1,121
Views
40
CrossRef citations to date
0
Altmetric
Reviews

Targeting mitochondrial dysfunction in neurodegenerative disease: Part II

, BA, , PhD MRCP, , PhD, , PhD FRCP, , PhD & , PhD
Pages 497-511 | Published online: 24 Mar 2010

Bibliography

  • Wasilewski M, Scorrano L. The changing shape of mitochondrial apoptosis. Trends Endocrinol Metab 2009;20:287-94
  • Liesa M, Palacín M, Zorzano A. Mitochondrial dynamics in mammalian health and disease. Physiol Rev 2009;89:799-845
  • Schon EA, Gilkerson RW. Functional complementation of mitochondrial DNAs: mobilizing mitochondrial genetics against dysfunction. Biochim Biophys Acta 2010;1800(3):245-9
  • Skulachev VP. Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem Sci 2001;26:23-9
  • Hollenbeck PJ, Saxton WM. The axonal transport of mitochondria. J Cell Sci 2005;118:5411-9
  • Chen H, Chan DC. Mitochondrial dynamics–fusion, fission, movement, and mitophagy–in neurodegenerative diseases. Hum Mol Genet 2009;18:R169-76
  • Chen H, McCaffery JM, Chan DC. Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 2007;130:548-62
  • Olichon A, Baricault L, Gas N, Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem 2003;278:7743-6
  • Zick M, Rabl R, Reichert AS. Cristae formation-linking ultrastructure and function of mitochondria. Biochim Biophys Acta 2009;1793:5-19
  • Youle RJ, Karbowski M. Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 2005;6:657-63
  • Frezza C, Cipolat S, Martins de Brito O, OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 2006;126:177-89
  • Knott AB, Bossy-Wetzel E. Impairing the mitochondrial fission and fusion balance: a new mechanism of neurodegeneration. Ann NY Acad Sci 2008;1147:283-92
  • Han X-J, Lu Y-F, Li S-A, CaM kinase Ialpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 2008;182:573-85
  • Sandebring A, Thomas KJ, Beilina A, Mitochondrial alterations in PINK1 deficient cells are influenced by calcineurin-dependent dephosphorylation of dynamin-related protein 1. PloS one 2009;4:e5701
  • Burchell VS, Gandhi S, Deas E, Targeting mitochondrial dysfunction in neurodegenerative disease: Part I. Expert Opin Ther Targets 2010;14:369-85
  • Barsoum MJ, Yuan H, Gerencser AA, Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. EMBO J 2006;25:3900-11
  • Wang X, Su B, Lee H, Impaired balance of mitochondrial fission and fusion in Alzheimer's disease. J Neurosci 2009;29:9090-103
  • Wang H, Lim PJ, Karbowski M, Monteiro MJ. Effects of overexpression of huntingtin proteins on mitochondrial integrity. Hum Mol Genet 2009;18:737-52
  • Deas E, Plun-Favreau H, Wood NW. PINK1 function in health and disease. EMBO Mol Med 2009;1:152-65
  • Holmes SE, O'Hearn EE, McInnis MG, Expansion of a novel CAG trinucleotide repeat in the 5′ region of PPP2R2B is associated with SCA12. Nat Genet 1999;23:391-2
  • Dagda RK, Merrill RA, Cribbs JT, The spinocerebellar ataxia 12 gene product and protein phosphatase 2A regulatory subunit Bbeta2 antagonizes neuronal survival by promoting mitochondrial fission. J Biol Chem 2008;283:36241-8
  • Ebneth A, Godemann R, Stamer K, Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer's disease. J Cell Biol 1998;143:777-94
  • Trinczek B, Ebneth A, Mandelkow EM, Mandelkow E. Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J Cell Sci 1999;112(Pt 1):2355-67
  • Li X-J, Orr AL, Li S. Impaired mitochondrial trafficking in Huntington's disease. Biochim Biophys Acta 2010;1802(1):62-5
  • Soderblom C, Blackstone C. Traffic accidents: molecular genetic insights into the pathogenesis of the hereditary spastic paraplegias. Pharmacol Ther 2006;109:42-56
