431
Views
4
CrossRef citations to date
0
Altmetric
Review

Himalayan Wild Fruits as a Strong Source of Nutraceuticals, Therapeutics, Food and Nutrition Security

ORCID Icon, , , ORCID Icon, , ORCID Icon, , , , , ORCID Icon & ORCID Icon show all

References

  • Desor, S. Ideas and Initiatives Towards an Alternative Food System in India. Kalpavriksh: Deccan Gymkhana, Pune. 2017, 411004, 1–20.
  • Rasul, G.; Saboor, A.; Tiwari, P.C., Hussain, A.; Ghosh, N.; Chettri, G. B. Food and Nutrition Security in the Hindu Kush Himalaya: Unique Challenges and Niche Opportunities. In The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People; Wester, P.; Mishra, A. and Mukherji, A., Eds.; Springer International Publishing: Cham, 2019; pp. 301–338.
  • Wester, P.; Mishra, A., Mukherji, A.; Shrestha, A. B. The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People; New York, United States: Springer Nature, 2019.
  • Aryal, K.P.; Poudel, S.; Chaudhary, R.P.; Chettri, N.; Chaudhary, P.; Ning, W.; Kotru, R. Diversity and Use of Wild and Non-Cultivated Edible Plants in the Western Himalaya. J. Ethnobiol. Ethnomed. 2018, 14(1), 1–18. DOI: 10.1186/s13002-018-0211-1.
  • Semwal, P.; Painuli, S.; Cruz-Martins, N. Dioscorea Deltoidea Wall. Ex Griseb: A Review of Traditional Uses, Bioactive Compounds and Biological Activities. Food Biosci. 2021, 41, 100969. DOI: 10.1016/j.fbio.2021.100969.
  • Semwal, P.; Painuli, S., Tewari, D.; Bussmann, R. W.; Palni, L. M. S.; Thapliyal, A. Assesment of Non-Timber Brahma Kamal (Saussurea Obvallata (DC.) Edgew.), an Important Himalayan. Ethnobotany Res. Appl. 2020, 19(40), 1–15.
  • Motti, R. Wild Edible Plants: A Challenge for Future Diet and Health. Plants. 2022, 11(3), 344. DOI: 10.3390/plants11030344.
  • Zlatić, N.M.; Stanković, M.S. Variability of Secondary Metabolites of the Species Cichorium Intybus L. From Different Habitats. Plants. 2017, 6(3), 38. DOI: 10.3390/plants6030038.
  • Alonso-Amelot, M.E.; Oliveros, A.; Calcagno-Pisarelli, M.P. Phenolics and Condensed Tannins in Relation to Altitude in Neotropical Pteridium Spp: A Field Study in the Venezuelan Andes. Biochem. Syst. Ecol. 2004, 32(11), 969–981. DOI: 10.1016/j.bse.2004.03.005.
  • Semwal, P.; Painuli, S.; Painuli, K.M.; Antika, G.; Tumer, T. B.; Thapliyal, A.; Setzer, W. N.; Martorell, M.; Alshehri, M. M.; Taheri, Y., et al. Diplazium Esculentum (Retz.) Sw.: Ethnomedicinal, Phytochemical, and Pharmacological Overview of the Himalayan Ferns. Oxid. Med. Cell. Longev. September 03, 2021, 2021, 1917890. DOI: 10.1155/2021/1917890.
  • Rasmussen, L.V.; Watkins, C.; Agrawal, A. Forest Contributions to Livelihoods in Changing Agriculture-Forest Landscapes. Forest Policy Econ. 2017, 84, 1–8. DOI: 10.1016/j.forpol.2017.04.010.
  • Vira, B.; Wildburger, C., and Mansourian, S. Forests, Trees and Landscapes for Food Security and Nutrition: A Global Assessment Report. IUFRO World Ser. 2015, 33, 9–28.
  • Sardeshpande, M.; Shackleton, C. Wild Edible Fruits: A Systematic Review of an Under-Researched Multifunctional NTFP (Non-Timber Forest Product). Forests. 2019, 10(6), 467. DOI: 10.3390/f10060467.
  • Bhatt, I.D.; Rawat, S.; Badhani, A.; Rawal, R. S. Nutraceutical Potential of Selected Wild Edible Fruits of the Indian Himalayan Region. Food Chem. 2017, 215, 84–91. DOI: 10.1016/j.foodchem.2016.07.143.
  • Painuli, S.; Semwal, P., and Cruz-Martins, N., et al. Medicinal Plants of Himalayan Forests. In Husen, A., Bachheti, R. K., Bachheti, A. (Eds.) Non-Timber Forest Products; Springer, 2021; pp. 175–212.
  • Melaku, A.; Ebrahim, M.A. Critical Review on Wild-Edible Fruit Species in Ethiopia. Int. J. For. Res. September 23, 2021, 2021, 8538188. DOI: 10.1155/2021/8538188.
  • Paredes-López, O.; Cervantes-Ceja, M.L.; Vigna-Pérez, M.; Hernández-Pérez, T. Berries: Improving Human Health and Healthy Aging, and Promoting Quality Life—a Review. Plant Foods Human Nutr. 2010, 65(3), 299–308. DOI: 10.1007/s11130-010-0177-1.
  • Singh, H.; Lily, M.K.; Dangwal, K. Evaluation and Comparison of Polyphenols and Bioactivities of Wild Edible Fruits of North-West Himalaya, India. Asian Pac. J. Trop. Dis. 2015, 5(11), 888–893. DOI: 10.1016/S2222-1808(15)60951-3.
  • Sagdic, O.; Polat, B.; Yetim, H. Bioactivities of Some Wild Fruits Grown in Turkey. Erwerbs-Obstbau. January 05, 2022. DOI: 10.1007/s10341-021-00631-0.
  • Lamia, F.S.; Mukti, R.F. Bangladeshi Wild Date Palm Fruits (Phoenix Sylvestris): Promising Source of Anti-Cancer Agents for Hepatocellular Carcinoma Treatment. Int. J. Appl. Sci. Biotechnol. 2021, 9(1), 32–37. DOI: 10.3126/ijasbt.v9i1.36110.
  • Koubala, B.; Bayang, J.; Wangso, H.; Kolla, M. C.; Laya, A. Variation of Phenolics (Bound and Free), Minerals, and Antioxidant Activity of Twenty-Eight Wild Edible Fruits of Twenty-Three Species from Far North Region of Cameroon. Biomed Res. Int. 2021, 2021, 1–14. DOI: 10.1155/2021/4154381.
  • Bernal-Gallardo, J.O.; Molina-Torres, J.; Angoa-Pérez, M.V.; Cárdenas-Valdovinos, J. G.; García-Ruíz, I.; Ceja-Díaz, J. A.; Mena-Violante, H. G. Phenolic Compound Content and the Antioxidant and Antimicrobial Activity of Wild Blueberries (Vaccinium Stenophyllum Steud.) Fruits Extracts During Ripening. Horticulturae. 2022, 8(1), 15. DOI: 10.3390/horticulturae8010015.
  • Monroy-García, I.N.; Carranza-Torres, I.E.; Carranza-Rosales, P.; Oyón-Ardoiz, M.; García-Estévez, I.; Ayala-Zavala, J. F.; Morán-Martínez, J.; Viveros-Valdez, E. Phenolic Profiles and Biological Activities of Extracts from Edible Wild Fruits Ehretia Tinifolia and Sideroxylon Lanuginosum. Foods. 2021, 10(11), 2710. DOI: 10.3390/foods10112710.
  • Vignesh, A.; Pradeepa Veerakumari, K.; Selvakumar, S., Rakkiyappan, R.; Vasanth, K. Nutritional Assessment, Antioxidant, Anti-Inflammatory and Antidiabetic Potential of Traditionally Used Wild Plant, Berberis Tinctoria Lesch. Trends Phytochem. Res. 2021, 5(2), 71–92.
  • Santhi, V.P.; Sriramavaratharajan, V.; Murugan, R.; Masilamani, P.; Gurav, S. S.; Sarasu, V. P.; Parthiban, S.; Ayyanar, M. Edible Fruit Extracts and Fruit Juices as Potential Source of Antiviral Agents: A Review. J. Food Meas. Charact. 2021, 15(6), 5181–5190. DOI: 10.1007/s11694-021-01090-7.
  • Tewari, D.; Zengin, G.; Ak, G.; Sinan, K. I.; Cziáky, Z.; Mishra, S. T.; Jekő, J. Phenolic Profiling, Antioxidants, Multivariate, and Enzyme Inhibitory Properties of Wild Himalayan Fig (Ficus Palmata Forssk.): A Potential Candidate for Designing Innovative Nutraceuticals and Related Products. Anal. Lett. 2021, 54(9), 1439–1456. DOI: 10.1080/00032719.2020.1804395.
  • Nakitto, A.M.S.; Muyonga, J.H.; Byaruhanga, Y.B.; Wagner, A. E. Solanum Anguivi Lam. Fruits: Their Potential Effects on Type 2 Diabetes Mellitus. Molecules. 2021, 26(7), 2044. DOI: 10.3390/molecules26072044.
  • Alex, B.K.; Koshy, E.P.; Jacob, S.; Thomas, G. Wild Edible Fruit Crop Haematocarpus Validus (Miers) Bakh. F. Ex Forman (Khoon Phal): A Novel Source of Nutraceuticals. J. Food Sci. Technol. 2022, 59(1), 168–178. DOI: 10.1007/s13197-021-04997-7.
  • Ercisli, S.; Orhan, E. Chemical Composition of White (Morus Alba), Red (Morus Rubra) and Black (Morus Nigra) Mulberry Fruits. Food Chem. 2007, 103(4), 1380–1384. DOI: 10.1016/j.foodchem.2006.10.054.
  • Elmacı, Y.; Altuğ, T. Flavour Evaluation of Three Black Mulberry (Morus Nigra) Cultivars Using GC/MS, Chemical and Sensory Data. J. Sci. Food Agric. 2002, 82(6), 632–635. DOI: 10.1002/jsfa.1085.
  • Darias-Martín, J.; Lobo-Rodrigo, G.; Hernández-Cordero, J.; Díaz-Díaz, E.; Díaz-Romero, C. Alcoholic Beverages Obtained from Black Mulberry. Food Technol. Biotechnol. 2003, 41(2), 173–176.
  • Arabshahi-Delouee, S.; Urooj, A. Antioxidant Properties of Various Solvent Extracts of Mulberry (Morus Indica L.) Leaves. Food Chem. 2007, 102(4), 1233–1240. DOI: 10.1016/j.foodchem.2006.07.013.
  • Cieślik, E.; Gręda, A.; Adamus, W. Contents of Polyphenols in Fruit and Vegetables. Food Chem. 2006, 94(1), 135–142. DOI: 10.1016/j.foodchem.2004.11.015.
  • Lin, J.-Y.; Tang, C.-Y. Determination of Total Phenolic and Flavonoid Contents in Selected Fruits and Vegetables, as Well as Their Stimulatory Effects on Mouse Splenocyte Proliferation. Food Chem. 2007, 101(1), 140–147. DOI: 10.1016/j.foodchem.2006.01.014.
  • Sass-Kiss, A.; Kiss, J.; Milotay, P.; Kerek, M. M.; Toth-Markus, M. Differences in Anthocyanin and Carotenoid Content of Fruits and Vegetables. Food Res. Int. 2005, 38(8–9), 1023–1029. DOI: 10.1016/j.foodres.2005.03.014.
