar-Cohen, F.; Martinsons, C.; Torriglia, A. Retinal Damage Induced by Commercial Light Emitting Diodes (LEDs). Free Radical Biol. Med. 2015, 84, 373–384.
  • Zhao, X.; Liu, L.; Jiang, Y.; Silva, M.; Zhen, X., and Zheng, W. Protective Effect of Metformin Against Hydrogen Peroxide-Induced Oxidative Damage in Human Retinal Pigment Epithelial (RPE) Cells by Enhancing Autophagy Thro Ugh Activation of AMPK Pathway. Oxi. Med. Cell. Longevity. 2020, 2020(1), 1–14.
  • Marie, M.; Gondouin, P.; Pagan, D.; Barrau, C.; Villette, T.; Sahel, J.; Picaud, S. Blue-Violet Light Decreases Vegfa Production in an in vitro Model of AMD. PLoS One. 2019, 14(10), e0223839.
  • Pawlowska, E.; Szczepanska, J.; Koskela, A.; Kaarniranta, K., and Blasiak, J. Dietary Polyphenols in Age-Related Macular Degeneration: Protection Against Oxidative Stress and Beyond. Oxi. Med. Cell. Longevity. 2019, 2019(1), 1–13.
  • Kim, J.; Cho, K.; Choung, S. Y. Protective Effect of Prunella Vulgaris Var. L Extract Against Blue Light Induced Damages in ARPE-19 Cells and Mouse Retina. Free Radical Biol. Med. 2020, 152, 622–631.
  • Gehrs, K. M.; Anderson, D. H.; Johnson, L. V.; Hageman, G. S. Age-Related Macular Degeneration—emerging Pathogenetic and Therapeutic Concepts. Ann. Med. 2006, 38(7), 450–471.
  • Jang, Y. P.; Matsuda, H.; Itagaki, Y.; Nakanishi, K.; Sparrow, J. R. Characterization of Peroxy-A2E and Furan-A2E Photooxidation Products and Detection in Human and Mouse Retinal Pigment Epithelial Cell Lipofuscin. J. Biol. Chem. 2005, 280(48), 39732–39739.
  • Arnault, E.; Barrau, C.; Nanteau, C.; Gondouin, P.; Bigot, K.; Viénot, F.; Gutman, E.; Fontaine, V.; Villette, T.; Cohen-Tannoudji, D., et al. Phototoxic Action Spectrum on a Retinal Pigment Epithelium Model of Age-Related Macular Degeneration Exposed to Sunlight Normalized Conditions. PLoS One. 2013, 8(8), e71398.
  • Westlund, B. S.; Cai, B.; Zhou, J.; Sparrow, J. R. Involvement of C-Abl, P53 and the MAP Kinase JNK in the Cell Death Program Initiated in A2E-Laden ARPE-19 Cells by Exposure to Blue Light. Apoptosis. 2009, 14(1), 31–41.
  • Rózanowska, M.; Pawlak, A.; Rózanowski, B.; Skumatz, C.; Zareba, M.; Boulton, M. E.; Burke, J. M.; Sarna, T.; Simon, J. D. Age-Related Changes in the Photoreactivity of Retinal Lipofuscin Granules: Role of Chloroform-Insoluble Components. Invest. Ophthalmol. Visual Sci. 2004, 45(4), 1052–1060.
  • Niwano, Y.; Kanno, T.; Iwasawa, A.; Ayaki, M.; Tsubota, K. Blue Light Injures Corneal Epithelial Cells in the Mitotic Phase in vitro. Br. J. Ophthalmol. 2014, 98(7), 990–992.
  • Takeshima, H.; Venturi, E.; Sitsapesan, R. New and Notable Ion‐channels in the Sarcoplasmic/endoplasmic Reticulum: Do They Support the Process of Intracellular Ca2+ Release? J. Physiol. 2015, 593(15), 3241–3251.
  • Nita, M.; Grzybowski, A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid. Med. Cell. Longevity. 2016, 2016.
  • Shamsi, F. A.; Boulton, M. Inhibition of RPE Lysosomal and Antioxidant Activity by the Age Pigment Lipofuscin. Invest. Ophthalmol. Vis. Sci. 2001, 42(12), 3041–3046.
