625
Views
23
CrossRef citations to date
0
Altmetric
Reviews

New pathways of the renin–angiotensin system: the role of ACE2 in cardiovascular pathophysiology and therapy

, , &
Pages 485-496 | Published online: 14 Apr 2010

Bibliography

  • Kim S, Iwao H. Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 2000;52:11-34
  • de Gasparo M, Catt KJ, Inagami T, International Union of Pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 2000;52:415-72
  • Ferrario CM. Role of angiotensin II in cardiovascular disease therapeutic implications of more than a century of research. J Renin Angiotensin Aldosterone Syst 2006;7:3-14
  • Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin–angiotensin systems. Physiol Rev 2006;86:747-803
  • Schiavone MT, Santos RA, Brosnihan KB, Release of vasopressin from the rat hypothalamo-neurohypophysial system by angiotensin-(1 – 7) heptapeptide. Proc Natl Acad Sci USA 1988;85:4095-8
  • Santos RA, Ferreira AJ, Simoes ESAC. Recent advances in the angiotensin-converting enzyme 2-angiotensin(1 – 7)–Mas axis. Exp Physiol 2008;93:519-27
  • Ferrario CM, Trask AJ, Jessup JA. Advances in biochemical and functional roles of angiotensin-converting enzyme 2 and angiotensin-(1 – 7) in regulation of cardiovascular function. Am J Physiol Heart Circ Physiol 2005;289:H2281-90
  • Ren Y, Garvin JL, Carretero OA. Vasodilator action of angiotensin-(1 – 7) on isolated rabbit afferent arterioles. Hypertension 2002;39:799-802
  • Santos RA, Simoes e Silva AC, Maric C, Angiotensin-(1 – 7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci USA 2003;100:8258-63
  • Keidar S, Kaplan M, Gamliel-Lazarovich A. ACE2 of the heart: from angiotensin I to angiotensin (1 – 7). Cardiovasc Res 2007;73:463-9
  • Donoghue M, Hsieh F, Baronas E, A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1 – 9. Circ Res 2000;87:E1-9
  • Tipnis SR, Hooper NM, Hyde R, A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 2000;275:33238-43
  • Castro CH, Santos RA, Ferreira AJ, Evidence for a functional interaction of the angiotensin-(1 – 7) receptor Mas with AT1 and AT2 receptors in the mouse heart. Hypertension 2005;46:937-42
  • Crackower MA, Sarao R, Oudit GY, Angiotensin-converting enzyme 2 is an essential regulator of heart function. Nature 2002;417:822-8
  • Zhang H, Wada J, Hida K, Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J Biol Chem 2001;276:17132-9
  • Akpinar P, Kuwajima S, Krutzfeldt J, Stoffel M. Tmem27: a cleaved and shed plasma membrane protein that stimulates pancreatic beta cell proliferation. Cell Metab 2005;2:385-97
  • Danilczyk U, Sarao R, Remy C, Essential role for collectrin in renal amino acid transport. Nature 2006;444:1088-91
  • Camargo SM, Singer D, Makrides V, Tissue-specific amino acid transporter partners ACE2 and collectrin differentially interact with hartnup mutations. Gastroenterology 2009;136:872-82
  • Guy JL, Jackson RM, Acharya KR, Angiotensin-converting enzyme-2 (ACE2): comparative modeling of the active site, specificity requirements, and chloride dependence. Biochemistry 2003;42:13185-92
  • Vickers C, Hales P, Kaushik V, Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem 2002;277:14838-43
  • Guy JL, Lambert DW, Turner AJ, Porter KE. Functional angiotensin-converting enzyme 2 is expressed in human cardiac myofibroblasts. Exp Physiol 2008; 93:579-88
  • Lambert DW, Yarski M, Warner FJ, Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2). J Biol Chem 2005;280:30113-9
  • Shaltout HA, Westwood BM, Averill DB, Angiotensin metabolism in renal proximal tubules, urine, and serum of sheep: evidence for ACE2-dependent processing of angiotensin II. Am J Physiol Renal Physiol 2007;292:F82-91
  • Rice GI, Jones AL, Grant PJ, Circulating activities of angiotensin-converting enzyme, its homolog, angiotensin-converting enzyme 2, and neprilysin in a family study. Hypertension 2006;48:914-20