  • Zadernowski, R.; Naczk, M.; Nesterowicz, J. Phenolic Acid Profiles in Some Small Berries. J. Agric. Food Chem. 2005, 53(6), 2118–2124. DOI: 10.1021/jf040411p.
  • Imran, M.; Talpur, F.N.; Jan, M.I.; Khan, A.; Khan, I. Analysis of Nutritional Components of Some Wild Edible Plants. J. Chem. Soc. Pak. 2007, 29(5), 500.
  • . AnonymousThe Wealth of India, a Dictionary of Indian Raw Materials; Council of Scientific and Industrial Research: New Delhi, 1952; Vol. 7.
  • Doi, K.; Kojima, T.; Makino, M.; Kimura, Y.; Fujimoto, Y. Studies on the Constituents of the Leaves of Morus Alba L. Chem. Pharm. Bull. 2001, 49(2), 151–153. DOI: 10.1248/cpb.49.151.
  • Kim, H.M.; Han, S.B.; Lee, K.H.; Lee, C. W.; Kim, C. Y.; Lee, E. J.; Huh, H. Immunomodulating Activity of a Polysaccharide Isolated from Mori Cortex Radicis. Arch. Pharmacal Res. 2000, 23(3), 240–242. DOI: 10.1007/BF02976452.
  • Ouyang, Z.; Li, Y.; Xu, W.; Chen, J. [Determination of 1-Deoxynojirimycin in Leaves of Morus Alba by High Performance Liquid Chromatography with Fluorescence Detection]. Zhongguo Zhong Yao Za Zhi. 2005, 30(9), 682–685.
  • Chu, Q.; Lin, M.; Tian, X.; Ye, J. Study on Capillary Electrophoresis–amperometric Detection Profiles of Different Parts of Morus Alba L. J. Chromatogr. A. 2006, 1116(1–2), 286–290. DOI: 10.1016/j.chroma.2006.03.118.
  • Bose, P. Genetic Resources of Mulberry and Utilization; CSR and TI: Mysore, India, 1989; pp. 183–190.
  • Srivastava, S.; Kapoor, R.; Thathola, A.; Srivastava, R. P. Nutritional Quality of Leaves of Some Genotypes of Mulberry (Morus Alba). Int. J. Food Sci. Nutr. 2006, 57(5–6), 305–313. DOI: 10.1080/09637480600801837.
  • Srivastava, S.; Kapoor, R.; Thathola, A.; Srivastava, R. P. Mulberry (Moms Alba) Leaves as Human Food: A New Dimension of Sericulture. Int. J. Food Sci. Nutr. 2003, 54(6), 411–416. DOI: 10.1080/09637480310001622288.
  • Kimura, T.; Nakagawa, K.; Kubota, H.; Kojima, Y.; Goto, Y.; Yamagishi, K.; Oita, S.; Oikawa, S.; Miyazawa, T. Food-Grade Mulberry Powder Enriched with 1-Deoxynojirimycin Suppresses the Elevation of Postprandial Blood Glucose in Humans. J. Agric. Food Chem. 2007, 55(14), 5869–5874. DOI: 10.1021/jf062680g.
  • Kim, S.Y.; Gao, J.J.; Lee, W.-C.; Ryu, K. S.; Lee, K. R.; Kim, Y. C. Antioxidative Flavonoids from the Leaves ofMorus Alba. Arch. Pharmacal Res. 1999, 22(1), 81–85. DOI: 10.1007/BF02976442.
  • Sánchez-Salcedo, E.M.; Mena, P.; García-Viguera, C.; Martínez, J. J.; Hernández, F. Phytochemical Evaluation of White (Morus Alba L.) and Black (Morus Nigra L.) Mulberry Fruits, a Starting Point for the Assessment of Their Beneficial Properties. J. Funct. Foods. 2015, 12, 399–408. DOI: 10.1016/j.jff.2014.12.010.
  • Liang, L.; Zhu, M.; Li, F.; Yang, L.; Wu, X.; Zhao, W.; Zou, Y. Chemical Composition, Nutritional Value, and Antioxidant Activities of Eight Mulberry Cultivars from China. Pharmacogn. Mag. 2012, 8(31), 215. DOI: 10.4103/0973-1296.99287.
  • Wasim, M.; Daud, M.; Arif, M.; Ul-Islam, R.; Iqbal, S.; Anwar, Y. Characterisation of Some Exotic Fruits (Morus Nigra, Morus Alba, Salvadora Persica and Carissa Opaca) Used as Herbal Medicines by Neutron Activation Analysis and Estimation of Their Nutritional Value. J. Radioanal. Nucl. Chem. 2012, 292(2), 653–659. DOI: 10.1007/s10967-011-1461-8.
  • Nikavar, B.; Mousazadeh, G. Influence of Three Morus Species Extracts on α-Amylase Activity. 2009.
  • Priya, S. Identification of Acetylcholine Esterase Inhibitors from Morus Alba L. Leaves. Scholars Res. Lib. 2012, 2(3), 440–444.
  • Mohammadi, J.; Naik, P.R. The Histopathologic Effects of Morus Alba Leaf Extract on the Pancreas of Diabetic Rats. Turk. J. Biol. 2012, 36(2), 211–216.
  • Manjula, A.; Shubha. SCREENING of ANTIBACTERIAL ACTIVITY of TOTAL SOLUBLE PROTEIN of MULBERRY VARIETIES. Int. J. Curr. Pharm. Res. 2011, 3(2), 60–61.
  • Aditya, R.; Ramesh, C.; Riaz, M.; Prabhakar, B. Anthelmintic and Antimicrobial Activities in Some Species of Mulberry. Int. J. Pharm. Pharm. Sci. 2012, 4, 335–338.
  • Yadav, A.V.; Nade, V.S. Anti-Dopaminergic Effect of the Methanolic Extract of Morus Alba L. Leaves. Indian J. Pharmacol. 2008, 40(5), 221. DOI: 10.4103/0253-7613.44154.
  • Chon, S.-U.; Kim, Y.-M.; Park, Y.-J.; Heo, B.-G.; Park, Y.-S.; Gorinstein, S. Antioxidant and Antiproliferative Effects of Methanol Extracts from Raw and Fermented Parts of Mulberry Plant (Morus Alba L.). Eur. Food Res. Technol. 2009, 230(2), 231–237. DOI: 10.1007/s00217-009-1165-2.
  • Osmaston, A.E. A Forest Flora for Kumaon, 1 ed.; M/s Bishen Singh Mahendra Pal Singh: Dehradun, Uttarakhand, India, 2009.
  • Rawat, S.; Jugran, A.; Giri, L.; Bhatt, I. D.; Rawal, R. S. Assessment of Antioxidant Properties in Fruits of Myrica Esculenta : A Popular Wild Edible Species in Indian Himalayan Region. Evid. Based Complement. Altern. Med. 2011, 2011, 1–8. DOI: 10.1093/ecam/neq055.
  • Semwal, P.; Painuli, S.; Badoni, H. Chemical Composition and Antimicrobial Profiling of Myrica Sapida Wall.: An Important Wild Fruit Species of Uttarakhand Himalaya. Sci. Cult. 2019, 85(5/6), 205–208.
  • Cheng, J.; Zhou, S.; Wu, D.; Chen, J.; Liu, D.; Ye, X. Bayberry (Myrica Rubra Sieb. Et Zucc.) Kernel: A New Protein Source. Food Chem. 2009, 112(2), 469–473. DOI: 10.1016/j.foodchem.2008.05.106.
  • Kabra, A.; Martins, N.; Sharma, R.; Kabra, R.; Baghel, U. S. Myrica Esculenta Buch.-Ham. Ex D. Don: A Natural Source for Health Promotion and Disease Preventdion. Plants. 2019, 8(6), 149. DOI: 10.3390/plants8060149.
  • Bhatt, I.; Rawal, R.; Dhar, U. Improvement in Seed Germination of Myrica Esculenta Buch.-Ham. Ex D. Don-A High Value Tree Species of Kumaun Himalaya, India. Seed Sci. Technol. 2000, 28(3), 597–605.
  • Bhatt, I.D.; Rawal, R.S.; Dhar, U. The Availability, Fruit Yield, and Harvest of Myrica Esculenta in Kumaun (West Himalaya), India. Mt. Res. Dev. 2000, 20(2), 146–153. DOI: 10.1659/0276-4741(2000)020[0146:TAFYAH]2.0.CO;2.
  • Saklani, S.; Chandra, S.; Mishra, A.; Badoni, P. P. Nutritional Evaluation, Antimicrobial Activity and Phytochemical Screening of Wild Edible Fruit of Myrica Nagi Pulp. Int. J. Pharm. Pharm. Sci. 2012, 4(3), 407–411.
  • Panthari, P.; Kharkwal, H.; Joshi, D.D., et al. Investigations on Myrica Nagi Leaves: Phytochemical Screening and Physicochemical Evaluation. World J. Pharm. Pharm. Sci. 2013, 2(5), 2867–2873.
  • Singh, J.; Lan, V.; Trivedi, V. Pharmacognostic Evaluation of Katphala (The Bark of Myrica Esculenta Buch–ham). Ancient Sci. Life. 1986, 6(2), 85.
  • Srivastava, B.; Sharma, V.C.; Pant, P.; Pandey, N. K.; Jadhav, A. D. Evaluation for Substitution of Stem Bark with Small Branches of Myrica Esculenta for Medicinal Use – a Comparative Phytochemical Study. J. Ayurveda and Integra. Med. 2016, 7(4), 218–223. DOI: 10.1016/j.jaim.2016.08.004.
  • Seal, T. Nutritional Composition of Wild Edible Fruits in Meghalaya State of India and Their Ethno-Botanical Importance. Res. J. Bot. 2011, 6(2), 58–67. DOI: 10.3923/rjb.2011.58.67.
  • Gusain, Y.S.; Khanduri, V.P. Myrica Esculenta Wild Edible Fruit of Indian Himalaya: Need a Sustainable Approach for Indigenous Utilization. Eco. Env. Cons. 2016, 22, S267–70.
  • Mann, S.; Satpathy, G.; Gupta, R.K. In vitro Evaluation of Bio-Protective Properties of Underutilized Myrica Esculenta Buch.–ham. Ex D. Don Fruit of Meghalaya. 2015.
  • Kabra, A.; Baghel, U.S. Nutritional Value and Elemental Analysis of Katphala (Myrica Esculenta Buch-Ham).
  • Chinnadurai, V.; Viswanathan, P.; Kalimuthu, K.; Vanitha, A.; Ranjitha, V.; Pugazhendhi, A. Comparative Studies of Phytochemical Analysis and Pharmacological Activities of Wild and Micropropagated Plant Ethanol Extracts of Manihot Esculenta. Biocatal. Agric. Biotechnol. 2019, 19, 101166. DOI: 10.1016/j.bcab.2019.101166.
  • Sood, P.; Shri, R. A Review on Ethnomedicinal, Phytochemical and Pharmacological Aspects of Myrica Esculenta. Indian J. Pharm. Sci. 2018, 80(1), 2–13.
  • Patel, K.G.; Bhalodia, P.N.; Patel, A.D., et al. Evaluation of Bronchodilator and Anti-Anaphylactic Activity of Myrica Sapida. 2008.
  • Patel, K.; Patel, K.; Shah, J., et al. Evaluation of the Effect of Myrica Sapida on Bronchoconstriction and Bronchial Hyperreactivity. Die Pharmazie. 2008, 63(4), 312–316.