  • Różanowska, M.; Wessels, J.; Boulton, M.; Burke, J. M.; Rodgers, M. A.; Truscott, T. G.; Sarna, T. Blue Light-Induced Singlet Oxygen Generation by Retinal Lipofuscin in Non-Polar Media. Free Radical Biol. Med. 1998, 24, 1107–1112.
  • Godley, B. F.; Shamsi, F. A.; Liang, F. Q.; Jarrett, S. G.; Davies, S.; Boulton, M. Blue Light Induces Mitochondrial DNA Damage and Free Radical Production in Epithelial Cells. J. Biol. Chem. 2005, 280(22), 21061–21066.
  • Khandelwal, N.; Simpson, J.; Taylor, G.; Rafique, S.; Whitehouse, A.; Hiscox, J.; Stark, L. A. Nucleolar NF-κB/RelA Mediates Apoptosis by Causing Cytoplasmic Relocalization of Nucleophosmin. Cell Death Differ. 2011, 18(12), 1889–1903.
  • Tanito, M.; Nishiyama, A.; Tanaka, T.; Masutani, H.; Nakamura, H.; Yodoi, J.; Ohira, A. Change of Redox Status and Modulation by Thiol Replenishment in Retinal Photooxidative Damage. Invest. Ophthalmol. Visual Sci. 2002, 43(7), 2392–2400.
  • Wu, T.; Chen, Y.; Chiang, S. K.; Tso, M. O. NF-κB Activation in Light-Induced Retinal Degeneration in a Mouse Model. Invest. Ophthalmol. Visual Sci. 2002, 43(9), 2834–2840.
  • Aruoma, O. I.; Halliwell, B.; Hoey, B. M.; Butler, J. The Antioxidant Action of N-Acetylcysteine: Its Reaction with Hydrogen Peroxide, Hydroxyl Radical, Superoxide, and Hypochlorous Acid. Free Radical Biol. Med. 1989, 6(6), 593–597.
  • Cheung, E. C.; Slack, R. S. Emerging Role for ERK as a Key Regulator of Neuronal Apoptosis. Science’s STKE. 2004, 2004(251), 45.
  • Luo, Y.; DeFranco, D. B. Opposing Roles for ERK1/2 in Neuronal Oxidative Toxicity: Distinct Mechanisms of ERK1/2 Action at Early versus Late Phases of Oxidative Stress. J. Biol. Chemistry. 2006, 281(24), 16436–16442.
  • Wu, J.; Gorman, A.; Zhou, X.; Sandra, C.; Chen, E. Involvement of Caspase-3 in Photoreceptor Cell Apoptosis Induced by in vivo Blue Light Exposure. Invest. Ophthalmol. Visual Sci. 2002, 43(10), 3349–3354.
  • Li, Z.; Jo, J.; Jia, J. M.; Lo, S. C.; Whitcomb, D. J.; Jiao, S.; Cho, K.; Sheng, M. Caspase-3 Activation via Mitochondria is Required for Long-Term Depression and AMPA Receptor Internalization. Cell. 2010, 141(5), 859–871.
  • Levine, Y. J. Autophagy in Cell Death: An Innocent Convict? J. Clin. Invest. 2005, 115(10), 2679–2688.
  • Pattingre, S.; Tassa, A.; Qu, X.; Garuti, R.; Liang, X. H.; Mizushima, N.; Packer, M.; Schneider, M. D.; Levine, B. Bcl-2 Antiapoptotic Proteins Inhibit Beclin 1-Dependent Autophagy. Cell. 2005, 122(6), 927–939.
  • Yu, L.; Strandberg, L.; Lenardo, M. J. The Selectivity of Autophagy and Its Role in Cell Death and Survival. Autophagy. 2008, 4(5), 567–573.
  • Kang, R.; Zeh, H. J.; Lotze, M. T.; Tang, D. J. C. D. The Beclin 1 Network Regulates Autophagy and Apoptosis. Cell Death Differ. 2011, 18(4), 571–580.