  • Weihofen A, Thomas KJ, Ostaszewski BL, Pink1 forms a multiprotein complex with Miro and Milton, linking Pink1 function to mitochondrial trafficking. Biochemistry 2009;48:2045-52
  • Cassidy-Stone A, Chipuk JE, Ingerman E, Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 2008;14:193-204
  • Sato A, Nakada K, Hayashi J-I. Mitochondrial complementation preventing respiratory dysfunction caused by mutant mtDNA. Biofactors 2009;35:130-7
  • Barritt JA, Brenner CA, Malter HE, Cohen J. Mitochondria in human offspring derived from ooplasmic transplantation. Hum Reprod 2001;16:513-6
  • Kean S. Nuclear transplantation. Researchers prevent inheritance of faulty mitochondria in monkeys. Science 2009;325:1061
  • MacKenzie JA, Payne RM. Mitochondrial protein import and human health and disease. Biochim Biophys Acta 2007;1772:509-23
  • Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson's disease. Biochem Biophys Res Commun 1996;226:561-5
  • Grasbon-Frodl EM, Kösel S, Riess O, Analysis of mitochondrial targeting sequence and coding region polymorphisms of the manganese superoxide dismutase gene in German Parkinson disease patients. Biochem Biophys Res Commun 1999;255:749-52
  • Singh M, Khan AJ, Shah PP, Polymorphism in environment responsive genes and association with Parkinson disease. Mol Cell Biochem 2008;312:131-8
  • Takakubo F, Cartwright P, Hoogenraad N, An amino acid substitution in the pyruvate dehydrogenase E1alpha gene, affecting mitochondrial import of the precursor protein. Am J Hum Genet 1995;57:772-80
  • Lissens W, De Meirleir L, Seneca S, Mutations in the X-linked pyruvate dehydrogenase (E1)alpha subunit gene (PDHA1) in patients with a pyruvate dehydrogenase complex deficiency. Hum Mutat 2000;15:209-19
  • Bauer MF, Neupert W. Import of proteins into mitochondria: a novel pathomechanism for progressive neurodegeneration. J Inherit Metab Dis 2001;24:166-80
  • Jin H, May M, Tranebjaerg L, A novel X-linked gene, DDP, shows mutations in families with deafness (DFN-1), dystonia, mental deficiency and blindness. Nat Genet 1996;14:177-80
  • Paschen SA, Rothbauer U, Káldi K, The role of the TIM8-13 complex in the import of Tim23 into mitochondria. EMBO J 2000;19:6392-400
  • Casari G, De Fusco M, Ciarmatori S, Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 1998;93:973-83
  • Hansen JJ, Dürr A, Cournu-Rebeix I, Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am J Hum Genet 2002;70:1328-32
  • Stacpoole PW, Owen R, Flotte TR. The pyruvate dehydrogenase complex as a target for gene therapy. Curr Gene Ther 2003;3:239-45
  • Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature 2003;426:895-9
  • Perry G, Friedman R, Shaw G, Chau V. Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci USA 1987;84:3033-6
  • Spillantini MG, Schmidt ML, Lee VM, alpha-synuclein in Lewy bodies. Nature 1997;388:839-40
  • Neumann M, Sampathu DM, Kwong LK, Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 2006;314:130-3
  • Germain D. Ubiquitin-dependent and -independent mitochondrial protein quality controls: implications in ageing and neurodegenerative diseases. Mol Microbiol 2008;70:1334-41
  • Bedford L, Hay D, Paine S, Is malfunction of the ubiquitin proteasome system the primary cause of alpha-synucleinopathies and other chronic human neurodegenerative disease? Biochim Biophys Acta 2008;1782:683-90
  • Xiong H, Wang D, Chen L, Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. J Clin Invest 2009;119:650-60