  • Patel, K.; Rao, N.; Gajera, V.; Bhatt, P. A.; Patel, K. V.; Gandhi, T. R. Anti-Allergic Activity of Stem Bark of Myrica Esculenta Buch.-Ham.(myricaceae). J. Young Pharm. 2010, 2(1), 74–78. DOI: 10.4103/0975-1483.62219.
  • Patel, T.; Ladani, K.; Shah, S. Antiasthmatic Activity of Aqueous Extract of Myrica Nagi Bark. Int. J. Phytopharm. Res. 2013, 4, 40–45.
  • K Rana, R.; K Patel, R. Pharmacological Evaluation of Antiasthmatic Activity of Myrica Nagi Bark Extracts. Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Inflammatory and Anti-Allergy Agents). 2016, 15(2), 145–152. DOI: 10.2174/1871523015666160923154547.
  • Patel, T.; Rajshekar, C.; Parmar, R. Mast Cell Stabilizing Activity of Myrica Nagi Bark. J. Pharmacogn. Phytother. 2011, 3(8), 114–117.
  • Saini, R.; Garg, V.; Dangwal, K. Effect of Extraction Solvents on Polyphenolic Composition and Antioxidant, Antiproliferative Activities of Himalyan Bayberry (Myrica Esculenta). Food Sci. Biotechnol. 2013, 22(4), 887–894. DOI: 10.1007/s10068-013-0160-3.
  • Rawat, S.; Kumar, N.; Kothiyal, P. Evaluate the Antidiabetic Activity of Myrica Esculenta Leaves in Streptozotocin Induced Diabetes in Rat. Int. J. Univ. Pharm. Bio. Sci. 2013, 2, 510–525.
  • Agnihotri, S.; Wakode, S.; Ali, M. Essential Oil of Myrica Esculenta Buch. Ham.: Composition, Antimicrobial and Topical Anti-Inflammatory Activities. Nat. Prod. Res. 2012, 26(23), 2266–2269. DOI: 10.1080/14786419.2011.652959.
  • Suryawanshi, J.; Karande, K.; Udugade, B. Antibacterial Activity of Bark and Fruits of Myrica Nagi. Indian J. Nat. Prod. 2009, 25(3), 21–23.
  • Konczak, I.; Maillot, F.; Dalar, A. Phytochemical Divergence in 45 Accessions of Terminalia Ferdinandiana (Kakadu Plum). Food Chem. May 15, 2014, 151, 248–256. DOI: 10.1016/j.foodchem.2013.11.049.
  • Pant, G.; Prakash, O.; Chandra, M.; Sethi, S.; Punetha, H.; Dixit, S.; Pant, A. K. Biochemical Analysis, Pharmacological Activity, Antifungal Activity and Mineral Analysis in Methanolic Extracts of Myrica Esculenta and Syzygium Cumini: The Indian Traditional Fruits Growing in Uttarakhand Himalaya. Indian J. Pharm. Biol. Res. 2014, 2(1), 26. DOI: 10.30750/ijpbr.2.1.4.
  • McGaw, L.J.; Rabe, T.; Sparg, S.G.; Jäger, A. K.; Eloff, J. N.; van Staden, J. An Investigation on the Biological Activity of Combretum Species. J. Ethnopharmacol. Apr 2001, 75(1), 45–50. DOI: 10.1016/S0378-8741(00)00405-0.
  • Lin, Y.L.; Kuo, Y.H.; Shiao, M.S.; Chen, C.-C.; Ou, J.-C. Flavonoid Glycosides from Terminalia Catappa L. J. Chin. Chem. Soc. 2000, 47(1), 253–256. DOI: 10.1002/jccs.200000030.
  • Bag, A.; Bhattacharyya, S.K.; Chattopadhyay, R.R. The Development of Terminalia Chebula Retz. (Combretaceae) in Clinical Research. Asian Pac. J. Trop. Biomed. 2013, 3(3), 244–252. DOI: 10.1016/S2221-1691(13)60059-3.
  • Kesharwani, A.; Polachira, S.K.; Nair, R.; Agarwal, A.; Mishra, N. N.; Gupta, S. K. Anti-HSV-2 Activity of Terminalia Chebula Retz Extract and Its Constituents, Chebulagic and Chebulinic Acids. BMC Complementary Altern. Med. February 14, 2017, 17(1), 110. DOI: 10.1186/s12906-017-1620-8.
  • Pulliah, T. 2019. Encyclopedia of World Medicinal Plants; Regency Pub: New Delhi, India; Vol. 2.
  • Srivastav, A.; Chandra, A.; Singh, M.; Jamal, F.; Rastogi, P.; Rajendran, S. M.; Bansode, F. W.; Lakshmi, V. Inhibition of Hyaluronidase Activity of Human and Rat Spermatozoa in vitro and Antispermatogenic Activity in Rats in vivo by Terminalia Chebula, a Flavonoid Rich Plant. Reprod. Toxicol. 2010, 29(2), 214–224. DOI: 10.1016/j.reprotox.2009.11.001.
  • Kundu, A.P.; Mahato, S.B. Triterpenoids and Their Glycosides from Terminalia Chebula. Phytochemistry. 1993, 32(4), 999–1002. DOI: 10.1016/0031-9422(93)85243-K.
  • Saleem, A.; Husheem, M.; Härkönen, P.; Pihlaja, K. Inhibition of Cancer Cell Growth by Crude Extract and the Phenolics of Terminalia Chebula Retz. Fruit. J. Ethnopharmacol. 2002, 81(3), 327–336. DOI: 10.1016/S0378-8741(02)00099-5.
  • Jyothsna, S.; Manjula, G.; Sammaiah, D., et al. Trace Elemental Analysis of Anti-Jaundice Medicinal Plants of Telangana Using EDXRF Technique. Mater. Today Proc. 2021, 43, 1526–1533.
  • Gunasekar, C.J.; Abu-Yousef, I.; Majdalawieh, A.; Narasimhan, S. Pharmacognostic Evaluation of Terminalia Chebula Standard Extracts and Finished Products. Mediterr. J. Chem. 2019, 8(6), 441–452. DOI: 10.13171/mjc861907177afm.
  • Barthakur, N.; Arnold, N. Nutritive Value of the Chebulic Myrobalan (Terminalia Chebula Retz.) and Its Potential as a Food Source. Food Chem. 1991, 40(2), 213–219. DOI: 10.1016/0308-8146(91)90105-W.
  • Haq, F.; Ullah, R. Comparative Determination of Trace Elements from Allium Sativum, Rheum Australe and Terminalia Chebula by Atomic Absorption Spectroscopy. Ijb. 2011, 1(5), 77–82.
  • Bag, A.; Bhattacharyya, S.K.; Pal, B.N.K., et al. Evaluation of Antibacterial Properties of Chebulic Myrobalan (Fruit of Terminalia Chebula Retz.) Extracts Against Methicillin Resistant Staphylococcus Aureus and Trimethoprim-Sulphamethoxazole Resistant Uropathogenic Escherichia Coli. Afr. J. Plant Sci. 2009, 3(2), 025–029.
  • Ahmad, I.; Mehmood, Z.; Mohammad, F. Screening of Some Indian Medicinal Plants for Their Antimicrobial Properties. J. Ethnopharmacol. 1998, 62(2), 183–193. DOI: 10.1016/S0378-8741(98)00055-5.
  • Malekzadeh, F.; Ehsanifar, H.; Shahamat, M.; Levin, M.; Colwell, R. R. Antibacterial Activity of Black Myrobalan (Terminalia Chebula Retz) Against Helicobacter Pylori. Int. J. Antimicrob. Agents. 2001, 18(1), 85–88. DOI: 10.1016/S0924-8579(01)00352-1.
  • Kannan, P.; Ramadevi, S.; Hopper, W. Antibacterial Activity of Terminalia Chebula Fruit Extract. Afr. J. Microbiol. Res. 2009, 3(4), 180–184.
  • Dutta, B.; Rahman, I.; Das, T. Antifungal Activity of Indian Plant Extracts: Antimyzetische Aktivität Indischer Pflanzenextrakte. Mycoses. 1998, 41(11‐12), 535–536. DOI: 10.1111/j.1439-0507.1998.tb00718.x.
  • Mehmood, Z.; Ahmad, I.; Mohammad, F.; Ahmad, S. Indian Medicinal Plants: A Potential Source for Anticandidal Drugs. Pharm. Biol. 1999, 37(3), 237–242. DOI: 10.1076/phbi.37.3.237.6296.
  • Barazani, V.; Sathiyomoorthy, P.; Shalev, R.; Vardy, D.; Golan, G.A. Screening of South-Indian Medicinal Plants for Anti-Fungal Activity. Phyther. Res. 2003, 17(9), 1123–1125. DOI: 10.1002/ptr.1399.
  • Shinde, S.L.; More, S.; Junne, S., et al. The Antifungal Activity of Five Terminalia Species Checked by Paper Disk Method. Int. J. Pharm. Res. Dev. 2011, 3(2), 36–40.
  • EL-Mekkawy, S.; Meselhy, M.R.; Kusumoto, I.T.; Kadota, S.; Hattori, M.; Namba, T. Inhibitory Effects of Egyptian Folk Medicines Oh Human Immunodeficiency Virus (HIV) Reverse Transcriptase. Chem. Pharm. Bull. 1995, 43(4), 641–648. DOI: 10.1248/cpb.43.641.
  • Yukawa, T.A.; Kurokawa, M.; Sato, H.; Yoshida, Y.; Kageyama, S.; Hasegawa, T.; Namba, T.; Imakita, M.; Hozumi, T.; Shiraki, K., et al. Prophylactic Treatment of Cytomegalovirus Infection with Traditional Herbs. Antiviral Res. 1996, 32(2), 63–70.
  • Badmaev, V.; Nowakowski, M. Protection of Epithelial Cells Against Influenza a Virus by a Plant Derived Biological Response Modifier Ledretan‐96. Phytother. Res. 2000, 14(4), 245–249. DOI: 10.1002/1099-1573(200006)14:4<245:AID-PTR571>3.0.CO;2-O.
  • Ahn, M.-J.; Kim, C.Y.; Lee, J.S.; Kim, T.G.; Kim, S.H.; Lee, C.K.; Lee, B.B.; Shin, C.G.; Huh, H.; Kim, J. Inhibition of HIV-1 Integrase by Galloyl Glucoses from Terminalia Chebula and Flavonol Glycoside Gallates from Euphorbia Pekinensis. Planta Med. 2002, 68(05), 457–459. DOI: 10.1055/s-2002-32070.
  • Vermani, K.; Garg, S. Herbal Medicines for Sexually Transmitted Diseases and AIDS. J. Ethnopharmacol. 2002, 80(1), 49–66. DOI: 10.1016/S0378-8741(02)00009-0.
  • Ma, H.; Diao, Y.; Zhao, D., et al. A New Alternative to Treat Swine Influenza a Virus Infection: Extracts from Terminalia Chebula Retz. Afr. J. Microbiol. Res. 2010, 4(6), 497–499.
  • Lin, L.-T.; Chen, T.-Y.; Chung, C.-Y.; Noyce, R. S.; Grindley, T. B.; McCormick, C.; Lin, T.-C.; Wang, G.-H.; Lin, C.-C.; Richardson, C. D., et al. Hydrolyzable Tannins (Chebulagic Acid and Punicalagin) Target Viral Glycoprotein-Glycosaminoglycan Interactions to Inhibit Herpes Simplex Virus 1 Entry and Cell-To-Cell Spread. J. Virol. 2011, 85(9), 4386–4398.