  • Tiwari, M.; Lopez-Cruzan, M.; Morgan, W. W.; Herman, B. Loss of Caspase-2-Dependent Apoptosis Induces Autophagy After Mitochondrial Oxidative Stress in Primary Cultures of Young Adult Cortical Neurons. J. Biol. Chem. 2011, 286(10), 8493–8506.
  • Scherz‐shouval, R.; Shvets, E.; Fass, E.; Shorer, H.; Gil, L.; Elazar, Z. Reactive Oxygen Species are Essential for Autophagy and Specifically Regulate the Activity of Atg4. Embo J. 2007, 26(7), 1749–1760.
  • Milenkovic, D.; Jude, B.; Morand, C. MMiRna as Molecular Target of Polyphenols Underlying Their Biological Effects. Free Radical Biol. Med. 2013, 64, 40–51.
  • Naczk, M.; Shahidi, F. Phenolics in Cereals, Fruits and Vegetables: Occurrence, Extraction and Analysis. J. Pharm. Biomed. Anal. 2006, 41, 1523–1542.
  • Olthof, M. R.; Hollman, P. C. H.; Katan, M. B. Chlorogenic Acid and Caffeic Acid are Absorbed in Humans. J. Nutr. 2001, 131, 66–71.
  • Albishi, T.; John, J. A.; Al-Khalifa, A. S.; Shahidi, F. Antioxidant, Anti-Inflammatory and DNA Scission Inhibitory Activities of Phenolic Compounds in Selected Onion and Potato Varieties. J. Funct. Foods. 2013, 5(2), 930–939.
  • Karthikesan, K.; Pari, L.; Menon, V. P. Protective Effect of Tetrahydrocurcumin and Chlorogenic Acid Against Streptozotocin-Nicotinamide Generated Oxidative Stress Induced Diabetes. J. Funct. Foods. 2010, 2, 134–142.
  • Kobori, M.; Takahashi, Y.; Akimoto, Y.; Sakurai, M.; Matsunaga, I.; Nishimuro, H.; Ippoushi, K.; Oike, H.; Ohnishi-Kameyama, M. Chronic High Intake of Quercetin Reduces Oxidative Stress and Induces Expression of the Antioxidant Enzymes in the Liver and Visceral Adipose Tissues in Mice. J. Funct. Foods. 2015, 15, 551–560.
  • Rechner, A. R.; Spencer, J. P.; Kuhnle, G.; Hahn, U.; Rice-Evans, C. A. Novel Biomarkers of the Metabolism of Caffeic Acid Derivatives in vivo. Free Radical Biol. Med. 2001, 30(11), 1213–1222.
  • Gonthier, M. P.; Verny, M. A.; Besson, C.; Rémésy, C.; Scalbert, A. Chlorogenic Acid Bioavailability Largely Depends on Its Metabolism by the Gut Microflora in Rats. J. Nutr. 2003, 133(6), 1853–1859.
  • Motterlini, R.; Foresti, R. Heme Oxygenase-1 as a Target for Drug Discovery. Antioxid. Redox Signaling. 2014, 20(11), 1810–1826.
  • Wang, Y.; Zhao, L.; Wang, C.; Hu, J.; Guo, X.; Zhang, D.; Wu, W.; Feng, Z.; Ji, B. Protective Effect of Quercetin and Chlorogenic Acid, Two Polyphenols Widely Present in Edible Plant Varieties, on Visible Light-Induced Retinal Degeneration in vivo. J. Funct. Foods. 2017, 33, 103–111.
  • Albishi, T.; John, J. A.; Al-Khalifa, A. S.; Shahidi, F. Antioxidative Phenolic Constituents of Skins of Onion Varieties and Their Activities. J. Funct. Foods. 2013, 5(3), 1191–1203.
  • Hertog, M. G.; Feskens, E. J.; Kromhout, D.; Hollman, P. C. H.; Katan, M. B. Dietary Antioxidant Flavonoids and Risk of Coronary Heart Disease: The Zutphen Elderly Study. Lancet. 1993, 342(8878), 1007–1011.
