103
Views
1
CrossRef citations to date
0
Altmetric
Original Research

Comparative Assessment of Distribution Characteristics and Ocular Pharmacokinetics of Norvancomycin Between Continuous Topical Ocular Instillation and Hourly Administration of Eye Drop

ORCID Icon, , , ORCID Icon, , & ORCID Icon show all
Pages 867-879 | Published online: 26 Feb 2020

References

  • AwwadS, AHAMA, SharmaG, et al. Principles of pharmacology in the eye. Br J Pharmacol. 2017;174(23):4205–4223. doi:10.1111/bph.1402428865239
  • Di PrimaG, LicciardiM, Carfì PaviaF, Lo MonteAI, CavallaroG, GiammonaG. Microfibrillar polymeric ocular inserts for triamcinolone acetonide delivery. Int J Pharm. 2019;567:118459. doi:10.1016/j.ijpharm.2019.11845931247275
  • AgrahariV, MandalA, AgrahariV, et al. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6):735–754. doi:10.1007/s13346-016-0339-227798766
  • SoutoEB, Dias-FerreiraJ, López-MachadoA, et al. Advanced formulation approaches for ocular drug delivery: state-of-the-art and recent patents. Pharmaceutics. 2019;11(9):460. doi:10.3390/pharmaceutics11090460
  • SharmaA, TaniguchiTJ. Review: emerging strategies for antimicrobial drug delivery to the ocular surface: implications for infectious keratitis. Ocul Surf. 2017;15(4):670–679. doi:10.1016/j.jtos.2017.06.00128602948
  • ZhaoX, ShenX, ZhangX, ChenS, LuH, WangM. Comparative study of ocular pharmacokinetics of gatifloxacin between continuous lavage and hourly topical instillation in rabbits. Cornea. 2018;37(11):1457–1462. doi:10.1097/ICO.000000000000171230124589
  • SapinoS, ChirioD, PeiraE, et al. Ocular drug delivery: a special focus on the thermosensitive approach. Nanomaterials. 2019;9(6):884. doi:10.3390/nano9060884
  • ShenJ, LuGW, HughesP. Targeted ocular drug delivery with pharmacokinetic/pharmacodynamic considerations. Pharm Res. 2018;35(11):217. doi:10.1007/s11095-018-2498-y30255364
  • MoosaRM, ChoonaraYE, Du ToitLC, et al. A review of topically administered mini-tablets for drug delivery to the anterior segment of the eye. J Pharm Pharmacol. 2014;66(4):490–506. doi:10.1111/jphp.1213124635554
  • BachuR, ChowdhuryP, Al-SaediZ, KarlaP, BodduS. Ocular drug delivery barriers—role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics. 2018;10(1):28. doi:10.3390/pharmaceutics10010028
  • GoteV, SikderS, SicotteJ, PalD. Ocular drug delivery: present innovations and future challenges. J Pharmacol Exp Ther. 2019;jpet.119.256933. doi:10.1124/jpet.119.256933
  • JanagamDR, WuL, LoweTL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev. 2017;122:31–64. doi:10.1016/j.addr.2017.04.00128392306
  • YellepeddiVK, PalakurthiS. Recent advances in topical ocular drug delivery. J Ocul Pharmacol Ther. 2016;32(2):67–82. doi:10.1089/jop.2015.004726666398
  • YousryC, ElkheshenSA, El-laithyHM, EssamT, FahmyRH. Studying the influence of formulation and process variables on Vancomycin-loaded polymeric nanoparticles as potential carrier for enhanced ophthalmic delivery. Eur J Pharm Sci. 2017;100:142–154. doi:10.1016/j.ejps.2017.01.01328089661
  • BertensCJF, GijsM, van den BiggelaarFJHM, NuijtsRMMA. Topical drug delivery devices: a review. Exp Eye Res. 2018;168:149–160. doi:10.1016/j.exer.2018.01.01029352994
  • JiangZ, LeiX, ChenM, et al. Three structurally-related impurities in norvancomycin drug substance. J Antibiot (Tokyo). 2017;70(2):158–165. doi:10.1038/ja.2016.11527703158
  • LiJ, HeS, YangZ, LuC. Pharmacokinetics and cerebrospinal fluid penetration of norvancomycin in Chinese adult patients. Int J Antimicrob Agents. 2017;49(5):603–608. doi:10.1016/j.ijantimicag.2017.01.01428366660
  • WuY, KangJ, WangQ. Drug concentrations in the serum and cerebrospinal fluid of patients treated with norvancomycin after craniotomy. Eur J Clin Microbiol Infect Dis. 2017;36(2):305–311. doi:10.1007/s10096-016-2803-927738856
  • American Academy of Ophthalmology Cornea/External Disease Panel. Preferred Practice Pattern® Guidelines.Bacterial Keratitis. San Francisco, CA: American Acadamy of Ophthalmology; 2013 Available from: www.aao.org/ppp. Accessed 217, 2020.
  • DubaldM, BourgeoisS, AndrieuV, FessiH. Ophthalmic drug delivery systems for antibiotherapy—a review. Pharmaceutics. 2018;10(1):10. doi:10.3390/pharmaceutics10010010