  • Sabu, M.; Kuttan, R. Anti-Diabetic Activity of Medicinal Plants and Its Relationship with Their Antioxidant Property. J. Ethnopharmacol. 2002, 81(2), 155–160. DOI: 10.1016/S0378-8741(02)00034-X.
  • Rao, N.K.; Nammi, S. Antidiabetic and Renoprotective Effects of the Chloroform Extract of Terminalia Chebula Retz. Seeds in Streptozotocin-Induced Diabetic Rats. BMC Complementary Altern. Med. 2006, 6(1), 1–6. DOI: 10.1186/1472-6882-6-17.
  • Kumar, G.P.S.; Arulselvan, P.; Kumar, D.S.; Subramanian, S. P. Anti-Diabetic Activity of Fruits of Terminalia Chebula on Streptozotocin Induced Diabetic Rats. J. Health Sci. 2006, 52(3), 283–291. DOI: 10.1248/jhs.52.283.
  • Murali, Y.; Anand, P.; Tandon, V.; Singh, R.; Chandra, R.; Murthy, P. Long-Term Effects of Terminalia Chebula Retz. On Hyperglycemia and Associated Hyperlipidemia, Tissue Glycogen Content and in vitro Release of Insulin in Streptozotocin Induced Diabetic Rats. Exp. Clin. Endocrinol. Diabetes. 2007, 115(10), 641–646. DOI: 10.1055/s-2007-982500.
  • Nair, V.; Singh, S.; Gupta, Y.K. Anti-Arthritic and Disease Modifying Activity of Terminalia Chebula Retz. In Experimental Models. J. Pharm. Pharmacol. 2010, 62(12), 1801–1806. DOI: 10.1111/j.2042-7158.2010.01193.x.
  • Pooma, R., Suddee, S. Tem Smitinand’s Thai Plant Names, Revised Edition. In The Office of the Forest Herbarium, Department of National Parks. Thailand: Wildlife and Plant Conservation: Bangkok, 2014; p. 379.
  • Sumalatha, D. Antioxidant and Antitumor Activity of Phyllanthus Emblica in Colon Cancer Cell Lines. Int. J. Curr. Microbiol. Appl. Sci. 2013, 2, 189–195.
  • Triratnarong. Medicinal Plants, Fruit, Vegetable and Herb, 6th ed.; One world Publication: Bangkok, 2007.
  • Poltanov, E.A.; Shikov, A.N.; Dorman, H.D., et al. Chemical and Antioxidant Evaluation of Indian Gooseberry (Emblica Officinalis Gaertn., Syn. Phyllanthus Emblica L.) Supplements. Phytother. Res. 2009, 23(9), 1309–1315.
  • Unander, D.W.; Webster, G.L.; Blumberg, B.S. Usage and Bioassays in Phyllanthus (Euphorbiaceae). IV. Clustering of Antiviral Uses and Other Effects. J. Ethnopharmacol. 1995, 45(1), 1–18. DOI: 10.1016/0378-8741(94)01189-7.
  • Webster, G.L. Synopsis of the Genera and Suprageneric Taxa of Euphorbiaceae. Ann. Mo. Bot. Gard. 1994, 81(1), 33–144. DOI: 10.2307/2399909.
  • Calixto, J.B.; Santos, A.R.; Filho, V.C.; Yunes, R. A. A Review of the Plants of the Genus Phyllanthus: Their Chemistry, Pharmacology, and Therapeutic Potential. Med. Res. Rev. 1998, 18(4), 225–258. DOI: 10.1002/(SICI)1098-1128(199807)18:4<225:AID-MED2>3.0.CO;2-X.
  • Kuttan, R., and Harikumar, K. Phyllanthus Species: Scientific Evaluation and Medicinal Applications; Florida, United States: CRC Press, 2011.
  • Parameswaran, T.; Rao, R.; Murugan, R., et al. Reconfirmation of the Identity and Occurrence of Phyllanthus Ajmerianus Chaudhary andRao in Ajmer, Rajasthan, India. Current Science. 2006, 91(1), 24–26.
  • Sarin, B.; Verma, N.; Martín, J.P.; Mohanty, A. An Overview of Important Ethnomedicinal Herbs of Phyllanthus Species: Present Status and Future Prospects. Sci. World J. 2014, 2014, 1–12. DOI: 10.1155/2014/839172.
  • Bhattacharya, A.; Chatterjee, A.; Ghosal, S., et al. Antioxidant Activity of Active Tannoid Principles of Emblica Officinalis (Amla). 1999.
  • Habib-Ur-Rehman; Yasin, K.A.; Choudhary, M.A.; Khaliq, N.; Atta-Ur-Rahman; Choudhary, M. I.; Malik, S. Studies on the Chemical Constituents of Phyllanthus Emblica. Nat. Prod. Res. 2007, 21(9), 775–781. DOI: 10.1080/14786410601124664.
  • Naik, G.; Priyadarsini, K.; Bhagirathi, R.; Mishra, B.; Mishra, K. P.; Banavalikar, M. M.; Mohan, H. In vitro Antioxidant Studies and Free Radical Reactions of Triphala, an Ayurvedic Formulation and Its Constituents. Phytother. Res. 2005, 19(7), 582–586. DOI: 10.1002/ptr.1515.
  • Zhang, L.-Z.; Zhao, W.-H.; Guo, Y.-J.; Tu, G.-Z.; Lin, S.; Xin, L.-G. [Studies on Chemical Constituents in Fruits of Tibetan Medicine Phyllanthus Emblica]. Zhongguo Zhong Yao Za Zhi. 2003, 28(10), 940–943.
  • Zhang, Y.-J.; Nagao, T.; Tanaka, T.; Yang, C.-R.; Okabe, H.; Kouno, I. Antiproliferative Activity of the Main Constituents from Phyllanthus Emblica. Biol. Pharm. Bull. 2004, 27(2), 251–255. DOI: 10.1248/bpb.27.251.
  • Hussain, S.Z.; Naseer, B.; Qadri, T., et al.et al. Anola (Emblica Officinalis): Morphology, Taxonomy, Composition and Health Benefits. In Fruits Grown in Highland Regions of the Himalayas; Hussain, S.; Naseer, B. and Qadri, T., Eds.; Springer: Cham, Switzerland, 2021; pp. 193–206.
  • Kc, Y.; Rayamajhi, S.; Dangal, A.; Shiwakoti, L. D. Phytochemical, Nutritional, Antioxidant Activity and Sensorial Characteristics of Amala (Phyllanthus Emblica L.) Chutney. Asian Food Sci. J. 2020, 18(1), 43–52. DOI: 10.9734/afsj/2020/v18i130209.
  • Tewari, R.; Kumar, V.; Sharma, H. Physical and Chemical Characteristics of Different Cultivars of Indian Gooseberry (Emblica Officinalis). J. Food Sci. Technol. 2019, 56(3), 1641–1648. DOI: 10.1007/s13197-019-03595-y.
  • Parveen, K.; Khatkar, B. Physico-Chemical Properties and Nutritional Composition of Aonla (Emblica Officinalis) Varieties. Int. Food Res. J. 2015, 22(6), 2358.
  • Sonkar, N.; Rajoriya, D.; Chetana, R.; Venkatesh Murthy, K. Effect of Cultivars, Pretreatment and Drying on Physicochemical Properties of Amla (Emblica Officinalis) Gratings. J. Food Sci. Technol. 2020, 57(3), 980–992. DOI: 10.1007/s13197-019-04131-8.
  • Thenmozhi, K.; Asha, H. PROXIMATE COMPOSITION, NUTRITIVE SUBSTANCE and PHYTOCHEMICAL EVALUATION of WILD EDIBLE FRUITS of VELLIANGIRI HILLS of COIMBATORE DISTRICT. Kongunadu Res. J. 2019, 6(1), 33–38. DOI: 10.26524/krj284.
  • Barthakur, N.; Arnold, N. Chemical Analysis of the Emblic (Phyllanthus Emblica L.) and Its Potential as a Food Source. Sci. Hortic. 1991, 47(1–2), 99–105. DOI: 10.1016/0304-4238(91)90031-S.
  • Judprasong, K.; Charoenkiatkul, S.; Thiyajai, P.; Sukprasansap, M. Nutrients and Bioactive Compounds of Thai Indigenous Fruits. Food Chem. 2013, 140(3), 507–512. DOI: 10.1016/j.foodchem.2013.01.057.
  • Parveen, R.; Abbasi, A.M.; Shaheen, N.; Shah, M. H. Accumulation of Selected Metals in the Fruits of Medicinal Plants Grown in Urban Environment of Islamabad, Pakistan. Arabian J. Chem. 2020, 13(1), 308–317. DOI: 10.1016/j.arabjc.2017.04.010.
  • Wang, J.; Chen, Z.; Liu, X., et al. Nutritional Analysis and Evaluation of Fruits of Phyllanthus Emblica. J. Fruit Sci. 2018, 35(01), 108–117.
  • Kumar, A.; Tantry, B.A.; Rahiman, S.; Gupta, U. Comparative Study of Antimicrobial Activity and Phytochemical Analysis of Methanolic and Aqueous Extracts of the Fruit of Emblica Officinalis Against Pathogenic Bacteria. J. Tradit. Chin. Med. Sep 2011, 31(3): 246–250.
  • Saeed, S.; Tariq, P. Antibacterial Activities of Emblica Officinalis and Coriandrum Sativum Against Gram Negative Urinary Pathogens. Pak. J. Pharm. Sci. 2007, 20(1), 32–35.
  • Xiang, Y.; Pei, Y.; Qu, C.; Lai, Z.; Ren, Z.; Yang, K.; Xiong, S.; Zhang, Y.; Yang, C.; Wang, D., et al. In vitro Anti-Herpes Simplex Virus Activity of 1,2,4,6-Tetra- O -Galloyl-β- D -Glucose from Phyllanthus Emblica L. (Euphorbiaceae). Phytotherapy Res. 2011, 25(7), 975–982.
  • Bagavan, A.; Rahuman, A.A.; Kaushik, N.K.; Sahal, D. In vitro Antimalarial Activity of Medicinal Plant Extracts Against Plasmodium Falciparum. Parasitol. Res. 2011, 108(1), 15–22. DOI: 10.1007/s00436-010-2034-4.
  • Rahman, S.; Akbor, M.; Howlader, A.; Jabbar, A. Antimicrobial and Cytotoxic Activity of the Alkaloids of Amlaki (Emblica Officinalis). Pak. J. Biol. Sci. 2009, 12(16), 1152–1155. DOI: 10.3923/pjbs.2009.1152.1155.
  • Nain, P.; Saini, V.; Sharma, S.; Nain, J. Antidiabetic and Antioxidant Potential of Emblica Officinalis Gaertn. Leaves Extract in Streptozotocin-Induced Type-2 Diabetes Mellitus (T2DM) Rats. J. Ethnopharmacol. 2012, 142(1), 65–71. DOI: 10.1016/j.jep.2012.04.014.
  • Suryanarayana, P.; Saraswat, M.; Petrash, J.M., et al. Emblica Officinalis and Its Enriched Tannoids Delay Streptozotocin-Induced Diabetic Cataract in Rats. 2007.
  • Mythilypriya, R.; Shanthi, P.; Sachdanandam, P. Analgesic, Antipyretic and Ulcerogenic Properties of an Indigenous Formulation–kalpaamruthaa. Phytother. Res. 2007, 21(6), 574–578. DOI: 10.1002/ptr.2116.