  • Saviranta, N. M.; Veeroos, L.; Granlund, L. J.; Hassinen, V. H.; Kaarniranta, K.; Karjalainen, R. O. Plant Flavonol Quercetin and Isoflavone Biochanin a Differentially Induce Protection Against Oxidative Stress and Inflammation in ARPE-19 Cells. Food. Res. Int. 2011, 44(1), 109–113.
  • Wang, Y.; Kim, H. J.; Sparrow, J. R. Quercetin and Cyanidin-3-Glucoside Protect Against Photooxidation and Photodegradation of A2E in Retinal Pigment Epithelial Cells. Exp. Eye Res. 2017, 160, 45–55.
  • Sparrow, J. R.; Zhou, J.; Ben-Shabat, S.; Vollmer, H.; Itagaki, Y.; Nakanishi, K. Involvement of Oxidative Mechanisms in Blue-Light-Induced Damage to A2E-Laden RPE. Invest. Ophthalmol. Visual Sci. 2002, 43(4), 1222–1227.
  • Ben‐Shabat, S.; Itagaki, Y.; Jockusch, S.; Sparrow, J. R.; Turro, N. J.; Nakanishi, K. Formation of a Nonaoxirane from A2E, a Lipofuscin Fluorophore Related to Macular Degeneration, and Evidence of Singlet Oxygen Involvement. Angew. Chem. Int. Ed. 2002, 41(5), 814–817.
  • Yoon, K. D.; Yamamoto, K.; Zhou, J.; Sparrow, J. R. Photo-Products of Retinal Pigment Epithelial Bisretinoids React with Cellular Thiols. Mol. Vision. 2011, 17, 1839.
  • Zhou, J.; Ueda, K.; Zhao, J.; Sparrow, J. R. Correlations Between Photodegradation of Bisretinoid Constituents of Retina and Dicarbonyl Adduct Deposition. J. Biol. Chem. 2015, 290(45), 27215–27227.
  • Nowak, J. Z. Oxidative Stress, Polyunsaturated Fatty Acids-Derived Oxidation Products and Bisretinoids as Potential Inducers of CNS Diseases: Focus on Age-Related Macular Degeneration. Pharmacol. Rep. 2013, 65(2), 288–304.
  • Krohne, T. U.; Stratmann, N. K.; Kopitz, J.; Holz, F. G. Effects of Lipid Peroxidation Products on Lipofuscinogenesis and Autophagy in Human Retinal pigment Epithelial. Exp. Eye Res. 2010, 90, 465–471.
  • Heo, S. J.; Jeon, Y. J. Protective Effect of Fucoxanthin Isolated from Sargassum Siliquastrum on UV-B Induced Cell Damage. J. Photochem. Photobiol., B. 2009, 95(2), 101–107.
  • Sachindra, N. M.; Sato, E.; Maeda, H.; Hosokawa, M.; Niwano, Y.; Kohno, M.; Miyashita, K. Radical Scavenging and Singlet Oxygen Quenching Activity of Marine Carotenoid Fucoxanthin and Its Metabolites. J. Agric. Food. Chem. 2007, 55(21), 8516–8522.
  • Heo, S. J.; Yoon, W. J.; Kim, K. N.; Ahn, G. N.; Kang, S. M.; Kang, D. H.; Affan, A.; Oh, C.; Jung, W. K.; Jeon, Y. J. Evaluation of Anti-Inflammatory Effect of Fucoxanthin Isolated from Brown Algae in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. Food. Chem. Toxicol. 2010, 48, 2045–2051.
  • Heo, S. J.; Yoon, W. J.; Kim, K. N.; Oh, C.; Choi, Y. U.; Yoon, K. T.; Kang, D. H.; Qian, Z. J.; Choi, I. W.; Jung, W. K. Anti-Inflammatory Effect of Fucoxanthin Derivatives Isolated from Sargassum Siliquastrum in Lipopolysaccharide-Stimulated RAW 264.7 Macrophage. Food. Chem. Toxicol. 2012, 50(9), 3336–3342.