  • Ocaranza MP, Godoy I, Jalil JE, Enalapril attenuates downregulation of angiotensin-converting enzyme 2 in the late phase of ventricular dysfunction in myocardial infarcted rat. Hypertension 2006;48:572-8
  • Warner FJ, Lew RA, Smith AI, Angiotensin-converting enzyme 2 (ACE2), but not ACE, is preferentially localized to the apical surface of polarized kidney cells. J Biol Chem 2005;280:39353-62
  • Lew RA, Warner FJ, Hanchapola I, Angiotensin-converting enzyme 2 catalytic activity in human plasma is masked by an endogenous inhibitor. Exp Physiol 2008;93:685-93
  • Harmer D, Gilbert M, Borman R, Clark KL. Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Lett 2002;532:107-10
  • Burrell LM, Risvanis J, Kubota E, Myocardial infarction increases ACE2 expression in rat and humans. Eur Heart J 2005;26:369-75; discussion 22-4
  • Ye M, Wysocki J, William J, Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuria in diabetes. J Am Soc Nephrol 2006;17:3067-75
  • Soler MJ, Ye M, Wysocki J, Localization of ACE2 in the renal vasculature: amplification by angiotensin II Type 1 receptor blockade using telmisartan. Am J Physiol Renal Physiol 2009;296:F398-405
  • Hamming I, Timens W, Bulthuis ML, Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004;203:631-7
  • Lawrence AC, Evin G, Kladis A, Campbell DJ. An alternative strategy for the radioimmunoassay of angiotensin peptides using amino-terminal-directed antisera: measurement of eight angiotensin peptides in human plasma. J Hypertens 1990;8:715-24
  • Rice GI, Thomas DA, Grant PJ, Evaluation of angiotensin-converting enzyme (ACE), its homologue ACE2 and neprilysin in angiotensin peptide metabolism. Biochem J 2004;383:45-51
  • Zisman LS, Keller RS, Weaver B, Increased angiotensin-(1 – 7)-forming activity in failing human heart ventricles: evidence for upregulation of the angiotensin-converting enzyme homologue ACE2. Circulation 2003;108:1707-12
  • Zisman LS, Meixell GE, Bristow MR, Canver CC. Angiotensin-(1 – 7) formation in the intact human heart: in vivo dependence on angiotensin II as substrate. Circulation 2003;108:1679-81
  • Gurley SB, Allred A, Le TH, Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J Clin Invest 2006;116:2218-25
  • Yamada K, Iyer SN, Chappell MC, Converting enzyme determines plasma clearance of angiotensin-(1 – 7). Hypertension 1998;32:496-502
  • Mahon JM, Carr RD, Nicol AK, Henderson IW. Angiotensin(1 – 7) is an antagonist at the Type 1 angiotensin II receptor. J Hypertens 1994;12:1377-81
  • Rowe BP, Saylor DL, Speth RC, Absher DR. Angiotensin-(1 – 7) binding at angiotensin II receptors in the rat brain. Regul Pept 1995;56:139-46
  • Ferreira AJ, Santos RA, Almeida AP. Angiotensin-(1 – 7): cardioprotective effect in myocardial ischemia/reperfusion. Hypertension 2001;38:665-8
  • Tallant EA, Higson JT. Angiotensin II activates distinct signal transduction pathways in astrocytes isolated from neonatal rat brain. Glia 1997;19:333-42
  • Brosnihan KB, Li P, Ferrario CM. Angiotensin-(1 – 7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension 1996;27:523-8
  • Santos RA, Haibara AS, Campagnole-Santos MJ, Characterization of a new selective antagonist for angiotensin-(1 – 7), D-pro7-angiotensin-(1 – 7). Hypertension 2003;41:737-43
  • Young D, Waitches G, Birchmeier C, Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 1986;45:711-9
  • Kostenis E, Milligan G, Christopoulos A, G-protein-coupled receptor Mas is a physiological antagonist of the angiotensin II Type 1 receptor. Circulation 2005;111:1806-13
  • Sampaio WO, Souza dos Santos RA, Faria-Silva R, Angiotensin-(1 – 7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension 2007;49:185-92