  • Radke S, Chander H, Schäfer P, Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J Biol Chem 2008;283:12681-5
  • Park H-M, Kim G-Y, Nam M-K, The serine protease HtrA2/Omi cleaves Parkin and irreversibly inactivates its E3 ubiquitin ligase activity. Biochem Biophys Res Commun 2009;387:537-42
  • Jana NR, Zemskov EA, Wang GH, Nukina N. Altered proteasomal function due to the expression of polyglutamine-expanded truncated N-terminal huntingtin induces apoptosis by caspase activation through mitochondrial cytochrome c release. Hum Mol Genet 2001;10:1049-59
  • Park H-J, Kim S-S, Kang S, Rhim H. Intracellular Abeta and C99 aggregates induce mitochondria-dependent cell death in human neuroglioma H4 cells through recruitment of the 20S proteasome subunits. Brain Res 2009;1273:1-8
  • Morimoto RI. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 2008;22:1427-38
  • Jin J, Hulette C, Wang Y, Proteomic identification of a stress protein, mortalin/mthsp70/GRP75: relevance to Parkinson disease. Mol Cell Proteomics 2006;5:1193-204
  • Pridgeon JW, Olzmann JA, Chin L-S, Li L. PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1. PLoS Biol 2007;5:e172
  • Zhao Q, Wang J, Levichkin IV, A mitochondrial specific stress response in mammalian cells. EMBO J 2002;21:4411-9
  • Moisoi N, Klupsch K, Fedele V, Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response. Cell Death Differ 2009;16:449-64
  • Kanki T, Wang K, Cao Y, Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 2009;17:98-109
  • Mormone E, Matarrese P, Tinari A, Genotype-dependent priming to self- and xeno-cannibalism in heterozygous and homozygous lymphoblasts from patients with Huntington's disease. J Neurochem 2006;98:1090-9
  • Dagda RK, Zhu J, Kulich SM, Chu CT. Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson's disease. Autophagy 2008;4:770-82
  • Dagda RK, Cherra SJ, Kulich SM, Loss of PINK1 function promotes mitophagy through effects on oxidative stress and mitochondrial fission. J Biol Chem 2009;284:13843-55
  • Narendra D, Tanaka A, Suen D-F, Youle RJ. Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy 2009;5:706-8
  • Pagliarini DJ, Dixon JE. Mitochondrial modulation: reversible phosphorylation takes center stage? Trends Biochem Sci 2006;31:26-34
  • Horbinski C, Chu CT. Kinase signaling cascades in the mitochondrion: a matter of life or death. Free Radic Biol Med 2005;38:2-11
  • Gimenez-Cassina A, Lim F, Cerrato T, Mitochondrial hexokinase II promotes neuronal survival and acts downstream of glycogen synthase kinase-3. J Biol Chem 2009;284:3001-11
  • Schneider SA, Bhatia KP, Hardy J. Complicated recessive dystonia parkinsonism syndromes. Mov Disord 2009;24:490-9
  • Valente EM, Abou-Sleiman PM, Caputo V, Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 2004;304:1158-60
  • Dagda RK, Zhu J, Chu CT. Mitochondrial kinases in Parkinson's disease: converging insights from neurotoxin and genetic models. Mitochondrion 2009;9:289-98
  • Harper SJ, Wilkie N. MAPKs: new targets for neurodegeneration. Expert Opin Ther Targets 2003;7:187-200
  • Ouyang M, Shen X. Critical role of ASK1 in the 6-hydroxydopamine-induced apoptosis in human neuroblastoma SH-SY5Y cells. J Neurochem 2006;97:234-44
  • Ferrer I, Blanco R, Carmona M, Active, phosphorylation-dependent mitogen-activated protein kinase (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38 kinase expression in Parkinson's disease and Dementia with Lewy bodies. J Neural Transm 2001;108:1383-96