  • Kang, M. C.; Lee, S. H.; Lee, W. W.; Kang, N.; Kim, E. A.; Kim, S. Y.; Lee, D. H.; Kim, D.; Jeon, Y. J. Protective Effect of Fucoxanthin Isolated from Ishige Okamurae Against High-Glucose Induced Oxidative Stress in Human Umbilical Vein Endothelial Cells and Zebrafish Model. J. Funct. Foods. 2014, 11, 304–312.
  • Lashmanova, E.; Proshkina, E.; Zhikrivetskaya, S.; Shevchenko, O.; Marusich, E.; Leonov, S.; Melerzanov, A.; Zhavoronkov, A.; Moskalev, A. Fucoxanthin Increases Lifespan of Drosophila Melanogaster and Caenorhabditis Elegans. Pharmacol. Res. 2015, 100, 228–241.
  • Liu, C. L.; Liang, A. L.; Hu, M. L. Protective Effects of Fucoxanthin Against Ferric Nitrilotriacetate-Induced Oxidative Stress in Murine Hepatic BNL CL.2 Cells. Toxicol. In Vitro. 2011, 25, 1314–1319.
  • Bharathiraja, K.; Babu, L. H.; Vijayaprakash, S.; Tamilselvan, P.; Balasubramanian, M. P. Fucoxanthin, a Marine Carotenoid Protects Cadmium-Induced Oxidative Renal Dysfunction in Rats. Biomed. Prev. Nutr. 2013, 201–207.
  • Kim, K. N.; Ahn, G.; Heo, S. J.; Kang, S. M.; Kang, M. C.; Yang, H. M.; Kim, D.; Roh, S. W.; Kim, S. K.; Jeon, B. T., et al. Inhibition of Tumor Growth in vitro and in vivo by Fucoxanthin Against Melanoma B16F10 Cells. Environ. Toxicol. Phar. Environ. Toxicol. Phar. 2013, 35, 39–46.
  • Kang, S. I.; Ko, H. C.; Shin, H. S.; Kim, H. M.; Hong, Y. S.; Lee, N. H.; Kim, S. J. Fucoxanthin Exerts Differing Effects on 3T3-L1 Cells According to Differentiation Stage and Inhibits Glucose Uptake in Mature Adipocytes. Biochem. Biophys. Res. Commun. 2011, 409, 769–774.
  • Miyashita, K. Function of Marine Carotenoids. Forum. Nutr. 2009, 61, 136–146.
  • Ikeda, Y.; Komura, M.; Watanabe, M.; Minami, C.; Koike, H.; Itoh, S.; Kashino, Y.; Satoh, K. Photosystem I Complexes Associated with Fucoxanthin-Chlorophyll-Binding Proteins from a Marine Centric Diatom, Chaetoceros Gracilis. Bba. 2008, 1777, 351–361.
  • Yan, X.; Liu, Y.; Wu, Y.; Li, Z., and Guo, C. Optimizing the Process of Extracting and Purifying from Laminaria Japonica. J. Chin. Inst. J. Chin. Inst. Food Sci. Technol. 2014, 14(3), 115–121.
  • Liu, Y.; Liu, M.; Zhang, X.; Chen, Q.; Chen, H.; Sun, L.; Liu, G. Protective Effect of Fucoxanthin Isolated from Laminaria Japonica Against Visible Light-Induced Retinal Damage Both in vitro and in vivo. J. Agric. Food. Chem. 2016, 64(2), 416–424.
  • Wenzel, A.; Grimm, C.; Samardzija, M.; Remé, C. E. Molecular Mechanisms of Light-Induced Photoreceptor Apoptosis and Neuroprotection for Retinal Degeneration. Prog. Retin. Eye Res. 2005, 24, 275–306.
  • Roehlecke, C.; Schaller, A.; Knels, L.; Funk, R. H. The Influence of Sublethal Blue Light Exposure on Human RPE Cells. Mol Vis. 2009, 15, 1929–1938.
  • Foo, S. C.; Yusoff, F. M.; Ismail, M.; Basri, M.; Chan, K. W.; Khong, N. M. H.; Yau, S. K. Production of Fucoxanthin-Rich Fraction (FxRf) from a Diatom, Chaetoceros Calcitrans (Paulsen) Takano 1968. Algal Res. 2015, 12, 26–32.