  • Dias-Peixoto MF, Santos RA, Gomes ER, Molecular mechanisms involved in the angiotensin-(1 – 7)/Mas signaling pathway in cardiomyocytes. Hypertension 2008;52:542-8
  • Giani JF, Gironacci MM, Munoz MC, Angiotensin-(1 – 7) stimulates the phosphorylation of JAK2, IRS-1 and Akt in rat heart in vivo: role of the AT1 and Mas receptors. Am J Physiol Heart Circ Physiol 2007;293:H1154-63
  • Tallant EA, Lu X, Weiss RB, Bovine aortic endothelial cells contain an angiotensin-(1 – 7) receptor. Hypertension 1997;29:388-93
  • Rebas E, Zabczynska J, Lachowicz A. The effect of angiotensin 1 – 7 on tyrosine kinases activity in rat anterior pituitary. Biochem Biophys Res Commun 2006;347:581-5
  • Santos RA, Ferreira AJ. Angiotensin-(1 – 7) and the renin-angiotensin system. Curr Opin Nephrol Hypertens 2007;16:122-8
  • Porsti I, Bara AT, Busse R, Hecker M. Release of nitric oxide by angiotensin-(1 – 7) from porcine coronary endothelium: implications for a novel angiotensin receptor. Br J Pharmacol 1994;111:652-4
  • Santos RA, Ferreira AJ, Pinheiro SV, Angiotensin-(1 – 7) and its receptor as a potential targets for new cardiovascular drugs. Expert Opin Investig Drugs 2005;14:1019-31
  • Pinheiro SV, Simoes e Silva AC, Sampaio WO, Nonpeptide AVE 0991 is an angiotensin-(1 – 7) receptor Mas agonist in the mouse kidney. Hypertension 2004;44:490-6
  • Freeman EJ, Chisolm GM, Ferrario CM, Tallant EA. Angiotensin-(1 – 7) inhibits vascular smooth muscle cell growth. Hypertension 1996;28:104-8
  • Tallant EA, Clark MA. Molecular mechanisms of inhibition of vascular growth by angiotensin-(1 – 7). Hypertension 2003;42:574-9
  • Langeveld B, van Gilst WH, Tio RA, Angiotensin-(1 – 7) attenuates neointimal formation after stent implantation in the rat. Hypertension 2005;45:138-41
  • Strawn WB, Ferrario CM, Tallant EA. Angiotensin-(1 – 7) reduces smooth muscle growth after vascular injury. Hypertension 1999;33:207-11
  • Zeng W, Chen W, Leng X, Chronic angiotensin-(1 – 7) administration improves vascular remodeling after angioplasty through the regulation of the TGF-beta/Smad signaling pathway in rabbits. Biochem Biophys Res Commun 2009;389:138-44
  • Lovren F, Pan Y, Quan A, Angiotensin converting enzyme-2 confers endothelial protection and attenuates atherosclerosis. Am J Physiol Heart Circ Physiol 2008;295:H1377-84
  • Castro-Chaves P, Pintalhao M, Fontes-Carvalho R, Acute modulation of myocardial function by angiotensin 1 – 7. Peptides 2009;30:1714-9
  • Leite-Moreira AF, Castro-Chaves P, Pimentel-Nunes P, Angiotensin II acutely decreases myocardial stiffness: a novel AT1, PKC and Na+/H+ exchanger-mediated effect. Br J Pharmacol 2006;147:690-7
  • Castro-Chaves P, Fontes-Carvalho R, Pintalhao M, Angiotensin II-induced increase in myocardial distensibility and its modulation by the endocardial endothelium in the rabbit heart. Exp Physiol 2009;94:665-74
  • Iwata M, Cowling RT, Gurantz D, Angiotensin-(1 – 7) binds to specific receptors on cardiac fibroblasts to initiate antifibrotic and antitrophic effects. Am J Physiol Heart Circ Physiol 2005;289:H2356-63
  • Santos RA, Ferreira AJ, Nadu AP, Expression of an angiotensin-(1 – 7)-producing fusion protein produces cardioprotective effects in rats. Physiol Genomics 2004;17:292-9
  • Donoghue M, Wakimoto H, Maguire CT, Heart block, ventricular tachycardia, and sudden death in ACE2 transgenic mice with downregulated connexins. J Mol Cell Cardiol 2003;35:1043-53
  • Grobe JL, Mecca AP, Mao H, Katovich MJ. Chronic angiotensin-(1 – 7) prevents cardiac fibrosis in DOCA-salt model of hypertension. Am J Physiol Heart Circ Physiol 2006;290:H2417-23
  • Grobe JL, Mecca AP, Lingis M, Prevention of angiotensin II-induced cardiac remodeling by angiotensin-(1 – 7). Am J Physiol Heart Circ Physiol 2007;292:H736-42
  • Averill DB, Ishiyama Y, Chappell MC, Ferrario CM. Cardiac angiotensin-(1 – 7) in ischemic cardiomyopathy. Circulation 2003;108:2141-6