  • Plun-Favreau H, Klupsch K, Moisoi N, The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat Cell Biol 2007;9:1243-52
  • Biskup S, Moore DJ, Celsi F, Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Ann Neurol 2006;60:557-69
  • Liou AKF, Leak RK, Li L, Zigmond MJ. Wild-type LRRK2 but not its mutant attenuates stress-induced cell death via ERK pathway. Neurobiol Dis 2008;32:116-24
  • Gloeckner CJ, Schumacher A, Boldt K, Ueffing M. The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J Neurochem 2009;109:959-68
  • Grundke-Iqbal I, Iqbal K, Tung YC, Abnormal phosphorylation of the microtubule-associated protein τ (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 1986;83:4913-7
  • Liu YF. Expression of polyglutamine-expanded Huntingtin activates the SEK1-JNK pathway and induces apoptosis in a hippocampal neuronal cell line. J Biol Chem 1998;273:28873-7
  • Perrin V, Dufour N, Raoul C, Implication of the JNK pathway in a rat model of Huntington's disease. Exp Neurol 2009;215:191-200
  • Fitzgerald JC, Plun-Favreau H. Emerging pathways in genetic Parkinson's disease: autosomal-recessive genes in Parkinson's disease–a common pathway? FEBS J 2008;275:5758-66
  • Hanrott K, Murray TK, Orfali Z, Differential activation of PKCδ in the substantia nigra of rats following striatal or nigral 6-hydroxydopamine lesions. Eur J Neurosci 2008;27:1086-96
  • Rosner M, Hanneder M, Siegel N, The mTOR pathway and its role in human genetic diseases. Mutat Res 2008;659:284-92
  • Cunningham JT, Rodgers JT, Arlow DH, mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007;450:736-40
  • Imai Y, Gehrke S, Wang H-Q, Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J 2008;27:2432-43
  • Tain LS, Mortiboys H, Tao RN, Rapamycin activation of 4E-BP prevents parkinsonian dopaminergic neuron loss. Nat Neurosci 2009;12:1129-35
  • Harrison DE, Strong R, Sharp ZD, Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009;460:392-5
  • Maccioni RB, Otth C, Concha II, Muñoz JP. The protein kinase Cdk5. Structural aspects, roles in neurogenesis and involvement in Alzheimer's pathology. FEBS J 2001;268:1518-27
  • Sun K-H, De Pablo Y, Vincent F, Shah K. Deregulated Cdk5 promotes oxidative stress and mitochondrial dysfunction. J Neurochem 2008;107:265-78
  • Avraham E, Rott R, Liani E, Phosphorylation of Parkin by the cyclin-dependent kinase 5 at the linker region modulates its ubiquitin-ligase activity and aggregation. J Biol Chem 2007;282:12842-50
  • Santiago APSA, Chaves EA, Oliveira MF, Galina A. Reactive oxygen species generation is modulated by mitochondrial kinases: correlation with mitochondrial antioxidant peroxidases in rat tissues. Biochimie 2008;90:1566-77
  • Hanger DP, Anderton BH, Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med 2009;15:112-9
  • Vukic V, Callaghan D, Walker D, Expression of inflammatory genes induced by beta-amyloid peptides in human brain endothelial cells and in Alzheimer's brain is mediated by the JNK-AP1 signaling pathway. Neurobiol Dis 2009;34:95-106
  • Karunakaran S, Saeed U, Mishra M, Selective activation of p38 mitogen-activated protein kinase in dopaminergic neurons of substantia nigra leads to nuclear translocation of p53 in 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine-treated mice. J Neurosci 2008;28:12500-9
  • Le Corre S, Klafki HW, Plesnila N, An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proc Natl Acad Sci USA 2006;103:9673-8
  • Zhang S, Zhang Y, Xu L, Indirubin-3′-monoxime inhibits beta-amyloid-induced neurotoxicity in neuroblastoma SH-SY5Y cells. Neurosci Lett 2009;450:142-6