  • Liu, C. L.; Chiu, Y. T.; Hu, M. L. Fucoxanthin Enhances HO-1 and NQO1 Expression in Murine Hepatic BNL CL. 2 Cells Through Activation of the Nrf2/are System Partially by Its Pro-Oxidant Activity. J. Agric. J. Agric. Food Chem. 2011, 59, 11344–11351.
  • Sujak, A.; Mazurek, P.; Gruszecki, W. I. Xanthophyll Pigments Lutein and Zeaxanthin in Lipid Multibilayers Formed with Dimyristoylphosphatidylcholine. J. Photochem. Photobiol. B. 2002, 68, 39–44.
  • Sujak, A.; Okulski, W.; Gruszecki, W. I. Organisation of Xanthophyll Pigments Lutein and Zeaxanthin in Lipid Membranes Formed with Dipalmitoylphosphatidylcholine. Biochim. Biophys. Acta. 2000, 1509, 255–263.
  • Boulton, M.; Różanowska, M.; Różanowski, B. Retinal Photodamage. J. Photochem. Photobiol., B. 2001, 64(2–3), 144–161.
  • Krinsky, N. I. The Biological Properties of Carotenoids. Pure Appl. Chem. 1994, 66(5), 1003–1010.
  • Choi, S.; Koo, S. Efficient Syntheses of the Keto-Carotenoids Canthaxanthin, Astaxanthin, and Astacene. J. Org. Chem. 2005, 70, 3328–3331.
  • Kirsh, V. A.; Mayne, S. T.; Peters, U.; Chatterjee, N.; Leitzmann, M. F.; Dixon, L. B.; Urban, D. A.; Crawford, E. D.; Hayes, R. B. A Prospective Study of Lycopene and Tomato Product Intake and Risk of Prostate Cancer. Cancer Epidemiolo. Prev. Biomarkers. 2006, 15(1), 92–98.
  • Kurashige, M.; Okimasu, E.; Inoue, M.; Utsumi, K. Inhibition of Oxidative Injury of Biological Membranes by Astaxanthin. PPhysiol. Chem. Phys. Med. NMR. 1990, 22(1), 27–38.
  • Ohgami, K.; Shiratori, K.; Kotake, S.; Nishida, T.; Mizuki, N.; Yazawa, K.; Ohno, S. Effects of Astaxanthin on Lipopolysaccharide-Induced Inflammation in vitro and in vivo. Investig. Ophthalmol. Vis. Sci. 2003, 44, 2694–2701.
  • Yuan, J. P.; Peng, J.; Yin, K.; Wang, J. H. Potential Health Promoting Effects of Astaxanthin: A High-Value Carotenoid Mostly from Microalgae. Mol. Nutr Food Res. 2011, 55, 150–165.
  • Stewart, J. S.; Lignell, A.; Pettersson, A.; Elfving, E.; Soni, M. G. Safety Assessment of Astaxanthin-Rich Microalgae Biomass: Acute and Subchronic Toxicity Studies in Rats. Food. Chem. Toxicol. 2008, 46, 3030–3036.
  • Nakajima, Y.; Inokuchi, Y.; Shimazawa, M.; Otsubo, K.; Ishibashi, T.; Hara, H. Astaxanthin, a Dietary Carotenoid, Protects Retinal Cells Against Oxidative Stress in-Vitro and in Mice in-Vivo. J. Pharm. Pharmacol. 2008, 60, 1365–1374.
  • Lin, C. W.; Yang, C. M.; Yang, C. H. Protective Effect of Astaxanthin on Blue Light Light-Emitting Diode-Induced Retinal Cell Damage via Free Radical Scavenging and Activation of Pi3k/akt/nrf2 Pathway in 661W C-Ell Model. Mar. Drugs. 2020, 18(8), 387.
  • Ambati, R. R.; Phang, S. M.; Ravi, S.; Aswathanarayana, R. G. A. Sources, Extraction, Stability, Biological Activities and Its Commercial A-Pplications—a Review. Mar. Drugs. 2014, 12, 128–152.