  • Mercure C, Yogi A, Callera GE, Angiotensin(1 – 7) blunts hypertensive cardiac remodeling by a direct effect on the heart. Circ Res 2008;103:1319-26
  • Loot AE, Roks AJ, Henning RH, Angiotensin-(1 – 7) attenuates the development of heart failure after myocardial infarction in rats. Circulation 2002;105:1548-50
  • Pendergrass KD, Averill DB, Ferrario CM, Differential expression of nuclear AT1 receptors and angiotensin II within the kidney of the male congenic mRen2.Lewis rat. Am J Physiol Renal Physiol 2006;290:F1497-506
  • Magaldi AJ, Cesar KR, de Araujo M, Angiotensin-(1 – 7) stimulates water transport in rat inner medullary collecting duct: evidence for involvement of vasopressin V2 receptors. Pflugers Arch 2003;447:223-30
  • Garcia NH, Garvin JL. Angiotensin 1 – 7 has a biphasic effect on fluid absorption in the proximal straight tubule. J Am Soc Nephrol 1994;5:1133-8
  • DelliPizzi AM, Hilchey SD, Bell-Quilley CP. Natriuretic action of angiotensin(1 – 7). Br J Pharmacol 1994;111:1-3
  • Handa RK, Ferrario CM, Strandhoy JW. Renal actions of angiotensin-(1 – 7): in vivo and in vitro studies. Am J Physiol 1996;270:F141-7
  • Joyner J, Neves LA, Stovall K, Angiotensin-(1 – 7) serves as an aquaretic by increasing water intake and diuresis in association with downregulation of aquaporin-1 during pregnancy in rats. Am J Physiol Regul Integr Comp Physiol 2008;294:R1073-80
  • Pinheiro SV, Ferreira AJ, Kitten GT, Genetic deletion of the angiotensin-(1 – 7) receptor Mas leads to glomerular hyperfiltration and microalbuminuria. Kidney Int 2009; 75:1184-93
  • Soler MJ, Wysocki J, Ye M, ACE2 inhibition worsens glomerular injury in association with increased ACE expression in streptozotocin-induced diabetic mice. Kidney Int 2007;72:614-23
  • Oudit GY, Herzenberg AM, Kassiri Z, Loss of angiotensin-converting enzyme-2 leads to the late development of angiotensin II-dependent glomerulosclerosis. Am J Pathol 2006;168:1808-20
  • Fujita H, Omori S, Ishikura K, ERK and p38 mediate high-glucose-induced hypertrophy and TGF-beta expression in renal tubular cells. Am J Physiol Renal Physiol 2004;286:F120-6
  • Gava E, Samad-Zadeh A, Zimpelmann J, Angiotensin-(1 – 7) activates a tyrosine phosphatase and inhibits glucose-induced signalling in proximal tubular cells. Nephrol Dial Transplant 2009;24:1766-73
  • Zimpelmann J, Burns KD. Angiotensin-(1 – 7) activates growth-stimulatory pathways in human mesangial cells. Am J Physiol Renal Physiol 2009;296:F337-46
  • Pereira RM, Dos Santos RA, Teixeira MM, The renin-angiotensin system in a rat model of hepatic fibrosis: evidence for a protective role of Angiotensin-(1 – 7). J Hepatol 2007;46:674-81
  • Neves LA, Stovall K, Joyner J, ACE2 and ANG-(1 – 7) in the rat uterus during early and late gestation. Am J Physiol Regul Integr Comp Physiol 2008;294:R151-61
  • Menon J, Soto-Pantoja DR, Callahan MF, Angiotensin-(1 – 7) inhibits growth of human lung adenocarcinoma xenografts in nude mice through a reduction in cyclooxygenase-2. Cancer Res 2007;67:2809-15
  • Raizada MK, Ferreira AJ. ACE2: a new target for cardiovascular disease therapeutics. J Cardiovasc Pharmacol 2007;50:112-9
  • Huentelman MJ, Grobe JL, Vazquez J, Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats. Exp Physiol 2005;90:783-90
  • Diez-Freire C, Vazquez J, Correa de Adjounian MF, ACE2 gene transfer attenuates hypertension-linked pathophysiological changes in the SHR. Physiol Genomics 2006;27:12-9
  • Yamazato M, Yamazato Y, Sun C, Overexpression of angiotensin-converting enzyme 2 in the rostral ventrolateral medulla causes long-term decrease in blood pressure in the spontaneously hypertensive rats. Hypertension 2007;49:926-31
  • Rentzsch B, Todiras M, Iliescu R, Transgenic angiotensin-converting enzyme 2 overexpression in vessels of SHRSP rats reduces blood pressure and improves endothelial function. Hypertension 2008;52:967-73