  • DuxfieldL, SultanaR, WangR, et al. Ocular delivery systems for topical application of anti-infective agents. Drug Dev Ind Pharm. 2016;42(1):1–11. doi:10.3109/03639045.2015.107017126325119
  • UrttiA. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 2006;58(11):1131–1135. doi:10.1016/j.addr.2006.07.02717097758
  • GaudanaR, AnanthulaHK, ParenkyA, MitraAK. Ocular drug delivery. AAPS J. 2010;12(3):348–360. doi:10.1208/s12248-010-9183-320437123
  • Abdul NasirNA, AgarwalP, AgarwalR, et al. Intraocular distribution of topically applied hydrophilic and lipophilic substances in rat eyes. Drug Deliv. 2016;23(8):2765–2771. doi:10.3109/10717544.2015.107729226289215
  • WatskyMA, JablonskiMM, EdelhauserHF. Comparison of conjunctival and corneal surface areas in rabbit and human. Curr Eye Res. 1988;7(5):483–486. doi:10.3109/027136888090318013409715
  • HosoyaKI, LeeVHL, KimKJ. Roles of the conjunctiva in ocular drug delivery: a review of conjunctival transport mechanisms and their regulation. Eur J Pharm Biopharm. 2005;60(2):227–240. doi:10.1016/j.ejpb.2004.12.00715939235
  • RamsayE, RuponenM, PicardatT, et al. Impact of chemical structure on conjunctival drug permeability: adopting porcine conjunctiva and cassette dosing for construction of in silico model. J Pharm Sci. 2017;106(9):2463–2471. doi:10.1016/j.xphs.2017.04.06128479360
  • RamsayE, Del AmoEM, ToropainenE, et al. Corneal and conjunctival drug permeability: systematic comparison and pharmacokinetic impact in the eye. Eur J Pharm Sci. 2018;119:(March):83–89. doi:10.1016/j.ejps.2018.03.034
  • BararJ, JavadzadehAR, OmidiY. Ocular novel drug delivery: impacts of membranes and barriers. Expert Opin Drug Deliv. 2008;5(5):567–581. doi:10.1517/17425247.5.5.56718491982
  • MandalA, BishtR, RupenthalID, MitraAK. Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J Control Release. 2017;248:96–116. doi:10.1016/j.jconrel.2017.01.01228087407
  • Alvarez-LorenzoC, Anguiano-IgeaS, Varela-GarcíaA, Vivero-LopezM, ConcheiroA. Bioinspired hydrogels for drug-eluting contact lenses. Acta Biomater. 2019;84:49–62. doi:10.1016/j.actbio.2018.11.02030448434
  • RibeiroAM, FigueirasA, VeigaF. Improvements in topical ocular drug delivery systems: hydrogels and contact lenses. J Pharm Pharm Sci. 2015;18(5):683–695. doi:10.18433/J3H60P.26670365
  • ShiY, LvH, FuY, et al. Preparation and characterization of a hydrogel carrier to deliver gatifloxacin and its application as a therapeutic contact lens for bacterial keratitis therapy. Biomed Mater. 2013;8(5). doi:10.1088/1748-6041/8/5/055007
  • JiangJ, GillHS, GhateD, et al. Coated microneedles for drug delivery to the eye. Invest Ophthalmol Vis Sci. 2007;48(9):4038. doi:10.1167/iovs.07-006617724185
  • MoffattK, WangY, Raj SinghTR, DonnellyRF. Microneedles for enhanced transdermal and intraocular drug delivery. Curr Opin Pharmacol. 2017;36:14–21. doi:10.1016/j.coph.2017.07.00728780407
  • Thakur SinghRR, TekkoI, McAvoyK, McMillanH, JonesD, DonnellyRF. Minimally invasive microneedles for ocular drug delivery. Expert Opin Drug Deliv. 2017;14(4):525–537. doi:10.1080/17425247.2016.121846027485251
  • LafondM, AptelF, Mestas J-LLC. Ultrasound-mediated ocular delivery of therapeutic agents: a review. Expert Opin Drug Deliv. 2017;14(4):539–550. doi:10.1080/17425247.2016.119876627310925
  • ChristopherK, ChauhanA. Contact lens based drug delivery to the posterior segment via iontophoresis in cadaver rabbit eyes. Pharm Res. 2019;36(6):87. doi:10.1007/s11095-019-2625-431004227
  • Eljarrat-BinstockE, RaiskupF, Frucht-PeryJ, DombAJ. Transcorneal and transscleral iontophoresis of dexamethasone phosphate using drug loaded hydrogel. J Control Release. 2005;106(3):386–390. doi:10.1016/j.jconrel.2005.05.02016026884
  • GratieriT, SanterV, KaliaYN. Basic principles and current status of transcorneal and transscleral iontophoresis. Expert Opin Drug Deliv. 2017;14(9):1091–1102. doi:10.1080/17425247.2017.126633427892757
  • DengF, RantaV-P, KidronH, UrttiA. General pharmacokinetic model for topically administered ocular drug dosage forms. Pharm Res. 2016;33(11):2680–2690. doi:10.1007/s11095-016-1993-227431864