  • Park, S. H.; Jang, J. H.; Chen, C. Y.; Na, H. K.; Surh, Y. J. A Formulated Red Ginseng Extract Rescues PC12 Cells from PCB-Induced Oxidative Cell Death Through Nrf2-Mediated Upregulation of Heme Oxygenase-1 and Glutamat-E Cysteine Ligase. Toxicology. 2010, 278, 131–139.
  • Ha, K. N.; Chen, Y.; Cai, J.; Sternberg, P., Jr. Increased Glutathione Synthesis Through an ARE-Nrf2-Dependent Pathway by Zinc in the RPE: Implicat-Ion for Protection Against Oxidative Stress. Investig. Ophthalmol. Vis. Sci. 2006, 47, 2709–2715.
  • Li, Z.; Dong, X.; Liu, H.; Chen, X.; Shi, H.; Fan, Y.; Hou, D.; Zhang, X. Astaxanthin Protects ARPE-19 Cells from Oxidative Stress via Upregulateon of Nrf2-Regulated Phase II Enzymes Through Activation of Pi3k/akt. Mol. Vis. 2013, 19, 1656–1666.
  • Sparrow, J. R.; Vollmer-Snarr, H. R.; Zhou, J.; Jang, Y. P.; Jockusch, S.; Itagaki, Y.; Nakanishi, K. A2E-Epoxides Damage DNA in Retinal Pigment Epithelial Cells: Vitamin E and Other Antioxidants Inhibit A2E-Epoxide Forma-Tion. J. Biol. Chem. 2003, 278(20), 18207–18213.
  • Snodderly, D. M. Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am. J. Clin. Nutr 2018, 62(6), 1448S–1461S.
  • Curcio, C. A.; Medeiros, N. E.; Millican, C. L. Photoreceptor Loss in Age-Related Macular Degeneration. Invest. Ophthalmol. Sci. 1996, 37(7), 1236–1249.
  • Apisariyakul, A.; Vanittanakom, N.; Buddhasukh, D. Antifungal Activity of Turmeric Oil Extracted from Curcuma Longa (Zingiberaceae). J. Ethnopharm-Acol. 1995, 49, 163–169.
  • Roth, G. N.; Chandra, A.; Nair, M. G. Novel Bioactivities of Curcuma Longa Constituents. J. Nat. Prod. 1998, 61, 542–545.
  • Dahl, T. A.; Bilski, P.; Reszka, K. J.; Chignell, C. F. Photocytotoxicity of Curcumin. Photochem. Photobiol. 1994, 50, 290–294.
  • Banerjee, S.; Prasad, P.; Hussain, A.; Khan, I.; Kondaiah, P.; Chakravarty, A. R. Remarkable Photocytotoxicity of Curcumin in HeLa Cells in Visible Light and Arresting Its Degradation on Oxovanadium (IV) Complex Formation. Chem. Commun. 2012, 48, 7702–7704.
  • Park, S. I.; Lee, E. H.; Kim, S. R.; Jang, Y. P. Anti-Apoptotic Effects of Curcuma Longa L. Extract and Its Curcuminoids Against Blue Light-Induced Cytotoxicity in A2E-Laden Human Retinal Pigment Epithelial Cells. J. Pharm. Pharmacol. 2017, 69(3), 334–340.
  • Anitua, E.; Sánchez, M.; Orive, G.; Andía, I. The Potential Impact of the Preparation Rich in Growth Factors (PRGF) in Different Medical Fields. Bio-Mater. 2007, 28, 4551–4560.
  • Suárez-Barrio, C.; Del Olmo-Aguado, S.; García-Pérez, E.; de la Fuente, M.; Muruzabal, F.; Anitua, E.; Baamonde-Arbaiza, B.; Fernández-Vega-Cue-To, L.; Fernández-Vega, L.; Merayo-Lloves, J. Antioxidant Role of PRGF O-N RPE Cells After Blue Light Insult as a Therapy for Neurodegenerative Dise-Ases. Int. J. Mol. Sci. 2020, 21(3), 1021.