  • Dong B, Zhang C, Feng JB, Overexpression of ACE2 enhances plaque stability in a rabbit model of atherosclerosis. Arterioscler Thromb Vasc Biol 2008;28:1270-6
  • Candido R, Jandeleit-Dahm KA, Cao Z, Prevention of accelerated atherosclerosis by angiotensin-converting enzyme inhibition in diabetic apolipoprotein E-deficient mice. Circulation 2002;106:246-53
  • Townsend RR, Holland OB. Combination of converting enzyme inhibitor with diuretic for the treatment of hypertension. Arch Intern Med 1990;150:1175-83
  • Materson BJ, Reda DJ, Cushman WC, Single-drug therapy for hypertension in men. A comparison of six antihypertensive agents with placebo. N Engl J Med 1993;328:914-21
  • Loeb HS, Johnson G, Henrick A, Effect of enalapril, hydralazine plus isosorbide dinitrate, and prazosin on hospitalization in patients with chronic congestive heart failure. Circulation 1993;87:VI78-87
  • The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet 1993;342:821-8
  • Faria-Silva R, Duarte FV, Santos RA. Short-term angiotensin(1 – 7) receptor MAS stimulation improves endothelial function in normotensive rats. Hypertension 2005;46:948-52
  • Collister JP, Hendel MD. The role of Ang (1 – 7) in mediating the chronic hypotensive effects of losartan in normal rats. J Renin Angiotensin Aldosterone Syst 2003;4:176-9
  • Wiemer G, Dobrucki LW, Louka FR, AVE 0991, a nonpeptide mimic of the effects of angiotensin-(1 – 7) on the endothelium. Hypertension 2002;40:847-52
  • Lemos VS, Silva DM, Walther T, The endothelium-dependent vasodilator effect of the nonpeptide Ang(1 – 7) mimic AVE 0991 is abolished in the aorta of mas-knockout mice. J Cardiovasc Pharmacol 2005;46:274-9
  • Benter IF, Yousif MH, Anim JT, Angiotensin-(1 – 7) prevents development of severe hypertension and end-organ damage in spontaneously hypertensive rats treated with L-NAME. Am J Physiol Heart Circ Physiol 2006;290:H684-91
  • Ferreira AJ, Jacoby BA, Araujo CA, The nonpeptide angiotensin-(1 – 7) receptor Mas agonist AVE-0991 attenuates heart failure induced by myocardial infarction. Am J Physiol Heart Circ Physiol 2007;292:H1113-9
  • Kluskens LD, Nelemans SA, Rink R, Angiotensin-(1 – 7) with thioether bridge: an angiotensin-converting enzyme-resistant, potent angiotensin-(1 – 7) analog. J Pharmacol Exp Ther 2009;328:849-54
  • Lula I, Denadai AL, Resende JM, Study of angiotensin-(1 – 7) vasoactive peptide and its beta-cyclodextrin inclusion complexes: complete sequence-specific NMR assignments and structural studies. Peptides 2007;28:2199-210
  • Silva-Barcellos NM, Frezard F, Caligiorne S, Santos RA. Long-lasting cardiovascular effects of liposome-entrapped angiotensin-(1 – 7) at the rostral ventrolateral medulla. Hypertension 2001;38:1266-71
  • Huentelman MJ, Zubcevic J, Hernandez Prada JA, Structure-based discovery of a novel angiotensin-converting enzyme 2 inhibitor. Hypertension 2004;44:903-6
  • Hernandez Prada JA, Ferreira AJ, Katovich MJ, Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension 2008;51:1312-7
  • Ferreira AJ, Shenoy V, Yamazato Y, Evidence for angiotensin-converting enzyme 2 as a therapeutic target for the prevention of pulmonary hypertension. Am J Respir Crit Care Med 2009;179:1048-54
  • Rodgers KE, Oliver J, diZerega GS. Phase I/II dose escalation study of angiotensin 1 – 7 [A(1 – 7)] administered before and after chemotherapy in patients with newly diagnosed breast cancer. Cancer Chemother Pharmacol 2006;57:559-68
  • Soto-Pantoja DR, Menon J, Gallagher PE, Tallant EA. Angiotensin-(1 – 7) inhibits tumor angiogenesis in human lung cancer xenografts with a reduction in vascular endothelial growth factor. Mol Cancer Ther 2009;8:1676-83

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.