  • Sairam, K.; Rao, C.V.; Babu, M.D.; Kumar, K. V.; Agrawal, V. K.; Goel, K. R. Antiulcerogenic Effect of Methanolic Extract of Emblica Officinalis: An Experimental Study. J. Ethnopharmacol. 2002, 82(1), 1–9. DOI: 10.1016/S0378-8741(02)00041-7.
  • Ngamkitidechakul, C.; Jaijoy, K.; Hansakul, P.; Soonthornchareonnon, N.; Sireeratawong, S. Antitumour Effects of Phyllanthus Emblica L.: Induction of Cancer Cell Apoptosis and Inhibition of in vivo Tumour Promotion and in vitro Invasion of Human Cancer Cells. Phytotherapy Res. 2010, 24(9), 1405–1413. DOI: 10.1002/ptr.3127.
  • Jose, J.K.; Kuttan, G.; Kuttan, R. Antitumour Activity of Emblica Officinalis. J. Ethnopharmacol. 2001, 75(2–3), 65–69. DOI: 10.1016/S0378-8741(00)00378-0.
  • Potter, D.; Eriksson, T.; Evans, R.C.; Oh, S.; Smedmark, J. E. E.; Morgan, D. R.; Kerr, M.; Robertson, K. R.; Arsenault, M.; Dickinson, T. A., et al. Phylogeny and Classification of Rosaceae. Plant Syst. Evol. 2007, 266(1–2), 5–43.
  • Alrgei, H.O.S.; Dabić, D.Č.; Natić, M.M.; Rakonjac, V. S.; Milojković-Opsenica, D.; Tešić, Ž. L.; Fotirić Akšić, M. M. Chemical Profile of Major Taste- and Health-Related Compounds of Oblačinska Sour Cherry. J. Sci. Food Agric. 2016, 96(4), 1241–1251. DOI: 10.1002/jsfa.7212.
  • Colaric, M.; Veberic, R.; Stampar, F.; Hudina, M. Evaluation of Peach and Nectarine Fruit Quality and Correlations Between Sensory and Chemical Attributes. J. Sci. Food Agric. 2005, 85(15), 2611–2616. DOI: 10.1002/jsfa.2316.
  • Kim, D.-O.; Chun, O.K.; Kim, Y.J.; Moon, H.-Y.; Lee, C. Y. Quantification of Polyphenolics and Their Antioxidant Capacity in Fresh Plums. J. Agric. Food Chem. 2003, 51(22), 6509–6515. DOI: 10.1021/jf0343074.
  • Mratinić, E.; Popovski, B.; Milošević, T.; Popovska, M. Evaluation of Apricot Fruit Quality and Correlations Between Physical and Chemical Attributes. Czech J. Food Sci. 2011, 29(2), 161–170. DOI: 10.17221/203/2010-CJFS.
  • Usenik, V.; Fabčič, J.; Štampar, F. Sugars, Organic Acids, Phenolic Composition and Antioxidant Activity of Sweet Cherry (Prunus Avium L.). Food Chem. 2008, 107(1), 185–192. DOI: 10.1016/j.foodchem.2007.08.004.
  • Cevallos-Casals, B.A.; Byrne, D.; Okie, W.R.; Cisneros-Zevallos, L. Selecting New Peach and Plum Genotypes Rich in Phenolic Compounds and Enhanced Functional Properties. Food Chem. 2006, 96(2), 273–280. DOI: 10.1016/j.foodchem.2005.02.032.
  • Liu, R.H. Dietary Bioactive Compounds and Their Health Implications. J. Food Sci. 2013, 78(s1), A18–A25. DOI: 10.1111/1750-3841.12101.
  • Rashid, F.; Ahmed, R.; Mahmood, A.; Ahmad, Z.; Bibi, N.; Kazmi, S. U. Flavonoid Glycosides from Prunus Armeniaca and the Antibacterial Activity of a Crude Extract. Arch. Pharmacal Res. 2007, 30(8), 932–937. DOI: 10.1007/BF02993959.
  • Leccese, A.; Bartolini, S.; Viti, R. Total Antioxidant Capacity and Phenolics Content in Apricot Fruits. Int. J. Fruit Sci. 2007, 7(2), 3–16. DOI: 10.1300/J492v07n02_02.
  • Leccese, A.; Bartolini, S.; Viti, R. From Genotype to Apricot Fruit Quality: The Antioxidant Properties Contribution. Plant Foods Human Nutr. 2012, 67(4), 317–325. DOI: 10.1007/s11130-012-0314-0.
  • Schmitzer, V.; Slatnar, A.; Mikulic-Petkovsek, M.; Veberic, R.; Krska, B.; Stampar, F. Comparative Study of Primary and Secondary Metabolites in Apricot (Prunus Armeniaca L.) Cultivars. J. Sci. Food Agric. 2011, 91(5), 860–866. DOI: 10.1002/jsfa.4257.
  • Mehta, S.; Soni, N., and Satpathy, G., et al. Evaluation of Nutritional, Phytochemical, Antioxidant and Antibacterial Activity of Dried Plum (Prunus Domestica). J. Pharmacogn. Phytochem. 2014, 3(2), 166–171.
  • Drogoudi, P.D.; Vemmos, S.; Pantelidis, G.; Petri, E.; Tzoutzoukou, C.; Karayiannis, I. Physical Characters and Antioxidant, Sugar, and Mineral Nutrient Contents in Fruit from 29 Apricot (Prunus Armeniaca L.) Cultivars and Hybrids. J. Agric. Food Chem. 2008, 56(22), 10754–10760. DOI: 10.1021/jf801995x.
  • Ali, S.; Masud, T.; Abbasi, K.S. Physico-Chemical Characteristics of Apricot (Prunus Armeniaca L.) Grown in Northern Areas of Pakistan. Sci. Hortic. 2011, 130(2), 386–392. DOI: 10.1016/j.scienta.2011.05.040.
  • Alajil, O.; Sagar, V.R.; Kaur, C.; Rudra, S. G.; Sharma, R. R.; Kaushik, R.; Verma, M. K.; Tomar, M.; Kumar, M.; Mekhemar, M., et al. Nutritional and Phytochemical Traits of Apricots (Prunus Armeniaca L.) for Application in Nutraceutical and Health Industry. Foods. 2021, 10(6), 1344.
  • Gomaa, E.Z. In vitro Antioxidant, Antimicrobial, and Antitumor Activities of Bitter Almond and Sweet Apricot (Prunus Armeniaca L.) Kernels. Food Sci. Biotechnol. 2013, 22(2), 455–463. DOI: 10.1007/s10068-013-0101-1.
  • Yiğit, D.; Yiğit, N.; Mavi, A. Antioxidant and Antimicrobial Activities of Bitter and Sweet Apricot (Prunus Armeniaca L.) Kernels. Braz. J. Med. Biol. Res. 2009, 42(4), 346–352. DOI: 10.1590/S0100-879X2009000400006.
  • Tian, H.; Yan, H.; Tan, S.; Zhan, P.; Mao, X.; Wang, P.; Wang, Z. Apricot Kernel Oil Ameliorates Cyclophosphamide‐associated Immunosuppression in Rats. Lipids. 2016, 51(8), 931–939. DOI: 10.1007/s11745-016-4166-5.
  • Minaiyan, M.; Ghannadi, A.; Asadi, M., et al. Anti-Inflammatory Effect of Prunus Armeniaca L.(apricot) Extracts Ameliorates TNBS-Induced Ulcerative Colitis in Rats. Res. Pharm. Sci. 2014, 9(4), 225.
  • Yilmaz, I.; Cetin, A.; Bilgic, Y. Hepatoprotective Effects of Apricot Against Acetaminophen Induced Acute Hepatotoxicity in Rats. Am. J. Pharmacol. Sci. 2015, 3(2), 44–48.
  • Kurus, M.; Ertan, C.; Celi, M.; Cetin, A.; Otlu, A. Protective Effect of Apricot Feeding in the Pulmonary Tissues of Rats Exposed to Low Dose X-Ray Radiation. Indian J. Appl. Res. 2013, 3, 1–5. DOI: 10.15373/2249555X/OCT2013/95.
  • Parlakpinar, H.; Olmez, E.; Acet, A.; Ozturk, F.; Tasdemir, S.; Ates, B.; Gul, M.; Otlu, A. Beneficial Effects of Apricot-Feeding on Myocardial Ischemia-Reperfusion Injury in Rats. Food Chem. Toxicol. 2009, 47(4), 802–808. DOI: 10.1016/j.fct.2009.01.014.
  • Abdel-Rahman, M.K. Can Apricot Kernels Fatty Acids Delay the Atrophied Hepatocytes from Progression to Fibrosis in Dimethylnitrosamine (DMN)-Induced Liver Injury in Rats? Lipids Health Dis. 2011, 10(1), 1–10. DOI: 10.1186/1476-511X-10-114.
  • Shivashankara, A.R.; Azmidah, A.; Haniadka, R.; Rai, M. P.; Arora, R.; Baliga, M. S. Dietary Agents in the Prevention of Alcohol-Induced Hepatotoxicty: Preclinical Observations. Food Funct. 2012, 3(2), 101–109. DOI: 10.1039/C1FO10170F.
  • Ahmed, T.; Sadia, H.; Khalid, A.; Batool, S.; Janjua, A. Prunes and Liver Function: A Clinical Trial. Pak. J. Pharm. Sci. 2010, 23(4), 463–467.
  • Yurt, B.; Celik, I. Hepatoprotective Effect and Antioxidant Role of Sun, Sulphited-Dried Apricot (Prunus Armeniaca L.) and Its Kernel Against Ethanol-Induced Oxidative Stress in Rats. Food Chem. Toxicol. 2011, 49(2), 508–513. DOI: 10.1016/j.fct.2010.11.035.
  • Ozturk, F.; Gul, M.; Ates, B.; Ozturk, I. C.; Cetin, A.; Vardi, N.; Otlu, A.; Yilmaz, I. Protective Effect of Apricot (Prunus Armeniaca L.) on Hepatic Steatosis and Damage Induced by Carbon Tetrachloride in Wistar Rats. Br. J. Nutr. 2009, 102(12), 1767–1775. DOI: 10.1017/S0007114509991322.
  • Rao, R.; Husain, T.; Datt, B., et al. Revision of the Family Berberidaceae of the Indian Region-II. Rheedea-Kerala-. 1998, 8(2), 109–143.
  • . AnonymousThe Wealth of India, a Dictionary of Indian Raw Materials. Publications and Information Directorate CSIR, New Delhi 1988, 2(B), 114–118.
  • Hajra, P.; Rao, R., and Singh, D., et al. Flora of India, Botanical Survey of India; New Delhi, India: Director, Botanical Survey of India, Calcutta, India and printed at Deep Printers, 1995.
  • Landrum, L.R. Revision of Berberis (Berberidaceae) in Chile and Adjacent Southern Argentina. Ann. Mo. Bot. Gard. 1999, 86(4), 793–834. DOI: 10.2307/2666170.
  • Srivastava, S.K.; Rawat, A.K.S.; Srivastava, M., et al. Pharmacognostic Evaluation of the Roots of Berberis Chitria Lindl. Nat. Prod. Sci. 2006, 12(1), 19–23.
  • Kirtikar, K., and Basu, B. Indian Medicinal Plants. Indian Med. Plants. 1935, 3, 852.
  • Tutak, M.; Korkmaz, N.E. Environmentally Friendly Natural Dyeing of Organic Cotton. J. Nat. Fibers. 2012, 9(1), 51–59. DOI: 10.1080/15440478.2011.651830.