  • Yang, P. M.; Cheng, K. C.; Huang, J. Y.; Wang, S. Y.; Lin, Y. N.; Tseng, Y. T.; Tsieh, C. W.; Wung, B. S. Sulforaphane Inhibits Blue Light–in-Uced Inflammation and Apoptosis by Upregulating the SIRT1/PGC-1α/Nrf2 Pathway and Autophagy in Retinal Pigment Epithelial Cells. Toxicolo. Appl. Pharmacolo. 2021, 421, 115545.
  • Wei, Q.; Liang, X.; Peng, Y.; Yu, D.; Zhang, R.; Jin, H.; Fan, J.; Cai, W.; Ren, C.; Yu, J. 17β-Estradiol Ameliorates Oxidative Stress and Blue Li-Ght-Emitting Diode-Induced Retinal Degeneration by Decreasing Apoptosis and Enhancing Autophagy. Drug Des. Dev. Ther. 2018, 12, 2715.
  • Romano, M.; Recchia, I.; Recchiuti, A. Lipoxin Receptors. Sci. World J. 2007, 7, 1393–1412.
  • Xie, T.; Cai, J.; Yao, Y.; Sun, C.; Yang, Q.; Wu, M.; Xu, Z.; Sun, X., and Wang, X. LXA4 Protects Against Blue-Light Induced Retinal Degeneration I-N Human A2E-Laden RPE Cells and Balb-C Mice. Ann. Trans. Med. 2021, 9(15), 1249–1249.
  • Shahidi, F., and Naczk, M. Phenolics in Food and Nutraceuticals; Boca Raton: CRC Press, 2003.
  • Pae, H. O.; Seo, W. G.; Kim, N. Y.; Oh, G. S.; Kim, G. E.; Kim, Y. H.; Kwak, H. J.; Yun, Y. J.; Jun, C. D.; Chung, H. T. Induction of Gran-Ulocytic Differentiation in Acute Promyelocytic Leukemia Cells (HL-60) by Water-Soluble Chitosan Oligomer. Leukemia Res. 2001, 25(4), 339–346. DOI: 10.1016/S0145-2126(00)00138-7.
  • Chen, Q.; Liu, S. Q.; Du, Y. M.; Peng, H.; Sun, L. P. Carboxymethyl-Chitosan Protects Rabbit Chondrocytes from Interleukin-1β-Induced Apoptosis. Eur. J. Pharmacol. 2006, 541(1–2), 1–8. DOI: 10.1016/j.ejphar.2006.03.044.
  • Joodi, G.; Ansari, N.; Khodagholi, F. Chitooligosaccharide-Mediated Ne-Uroprotection is Associated with Modulation of HSPs Expression and Reduct-Ion of MAPK Phosphorylation. Int. J. Biol. Macromol. 2011, 48(5), 726–735. DOI: 10.1016/j.ijbiomac.2011.02.011.
  • Pangestuti, R.; Kim, S. K. Neuroprotective Properties of Chitosan and Its Derivatives. Mar. Drugs. 2010, 8(7), 2117–2128. DOI: 10.3390/md8072117.
  • Chen, Q.; Liu, S. Q.; Du, Y. M.; Peng, H.; Sun, L. P. Enzymic Preparation of Water-Soluble Chitosan and Their Antitumor Activity. Int. J. Bio. Macromol. 2002, 31(1–3), 111–117. DOI: 10.1016/S0141-8130(02)00064-8.
  • Fang, I. M.; Yang, C. H.; Yang, C. M.; Chen, M. S. Chitosan Oligosaccharides Attenuates Oxidative-Stress Related Retinal Degeneration in Rats. PLoS One. 2013, 8(10), e77323. DOI: 10.1371/journal.pone.0077323.
  • Xie, W.; Xu, P.; Liu, Q. Antioxidant Activity of Water-Soluble Chitosan Derivatives. Bioorg. Med. Chem. Lett. 2001, 11(13), 1699–1701. DOI: 10.1016/S0960-894X(01)00285-2.
  • Lin, C. W.; Huang, H. H.; Yang, C. M.; Yang, C. H. Protective Effect of Chitosan Oligosaccharides on Blue Light Light-Emitting Diode Induced Rational Pigment Epithelial Cell Damage. J. Funct. Foods. 2018, 49, 12–19. DOI: 10.1016/j.jff.2018.08.007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.