  • Phiel CJ, Wilson CA, Lee VM-Y, Klein PS. GSK-3alpha regulates production of Alzheimer's disease amyloid-beta peptides. Nature 2003;423:435-9
  • Caccamo A, Oddo S, Tran LX, LaFerla FM. Lithium reduces tau phosphorylation but not Abeta or working memory deficits in a transgenic model with both plaques and tangles. Am J Pathol 2007;170:1669-75
  • Oumata N, Bettayeb K, Ferandin Y, Roscovitine-derived, dual-specificity inhibitors of cyclin-dependent kinases and casein kinases 1. J Med Chem 2008;51:5229-42
  • Webber KM, Smith MA, Lee H, Mitogen- and stress-activated protein kinase 1: convergence of the ERK and p38 pathways in Alzheimer's disease. J Neurosci Res 2005;79:554-60
  • Stebbins JL, De SK, Machleidt T, Identification of a new JNK inhibitor targeting the JNK-JIP interaction site. Proc Natl Acad Sci USA 2008;105:16809-13
  • Vermeulen K, Van Bockstaele DR, Berneman ZN. Apoptosis: mechanisms and relevance in cancer. Ann Hematol 2005;84:627-39
  • Valko M, Leibfritz D, Moncol J, Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44-84
  • Grimm S, Brdiczka D. The permeability transition pore in cell death. Apoptosis 2007;12:841-55
  • Halestrap AP. What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 2009;46:821-31
  • Rasola A, Bernardi P. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 2007;12:815-33
  • Kim T-S, Yun BY, Kim IY. Induction of the mitochondrial permeability transition by selenium compounds mediated by oxidation of the protein thiol groups and generation of the superoxide. Biochem Pharmacol 2003;66:2301-11
  • Porcelli AM, Angelin A, Ghelli A, Respiratory complex I dysfunction due to mitochondrial DNA mutations shifts the voltage threshold for opening of the permeability transition pore toward resting levels. J Biol Chem 2009;284:2045-52
  • Gandhi S, Wood-Kaczmar A, Yao Z, PINK1-associated Parkinson's disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 2009;33:627-38
  • Mazzeo AT, Beat A, Singh A, Bullock MR. The role of mitochondrial transition pore, and its modulation, in traumatic brain injury and delayed neurodegeneration after TBI. Exp Neurol 2009;218:363-70
  • Angelin A, Tiepolo T, Sabatelli P, Mitochondrial dysfunction in the pathogenesis of Ullrich congenital muscular dystrophy and prospective therapy with cyclosporins. Proc Natl Acad Sci USA 2007;104:991-6
  • Javadov S, Karmazyn M, Escobales N. Mitochondrial permeability transition pore opening as a promising therapeutic target in cardiac diseases. J Pharmacol Exp Ther 2009;330:670-8
  • Mochizuki H, Yamada M, Mizuno Y. alpha-synuclein overexpression model. J Neural Transm Suppl 2006;70:281-4
  • Schulz JB. Anti-apoptotic gene therapy in Parkinson's disease. J Neural Transm Suppl 2006;70:467-76
  • Keeney PM, Quigley CK, Dunham LD, Mitochondrial gene therapy augments mitochondrial physiology in a Parkinson's disease cell model. Hum Gene Ther 2009;20:897-907
  • Björklund A, Dunnett SB, Brundin P, Neural transplantation for the treatment of Parkinson's disease. Lancet Neurol 2003;2:437-45
  • Mazzini L, Vercelli A, Ferrero I, Stem cells in amyotrophic lateral sclerosis: state of the art. Expert Opin Biol Ther 2009;9:1245-58
  • Li J-Y, Englund E, Holton JL, Lewy bodies in grafted neurons in subjects with Parkinson's disease suggest host-to-graft disease propagation. Nat Med 2008;14:501-3
  • Dimos JT, Rodolfa KT, Niakan KK, Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008;321:1218-21

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.