  • Haji, A. Functional Dyeing of Wool with Natural Dye Extracted from Berberis Vulgaris Wood and Rumex Hymenosepolus Root as Biomordant. 2010.
  • Rajasekaran, A., and Pant, J. The Genus Berberis Linn.: A Review. Pharmacogn. Rev. 2008, 2(4), 369–385.
  • Maliwichi-Nyirenda, C.P.; Maliwichi, L.L.; Franco, M. Medicinal Uses of Berberis Holstii Engl. (Berberidaceae) in Malawi, the Only African Endemic Barberry. J. Med. Plants Res. 2011, 5(8), 1367–1373.
  • Karimov, A.; Telezhenetskaya, M.; Lutfullin, K.; Yunusov, S. The New Alkaloid Oblongamine. Chem. Nat. Compd. 1977, 13(1), 68–70. DOI: 10.1007/BF00566174.
  • Hussaini, F.A.; Shoeb, A. Isoquinoline Derived Alkaloids from Berberis Chitria. Phytochemistry. 1985, 24(3), 633. DOI: 10.1016/S0031-9422(00)80794-3.
  • Rajasekaran, A.; Pokhriyal, R.; Singh, Y. Quantitative Estimation of Berberine in Roots of Different Provenances of Berberis Aristata DC by HPLC and Study of Their Antifungal Properties. Pharmacogn. Mag. 2009, 5(20), 355. DOI: 10.4103/0973-1296.58566.
  • Dev, S. Selection of Prime Ayurvedic Plants Drugs, Ancient- Modern Concordance. New Delhi, India: Anamaya Publishers, 2006.
  • Gorval, L.; Grishkovets, V. Alkaloids of Some Species of the genusBerberis Introduced into the Crimea. Chem. Nat. Compd. 1999, 35(2), 223–224. DOI: 10.1007/BF02234944.
  • Andola, H.C.; Gaira, K.S.; Rawat, M.S.M., et al. Nutritive and Mineral Potential of Berberis Asiatica and Berberis Chitria. National Acad. Sci. Lett. 2010, 33(3), 63–68.
  • Chandra, S.; Saklani, S.; Alok, S. Berberis Asiatica–future Based Excellent Fruit in Nutritional Profile, Antimicrobial and Antioxidant Ingredients. Int. Res. J. Pharm. 2011, 2, 213–216.
  • Kumar, M.; Puri, S.; Pundir, A.; Bangar, S.P.; Changan, S.; Choudhary, P.; Parameswari, E.; Alhariri, A.; Samota, M.K.; Damale, R.D., et al. Evaluation of Nutritional, Phytochemical, and Mineral Composition of Selected Medicinal Plants for Therapeutic Uses from Cold Desert of Western Himalaya. Plants. 2021, 10(7), 1429.
  • Watt, G. Economic Products of India Exhibited at the Calcutta International Exhibition, 1883-84. 1883, 1.
  • Samhita, S.; Shastri, A. Chaukhamba Sanskrit Sansthan. Varanasi, 14th Edi, Purvardha, Sutrasthana. 1963, 15(7).
  • Bhandari, D.; Nath, G.; Ray, A.; Tewari, P. V. Antimicrobial Activity of Crude Extracts from Berberis Asiatica Stem Bark. Pharm. Biol. 2000, 38(4), 254–257. DOI: 10.1076/1388-0209(200009)3841-AFT254.
  • Khursheed, H.; Amtul, H. In vivo Antibacterial Activity of Berberis Asiatica. 1986.
  • Bhakuni, D.; Shoeb, A.; Popli, S. Studies in Medicinal Plants: Part 1-Chemical Constituents of Berberis Asiatica Roxb. 1968.
  • Ram, P.R.; Mehrotra, B. Compendium of Indian Medicinal Plants. Drug Res. Prep.: A CDRI Ser. 1993, 2, 453.
  • Joshi, M. An Ethnobotanical Study of the Kumaon Region of India. Econ. Bot. 1971, 25(4), 414–422. DOI: 10.1007/BF02985209.
  • Chauhan, N.; Uniyal, M.; Sannad, B. A Preliminary Study of the Indigenous Drugs Used at the Tibetan Medicinal Centre, Dharmshala (HP); Nagarjun, 1978.
  • Uma, R.; Sivasubramanian, V.; Niranjali Devaraj, S. Preliminary Phycochemical Analysis and in vitro Antibacterial Screening of Green Micro Algae, Desmococcus Olivaceous, Chlorococcum Humicola and Chlorella Vulgaris. J. Algal Biomass Utln. 2011, 2(3), 74–81.
  • Shikha, D., and Kashyap, P. Yellow Himalayan Berry. In Nayik, G. A., Gull, A. (Eds.) Antioxidants in Fruits: Properties and Health Benefits Springer, 2020; pp 67–81.
  • Pandey, Y.; Bhatt, S. Overview of Himalayan Yellow Raspberry (Rubus Ellipticus Smith.): A Nutraceutical Plant. J. Appl. Nat. Sci. 2016, 8(1), 494–499. DOI: 10.31018/jans.v8i1.824.
  • Badhani, A.; Rawat, S.; Bhatt, I.D.; Rawal, R. S. Variation in Chemical Constituents and Antioxidant Activity in Yellow Himalayan (R Ubus Ellipticus Smith) and Hill Raspberry (R Ubus Niveus Thunb.). J. Food Biochem. 2015, 39(6), 663–672. DOI: 10.1111/jfbc.12172.
  • Saini, R.; Dangwal, K.; Singh, H.; Garg, V. Antioxidant and Antiproliferative Activities of Phenolics Isolated from Fruits of Himalayan Yellow Raspberry (Rubus Ellipticus). J. Food Sci. Technol. 2014, 51(11), 3369–3375. DOI: 10.1007/s13197-012-0836-3.
  • Sharma, R.; Raghuvanshi, R.; Kumar, R.; Thakur, M. S.; Kumar, S.; Patel, M. K.; Chaurasia, O. P.; Saxena, S. Current Findings and Future Prospective of High-Value Trans Himalayan Medicinal Plant Lycium Ruthenicum Murr: A Systematic Review. Clinical Phytosci. 2022, 8(1), 1–20. DOI: 10.1186/s40816-021-00328-7.
  • Chen, C.; Shao, Y.; Tao, Y.; Mei, L.; Shu, Q.; Wang, L. Main Anthocyanins Compositions and Corresponding H-ORAC Assay for Wild Lycium Ruthenicum Murr. Fruits from the Qaidam Basin. J. Pharm. Tech. Drug Res. 2013, 2(1), 1. DOI: 10.7243/2050-120X-2-1.
  • Wu, T.; Lv, H.; Wang, F.; Wang, Y. Characterization of Polyphenols from Lycium Ruthenicum Fruit by UPLC-Q-TOF/MS E and Their Antioxidant Activity in Caco-2 Cells. J. Agric. Food Chem. 2016, 64(11), 2280–2288. DOI: 10.1021/acs.jafc.6b00035.
  • Zheng, J.; Ding, C.; Wang, L.; Li, G.; Shi, J.; Li, H.; Wang, H.; Suo, Y. Anthocyanins Composition and Antioxidant Activity of Wild Lycium Ruthenicum Murr. From Qinghai-Tibet Plateau. Food Chem. 2011, 126(3), 859–865. DOI: 10.1016/j.foodchem.2010.11.052.
  • Castro, V.; Aierken, A.; Zhang, X., et al. Comparative Study of Antioxidant Potential and Cytotoxic Effects of Methanolic Extracts from Lycium Barbarum and Lycium Ruthenicum Berries. Planta Med. Int. Open 2017, 4(S 01), Tu-PO-14.
  • Islam, T.; Yu, X.; Badwal, T.S.; Xu, B. Comparative Studies on Phenolic Profiles, Antioxidant Capacities and Carotenoid Contents of Red Goji Berry (Lycium Barbarum) and Black Goji Berry (Lycium Ruthenicum). Chem. Cent. J. 2017, 11(1), 1–8. DOI: 10.1186/s13065-017-0287-z.
  • Xin, G.; Zhu, F.; Du, B.; Xu, B. Antioxidants Distribution in Pulp and Seeds of Black and Red Goji Berries as Affected by Boiling Processing. J. Food Qual. 2017, 2017, 1–8. DOI: 10.1155/2017/3145946.
  • Quan, S.; Hai-Xia, Z.; Yu, L., et al. The Research on Chemical Component and Antioxidant Activity of Wild Lycium Ruthenicum. Sci. Technol. Food Ind. 2017, 4, 10.
  • Xiang, C.; Guohai, Z. Scavenging and Anti-Fatigue Activity of Wu-Wei-Zi Aqueous Extracts. Afr. J. Microbiol. Res. 2011, 5(32), 5933–5940.
  • Yossa Nzeuwa, I.B.; Xia, H.; Shi, Y.; Yang, C.; Shah, M. W.; Guo, B.; Wang, L.; Sun, G. Fatty Acid and Mineral Contents of Lycium Ruthenicum Murr. And Antioxidant Activity Against Isoproterenol‐induced Acute Myocardial Ischemia in Mice. Food Sci. Nutr. 2020, 8(2), 1075–1081. DOI: 10.1002/fsn3.1393.
  • Shen, M.; Liu, K.; Liang, Y.; Liu, G.; Sang, J.; Li, C. Extraction Optimization and Purification of Anthocyanins from Lycium Ruthenicum Murr. And Evaluation of Tyrosinase Inhibitory Activity of the Anthocyanins. J. Food Sci. 2020, 85(3), 696–706. DOI: 10.1111/1750-3841.15037.
  • Tang, J.; Yan, Y.; Ran, L.; Mi, J.; Sun, Y.; Lu, L.; Gao, Y.; Zeng, X.; Cao, Y. Isolation, Antioxidant Property and Protective Effect on PC12 Cell of the Main Anthocyanin in Fruit of Lycium Ruthenicum Murray. J. Funct. Foods. 2017, 30, 97–107. DOI: 10.1016/j.jff.2017.01.015.
  • Dutta, S.K.; Akoijam, R.; Boopathi, T., et al. Bioactivity and Traditional Uses of 26 Underutilized Ethno-Medicinal Fruit Species of North-East Himalaya, India. J. Food Meas. Charact. 2018, 12(4), 2503–2514.
  • Hasbal, G.; Yilmaz-Ozden, T.; Can, A. Antioxidant and Antiacetylcholinesterase Activities of Sorbus Torminalis (L.) Crantz (Wild Service Tree) Fruits. J. Food Drug Anal. 2015, 23(1), 57–62. DOI: 10.1016/j.jfda.2014.06.006.
  • Cardozo, M.L.; Ordóñez, R.M.; Alberto, M.R., et al. Antioxidant and Anti-Inflammatory Activity Characterization and Genotoxicity Evaluation of Ziziphus Mistol Ripe Berries, Exotic Argentinean Fruit. Food Res. Int. 2011, 44(7), 2063–2071.
  • Isfahlan, A.J.; Mahmoodzadeh, A.; Hasanzadeh, A., et al. Antioxidant and Antiradical Activities of Phenolic Extracts from Iranian Almond (Prunus Amygdalus L.) Hulls and Shells. Turk. J. Biol. 2010, 34(2), 165–173.
  • Barreca, D.; Lagana, G.; Ficarra, S., et al. Evaluation of the Antioxidant and Cytoprotective Properties of the Exotic Fruit Annona Cherimola Mill. (Annonaceae). Food Res. Int. 2011, 44(7), 2302–2310.
  • Céspedes, C.L.; Valdez-Morales, M.; Avila, J.G., et al. Phytochemical Profile and the Antioxidant Activity of Chilean Wild Black-Berry Fruits, Aristotelia Chilensis (Mol) Stuntz (Elaeocarpaceae). Food Chem. 2010, 119(3), 886–895.
  • Chizzola, R.; Saeidnejad, A.H.; Azizi, M., et al. Bunium Persicum: Variability in Essential Oil and Antioxidants Activity of Fruits from Different Iranian Wild Populations. Genet. Resour. Crop Evol. 2014, 61(8), 1621–1631.
  • Malta, L.G.; Tessaro, E.P.; Eberlin, M., et al. Assessment of Antioxidant and Antiproliferative Activities and the Identification of Phenolic Compounds of Exotic Brazilian Fruits. Food Res. Int. 2013, 53(1), 417–425.
  • Du, Z.; Liu, H.; Zhang, Z., et al. Antioxidant and Anti-Inflammatory Activities of Radix Isatidis Polysaccharide in Murine Alveolar Macrophages. Int. J. Biol. Macromol. 2013, 58, 329–335.
  • Ghafar, M.; Prasad, K.N.; Weng, K.K., Ismail, A. Flavonoid, Hesperidine, Total Phenolic Contents and Antioxidant Activities from Citrus Species. Afr. J. Biotechnol. 2010, 9(3).
  • Leontowicz, H.; Leontowicz, M.; Drzewiecki, J., et al. Bioactive Properties of Snake Fruit (Salacca Edulis Reinw) and Mangosteen (Garcinia Mangostana) and Their Influence on Plasma Lipid Profile and Antioxidant Activity in Rats Fed Cholesterol. Eur. Food Res. Technol. 2006, 223(5), 697–703.
  • Ndhlala, A.R.; Chitindingu, K.; Mupure, C., et al. Antioxidant Properties of Methanolic Extracts from Diospyros Mespiliformis (Jackal Berry), Flacourtia Indica (Batoka Plum), Uapaca Kirkiana (Wild Loquat) and Ziziphus Mauritiana (Yellow Berry) Fruits. Int. J. Food Sci. Technol. 2008, 43(2), 284–288.
  • Panja, S.; Chaudhuri, D.; Ghate, N.B., et al. In vitro Assessment of Phytochemicals, Antioxidant and DNA Protective Potential of Wild Edible Fruit of Elaeagnus Latifolia Linn. Fruits. 2014, 69(4), 303–314.
  • Sasipriya, G.; Maria, C.L.; Siddhuraju, P. Influence of Pressure Cooking on Antioxidant Activity of Wild (Ensete Superbum) and Commercial Banana (Musa Paradisiaca Var. Monthan) Unripe Fruit and Flower. J. Food Sci. Technol. 2014, 51(10), 2517–2525.
  • Yildiz, H.; Ercisli, S.; Hegedus, A.; Akbulut, M.; Topdas, E. F.; Aliman, J. Bioactive Content and Antioxidant Characteristics of Wild (Fragaria Vesca L.) and Cultivated Strawberry (Fragaria× Ananassa Duch.) Fruits from Turkey. J. Appl. Botany Food Qual. 2014, 87, 274–278. https://doi.org/10.5073/JABFQ.2014.087.038
  • Akhbari, M.; Batooli, H.; Mozdianfard, M. Comparative Study of Composition and Biological Activities of SDE Prepared Essential Oils from Flowers and Fruits of Two Hypericum Species from Central Iran. Nat. Prod. Res. 2012, 26(3), 193–202.
  • Mezadri, T.; Villaño, D.; Fernández-Pachón, M., et al. Antioxidant Compounds and Antioxidant Activity in Acerola (Malpighia Emarginata DC.) Fruits and Derivatives. J. Food Compost. Anal. 2008, 21(4), 282–290.
  • Lu, Y.-L.; Liu, Y.-H.; Chyuan, J.-H., Cheng, K. T., Liang, W. L., Hou, W. C. Antioxidant Activities of Different Wild Bitter Gourd (Momordica Charantia L. Var. Abbreviata Seringe) Cultivars. Bot. Stud. 2012, 53(2), 207–214.
  • Santacruz, L.; Carriazo, J.G.; Almanza, O., et al. Anthocyanin Composition of Wild Colombian Fruits and Antioxidant Capacity Measurement by Electron Paramagnetic Resonance Spectroscopy. J. Agric. Food Chem. 2012, 60(6), 1397–1404.
  • Blando, F.; Albano, C.; Liu, Y., et al. Polyphenolic Composition and Antioxidant Activity of the Under‐utilised Prunus Mahaleb L. Fruit. J. Sci. Food Agric. 2016, 96(8), 2641–2649.
  • Ruiz-Rodríguez, B.M.; De Ancos, B.; Sánchez-Moreno, C., et al. Wild Blackthorn (Prunus Spinosa L.) and Hawthorn (Crataegus Monogyna Jacq.) Fruits as Valuable Sources of Antioxidants. Fruits. 2014, 69(1), 61–73.
  • Ramos, A.S.; Souza, R.O.; Boleti, A., et al. Chemical Characterization and Antioxidant Capacity of the Araçá-Pera (Psidium Acutangulum): An Exotic Amazon Fruit. Food Res. Int. 2015, 75, 315–327.
  • Barros, L.; Carvalho, A.M.; Ferreira, I.C. Exotic Fruits as a Source of Important Phytochemicals: Improving the Traditional Use of Rosa Canina Fruits in Portugal. Food Res. Int. 2011, 44(7), 2233–2236.
  • Roman, I.; Stănilă, A.; Stănilă, S. Bioactive Compounds and Antioxidant Activity of Rosa Canina L. Biotypes from Spontaneous Flora of Transylvania. Chem. Cent. J. 2013, 7(1), 1–10.
  • Kubota, M.; Ishikawa, C.; Sugiyama, Y., et al. Anthocyanins from the Fruits of Rubus Croceacanthus and Rubus Sieboldii, Wild Berry Plants from Okinawa, Japan. J. Food Compost. Anal. 2012, 28(2), 179–182.
  • Fu, Y.; Zhou, X.; Chen, S., et al. Chemical Composition and Antioxidant Activity of Chinese Wild Raspberry (Rubus Hirsutus Thunb.). LWT Food Sci. Technol. 2015, 60(2), 1262–1268.
  • Fazio, A.; Plastina, P.; Meijerink, J., et al. Comparative Analyses of Seeds of Wild Fruits of Rubus and Sambucus Species from Southern Italy: Fatty Acid Composition of the Oil, Total Phenolic Content, Antioxidant and Anti-Inflammatory Properties of the Methanolic Extracts. Food Chem. 2013, 140(4), 817–824.
  • Egea, I.; Sánchez-Bel, P.; Romojaro, F., et al. Six Edible Wild Fruits as Potential Antioxidant Additives or Nutritional Supplements. Plant Foods Human Nutr. 2010, 65(2), 121–129.
  • Ma, C.; Dastmalchi, K.; Whitaker, B.D., et al. Two New Antioxidant Malonated Caffeoylquinic Acid Isomers in Fruits of Wild Eggplant Relatives. J. Agric. Food Chem. 2011, 59(17), 9645–9651.
  • Omena, C.M.B.; Valentim, I.B.; Guedes, G., et al. Antioxidant, Anti-Acetylcholinesterase and Cytotoxic Activities of Ethanol Extracts of Peel, Pulp and Seeds of Exotic Brazilian Fruits: Antioxidant, Anti-Acetylcholinesterase and Cytotoxic Activities in Fruits. Food Res. Int. 2012, 49(1), 334–344.
  • Augusto, T.; Salinas, E.; Alencar, S., et al. Camargo Acd, Vieira TMFdS Phenolic Compounds and Antioxidant Activity of Hydroalcoholic Extracts of Wild and Cultivated Murtilla (Ugni Molinae Turcz.) Food Sci. Technol. 2014, 34, 667–679.
  • Gorinstein, S.; Poovarodom, S.; Leontowicz, H., et al. Antioxidant Properties and Bioactive Constituents of Some Rare Exotic Thai Fruits and Comparison with Conventional Fruits: In vitro and in vivo Studies. Food Res. Int. 2011, 44(7), 2222–2232.
  • Garzón, G.; Narváez, C.; Riedl, K., et al. Chemical Composition, Anthocyanins, Non-Anthocyanin Phenolics and Antioxidant Activity of Wild Bilberry (Vaccinium Meridionale Swartz) from Colombia. Food Chem. 2010, 122(4), 980–986.
  • Giovanelli, G.; Buratti, S. Comparison of Polyphenolic Composition and Antioxidant Activity of Wild Italian Blueberries and Some Cultivated Varieties. Food Chem. 2009, 112(4), 903–908.
  • Koh, K.-H.; Kim, H.-W.; Han, S., et al. Polyphenolic Compounds and Superoxide Radical Scavenging Activity of Moru-Ju. Food Sci. Biotechnol. 2003, 12(3), 290–297.
  • Choi, J.Y.; Lee, S.J.; Lee, S.J., et al. Analysis and Tentative Structure Elucidation of New Anthocyanins in Fruit Peel of Vitis Coignetiae Pulliat (Meoru) Using LC‐MS/MS: Contribution to the Overall Antioxidant Activity. J. Sep. Sci. 2010, 33(9), 1192–1197.
  • Mupure, C.; Chitindingu, K. Antioxidant Potentials and Degrees of Polymerization of Six Wild Fruits. Sci. Res. Essays. 2006, 1(3), 087–092.
  • Chalise, J.P.; Acharya, K.; Gurung, N., et al. Antioxidant Activity and Polyphenol Content in Edible Wild Fruits from Nepal. Int. J. Food Sci. Nutr. 2010, 61(4), 425–432.
  • Lamien-Meda, A.; Lamien, C.E.; Compaoré, M.M., et al. Polyphenol Content and Antioxidant Activity of Fourteen Wild Edible Fruits from Burkina Faso. Molecules. 2008, 13(3), 581–594.
  • Li, N.; Shi, J.; Wang, K. Profile and Antioxidant Activity of Phenolic Extracts from 10 Crabapples (Malus Wild Species). J. Agric. Food Chem. 2014, 62(3), 574–581.
  • Ozgen, M.; Serce, S.; Gunduz, K., et al. Determining Total Phenolics and Antioxidant Activity of Selected Fragaria Genotypes. Asian J. Chem. 2007, 19(7), 5573.
  • Pu, F.; Ren, X.-L.; Zhang, X.-P. Phenolic Compounds and Antioxidant Activity in Fruits of Six Diospyros Kaki Genotypes. Eur. Food Res. Technol. 2013, 237(6), 923–932. DOI: 10.1007/s00217-013-2065-z.
  • Sharma, P.; Handique, P.J.; Devi, H.S. Antioxidant Properties, Physico-Chemical Characteristics and Proximate Composition of Five Wild Fruits of Manipur, India. J. Food Sci. Technol. 2015, 52(2), 894–902. DOI: 10.1007/s13197-013-1128-2.
  • Papandreou, M.A.; Dimakopoulou, A.; Linardaki, Z.I.; Cordopatis, P.; Klimis-Zacas, D.; Margarity, M.; Lamari, F. N. Effect of a Polyphenol-Rich Wild Blueberry Extract on Cognitive Performance of Mice, Brain Antioxidant Markers and Acetylcholinesterase Activity. Behav. Brain Res. 2009, 198(2), 352–358. DOI: 10.1016/j.bbr.2008.11.013.
  • Vadivelan, R.; Bhadra, S.; Ravi, A., et al. Evaluation of Anti-Inflammatory and Membrane Stabilizing Property of Ethanol Root Extract of Rubus Ellipticus Smith in Albino Rats. J. Nat. Remedies. 2009, 9(1), 74–78.
  • George, B.P.; Parimelazhagan, T.; Saravanan, S. Anti-Inflammatory, Analgesic and Antipyretic Activities of Rubus Ellipticus Smith. Leaf Methanol Extract. Int. J. Pharm. Pharm. Sci. 2013, 5(2), 220–224.
  • Wang, Q.; Kuang, H.; Su, Y.; Sun, Y.; Feng, J.; Guo, R.; Chan, K. Naturally Derived Anti-Inflammatory Compounds from Chinese Medicinal Plants. J. Ethnopharmacol. 2013, 146(1), 9–39. DOI: 10.1016/j.jep.2012.12.013.
  • Lin, L.; Li, J.; Lv, H.; Ma, Y.; Qian, Y. [Effect of Lycium Ruthenicum Anthocyanins on Atherosclerosis in Mice]. Zhongguo Zhong Yao Za Zhi. 2012, 37(10), 1460–1466.
  • Chen, S.; Zhou, H.; Zhang, G.; Meng, J.; Deng, K.; Zhou, W.; Wang, H.; Wang, Z.; Hu, N.; Suo, Y., et al. Anthocyanins from Lycium Ruthenicum Murr. Ameliorated D -Galactose-Induced Memory Impairment, Oxidative Stress, and Neuroinflammation in Adult Rats. J. Agric. Food Chem. 2019, 67(11), 3140–3149.
  • Zong, S.; Yang, L.; Park, H.J.; Li, J. Dietary Intake of Lycium Ruthenicum Murray Ethanol Extract Inhibits Colonic Inflammation in Dextran Sulfate Sodium-Induced Murine Experimental Colitis. Food Funct. 2020, 11(4), 2924–2937. DOI: 10.1039/D0FO00172D.
  • Lu, K.; Wang, J.; Yu, Y.; Wu, Y.; He, Z. Lycium Ruthenicum Murr. Alleviates Nonalcoholic Fatty Liver in Mice. Food Sci. Nutr. 2020, 8(6), 2588–2597. DOI: 10.1002/fsn3.1445.
  • Yin, J.; Wu, T. Anthocyanins from Black Wolfberry (Lycium Ruthenicum Murr.) Prevent Inflammation and Increase Fecal Fatty Acid in Diet-Induced Obese Rats. RSC Adv. 2017, 7(75), 47848–47853. DOI: 10.1039/C7RA09846D.
  • Bowen-Forbes, C.S.; Zhang, Y.; Nair, M.G. Anthocyanin Content, Antioxidant, Anti-Inflammatory and Anticancer Properties of Blackberry and Raspberry Fruits. J. Food Compost. Anal. 2010, 23(6), 554–560. DOI: 10.1016/j.jfca.2009.08.012.
  • Cuevas-Rodríguez, E.O.; Dia, V.P.; Yousef, G.G.; García-Saucedo, P. A.; López-Medina, J.; Paredes-López, O.; Gonzalez de Mejia, E.; Lila, M. A. Inhibition of Pro-Inflammatory Responses and Antioxidant Capacity of Mexican Blackberry (Rubus Spp.) Extracts. J. Agric. Food Chem. September 08, 2010, 58(17), 9542–9548. DOI: 10.1021/jf102590p.
  • Karin, M.; Ben-Neriah, Y. Phosphorylation Meets Ubiquitination: The Control of NF-κB Activity. Annu. Rev. Immunol. 2000, 18(1), 621–663. DOI: 10.1146/annurev.immunol.18.1.621.
  • Karin, M.; Yamamoto, Y.; Wang, Q. The IKK NF-κB System: A Treasure Trove for Drug Development. Nat. Rev. Drug Discovery. 2004, 3(1), 17–26. DOI: 10.1038/nrd1279.
  • Kang, J.; Thakali, K.M.; Jensen, G.S.; Wu, X. Phenolic Acids of the Two Major Blueberry Species in the US Market and Their Antioxidant and Anti-Inflammatory Activities. Plant Foods Human Nutr. 2015, 70(1), 56–62. DOI: 10.1007/s11130-014-0461-6.
  • Hsu, C.; Tsai, T.-H.; Li, Y.-Y.; Wu, W.-H.; Huang, C.-J.; Tsai, P.-J. Wild Bitter Melon (Momordica Charantia Linn. Var. Abbreviata Ser.) Extract and Its Bioactive Components Suppress Propionibacterium Acnes-Induced Inflammation. Food Chem. 2012, 135(3), 976–984. DOI: 10.1016/j.foodchem.2012.05.045.
  • Cespedes, C.L.; Alarcon, J.; Avila, J.G., et al. Anti-Inflammatory Activity of Aristotelia Chilensis Mol.(stuntz)(elaeocarpaceae). Boletín Latinoamericano Y Del Caribe de Plantas Medicinales Y Aromáticas. 2010, 9(2), 127–135.
  • McCook-Russell, K.P.; Nair, M.G.; Facey, P.C.; Bowen-Forbes, C. S. Nutritional and Nutraceutical Comparison of Jamaican Psidium Cattleianum (Strawberry Guava) and Psidium Guajava (Common Guava) Fruits. Food Chem. 2012, 134(2), 1069–1073. DOI: 10.1016/j.foodchem.2012.03.018.
  • Do Nascimento, G.E.; Hamm, L.A.; Baggio, C.H.; Werner, M. F. D. P.; Iacomini, M.; Cordeiro, L. M. C. Structure of a Galactoarabinoglucuronoxylan from Tamarillo (Solanum Betaceum), a Tropical Exotic Fruit, and Its Biological Activity. Food Chem. 2013, 141(1), 510–516. DOI: 10.1016/j.foodchem.2013.03.023.
  • Grace, M.H.; Esposito, D.; Dunlap, K.L.; Lila, M. A. Comparative Analysis of Phenolic Content and Profile, Antioxidant Capacity, and Anti-Inflammatory Bioactivity in Wild Alaskan and Commercial Vaccinium Berries. J. Agric. Food Chem. 2014, 62(18), 4007–4017. DOI: 10.1021/jf403810y.
  • George, B.P.; Parimelazhagan, T.; Kumar, Y.T.; Sajeesh, T. Antitumor and Wound Healing Properties of Rubus Ellipticus Smith. J. Acupuncture Meridian Stud. 2015, 8(3), 134–141. DOI: 10.1016/j.jams.2013.10.002.
  • Jadhav, J.; Masirkar, V.; Deshmukh, V. Antihyperglycemic Effect of Diospyros Melanoxylon (Roxb.) Bark Against Alloxan-Induced Diabetic Rats. Int. J. Pharm Tech Res. 2009, 1(2), 196–200.
  • Wang, J.; Chen, X.; Zhang, W. Study on Hypoglycemic Function of Polysaccharides from Lycium Ruthenicum Murr. Fruit and Its Mechanism. Food Sci. 2009, 30(5), 244–248.
  • Yan, Y.; Peng, Y.; Tang, J.; Mi, J.; Lu, L.; Li, X.; Ran, L.; Zeng, X.; Cao, Y. Effects of Anthocyanins from the Fruit of Lycium Ruthenicum Murray on Intestinal Microbiota. J. Funct. Foods. 2018, 48, 533–541. DOI: 10.1016/j.jff.2018.07.053.
  • Faria, A.; Fernandes, I.; Norberto, S.; Mateus, N.; Calhau, C. Interplay Between Anthocyanins and Gut Microbiota. J. Agric. Food Chem. 2014, 62(29), 6898–6902. DOI: 10.1021/jf501808a.
  • Lin, J.; Zhang, Y.; Wang, X.; Wang, W. Lycium Ruthenicum Extract Alleviates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease via Enhancing the AMPK Signaling Pathway. Mol. Med. Rep. 2015, 12(3), 3835–3840. DOI: 10.3892/mmr.2015.3840.
  • Duan, Y.; Chen, F.; Yao, X.; Zhu, J.; Wang, C.; Zhang, J.; Li, X. Protective Effect of Lycium Ruthenicum Murr. Against Radiation Injury in Mice. Int. J. Environ. Res. Public Health. 2015, 12(7), 8332–8347. DOI: 10.3390/ijerph120708332.
  • Kelsey, N.; Hulick, W.; Winter, A.; Ross, E.; Linseman, D. Neuroprotective Effects of Anthocyanins on Apoptosis Induced by Mitochondrial Oxidative Stress. Nutr. Neurosci. 2011, 14(6), 249–259. DOI: 10.1179/1476830511Y.0000000020.
  • Wu, X.; Li, X.; Liang, S.; Liu, Y.; Dai, X.; Zheng, Q.; Sun, Y. Neuroprotective Effect of Anthocyanin Extract from Lycium Ruthenicum Murray in Aβ1–42-Induced Rat Model of AD. 2017.
  • Deng, K.; Li, Y.; Xiao, M.; Wang, F.; Zhou, P.; Zhang, W.; Heep, A.; Li, X. Lycium Ruthenicum Murr Polysaccharide Protects Cortical Neurons Against Oxygen-Glucose Deprivation/reperfusion in Neonatal Hypoxic-Ischemic Encephalopathy. Int. J. Biol. Macromol. 2020, 158, 562–568. DOI: 10.1016/j.ijbiomac.2020.04.122.
  • Luo, Z.; Yu, G.; Chen, X.; Liu, Y.; Zhou, Y.; Wang, G.; Shi, Y. Integrated Phytochemical Analysis Based on UHPLC-Ltq–orbitrap and Network Pharmacology Approaches to Explore the Potential Mechanism of Lycium Ruthenicum Murr. For Ameliorating Alzheimer’s Disease. Food Funct. 2020, 11(2), 1362–1372. DOI: 10.1039/C9FO02840D.
  • Sheng, R.; Xu, X.; Tang, Q., et al. Polysaccharide of Radix Pseudostellariae Improves Chronic Fatigue Syndrome Induced by Poly I: C in Mice. Evidence Based Complementary Altern. Med. 2009, 2011, 40.
  • Wang, J.; Li, S.; Fan, Y.; Chen, Y.; Liu, D.; Cheng, H.; Gao, X.; Zhou, Y. Anti-Fatigue Activity of the Water-Soluble Polysaccharides Isolated from Panax Ginseng C. A. Meyer. J. Ethnopharmacol. July 20, 2010, 130(2), 421–423. DOI: 10.1016/j.jep.2010.05.027.
  • Ni, W.; Gao, T.; Wang, H.; Du, Y.; Li, J.; Li, C.; Wei, L.; Bi, H. Anti-Fatigue Activity of Polysaccharides from the Fruits of Four Tibetan Plateau Indigenous Medicinal Plants. J. Ethnopharmacol. 2013, 150(2), 529–535. DOI: 10.1016/j.jep.2013.08.055.
  • Yang, J.-F.; Wang, Q.; Sun, J., et al. Anti-Fatigue and Improvement Effect of Exhausting Exercise-Induced Myocardial Damage of Aqueous Extract from Lycium Ruthenicum Murr.In Mice. Sci. Technol. Food Ind. 2018, 39(16), 296–299.
  • Gong, Y.; Wu, J.; Li, S.-T. Immuno-Enhancement Effects of Lycium Ruthenicum Murr. Polysaccharide on Cyclophosphamide-Induced Immunosuppression in Mice. Int. J. Clin. Exp. Med. 2015, 8(11), 20631.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.