190
Views
15
CrossRef citations to date
0
Altmetric
Review

Review on the Structures and Activities of Transthyretin Amyloidogenesis Inhibitors

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1057-1081 | Published online: 10 Mar 2020

References

  • SaraivaMJ, MagalhaesJ, FerreiraN, AlmeidaMR. Transthyretin deposition in familial amyloidotic polyneuropathy. Curr Med Chem. 2012;19(15):2304–2311. doi:10.2174/09298671280026923622471982
  • SebastiaoMP, LamzinV, SaraivaMJ, DamasAM. Transthyretin stability as a key factor in amyloidogenesis: X-ray analysis at atomic resolution. J Mol Biol. 2001;306(4):733–744. doi:10.1006/jmbi.2000.441511243784
  • Longo AlvesI, HaysMT, SaraivaMJ. Comparative stability and clearance of [Met30]transthyretin and [Met119]transthyretin. Eur J Biochem. 1997;249(3):662–668. doi:10.1111/j.1432-1033.1997.00662.x9395311
  • TerazakiH, AndoY, MisumiS, et al. A novel compound heterozygote (FAP ATTR Arg104His/ATTR Val30Met) with high serum transthyretin (TTR) and retinol binding protein (RBP) levels. Biochem Biophys Res Commun. 1999;264(2):365–370. doi:10.1006/bbrc.1999.151410529370
  • SekijimaY, HammarstromP, MatsumuraM, et al. Energetic characteristics of the new transthyretin variant A25T may explain its atypical central nervous system pathology. Lab Invest. 2003;83(3):409–417. doi:10.1097/01.LAB.0000059937.11023.1F12649341
  • RobinsonLZ, ReixachN. Quantification of quaternary structure stability in aggregation-prone proteins under physiological conditions: the transthyretin case. Biochemistry. 2014;53(41):6496–6510. doi:10.1021/bi500739q25245430
  • YokoyamaT, MizuguchiM. Inhibition of the amyloidogenesis of transthyretin by natural products and synthetic compounds. Biol Pharm Bull. 2018;41(7):979–984. doi:10.1248/bpb.b18-0016629962408
  • BlakeCC, GeisowMJ, OatleySJ, RératB, RératC. Structure of prealbumin: secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 A. J Mol Biol. 1978;121(3):339–356. doi:10.1016/0022-2836(78)90368-6671542
  • NaylorHM, NewcomerME. The structure of human retinol-binding protein (RBP) with its carrier protein transthyretin reveals an interaction with the carboxy terminus of RBP. Biochemistry. 1999;38(9):2647–2653. doi:10.1021/bi982291i10052934
  • ChoiS, ConnellyS, ReixachN, WilsonIA, KellyJW. Chemoselective small molecules that covalently modify one lysine in a non-enzyme protein in plasma. Nat Chem Biol. 2010;6(2):133–139. doi:10.1038/nchembio.28120081815
  • CicconeL, Fruchart-gaillardC, MourierG, et al. Copper mediated amyloid-β binding to transthyretin. Sci Rep. 2018;8(1):13744. doi:10.1038/s41598-018-31808-530213975
  • YeeAW, AldeghiM, BlakeleyMP, et al. A molecular mechanism for transthyretin amyloidogenesis. Nat Commun. 2019;10(1):925. doi:10.1038/s41467-019-08609-z30804345
  • SaelicesL, SieversSA, SawayaMR, EisenbergDS. Crystal structures of amyloidogenic segments of human transthyretin. Protein Sci. 2018;27(7):1295–1303. doi:10.1002/pro.342029626847
  • ZhangJ, GrundströmC, BrännströmK, et al. Interspecies variation between fish and human transthyretins in their binding of thyroid-disrupting chemicals. Environ Sci Technol. 2018;52(20):11865–11874.30226982
  • YokoyamaT, MizuguchiM. Crown ethers as transthyretin amyloidogenesis inhibitors. J Med Chem. 2019;62(4):2076–2082. doi:10.1021/acs.jmedchem.8b0170030688456
  • PetrassiHM, KlabundeT, SacchettiniJ, KellyJW. Structure-based design of N-phenyl phenoxazine transthyretin amyloid fibril inhibitors. J Am Chem Soc. 2000;122(10):2178–2192. doi:10.1021/ja993309v
  • HammarstromP, WisemanRL, PowersET, KellyJW. Prevention of transthyretin amyloid disease by changing protein misfolding energetics. Science. 2003;299(5607):713–716. doi:10.1126/science.107958912560553
  • GuptaS, ChhibberM, SinhaS, SuroliaA. Design of mechanism-based inhibitors of transthyretin amyloidosis: studies with biphenyl ethers and new structural templates. J Med Chem. 2007;50(23):5589–5599. doi:10.1021/jm070015917948976
  • OrtoreG, MartinelliA. Identification of transthyretin fibril formation inhibitors using structure-based virtual screening. ChemMedChem. 2017;12(16):1327–1334. doi:10.1002/cmdc.20170005128422428
  • GreeneMJ, KlimtchukES, SeldinDC, BerkJL, ConnorsLH. Cooperative stabilization of transthyretin by clusterin and diflunisal. Biochemistry. 2015;54(2):268–278. doi:10.1021/bi501124925478940
  • UedaM, AndoY. Recent advances in transthyretin amyloidosis therapy. Transl Neurodegener. 2014;3:19. doi:10.1186/2047-9158-3-1925228988
  • ChoiS, ReixachN, ConnellyS, JohnsonSM, WilsonIA, KellyJW. A substructure combination strategy to create potent and selective transthyretin kinetic stabilizers that prevent amyloidogenesis and cytotoxicity. J Am Chem Soc. 2010;132(4):1359–1370. doi:10.1021/ja908562q20043671
  • JohnsonSM, ConnellyS, WilsonIA, KellyJW. Toward optimization of the linker substructure common to transthyretin amyloidogenesis inhibitors using biochemical and structural studies. J Med Chem. 2008;51(20):6348–6358. doi:10.1021/jm800435s18811132
  • JohnsonSM, ConnellyS, WilsonIA, KellyJW. Toward optimization of the second aryl substructure common to transthyretin amyloidogenesis inhibitors using biochemical and structural studies. J Med Chem. 2009;52(4):1115–1125. doi:10.1021/jm801347s19191553
  • WojtczakA, CodyV, LuftJ, PangbornW. Structure of rat transthyretin (rTTR) complex with thyroxine at 2.5 Å resolution: first non-biased insight into thyroxine binding reveals different hormone orientation in two binding sites. Acta Crystallogr D Biol Crystallogr. 2001;57(Pt8):1061–1070. doi:10.1107/S090744490100723511468389
  • PurkeyHE, DorrellMI, KellyJW. Evaluating the binding selectivity of transthyretin amyloid fibril inhibitors in blood plasma. Proc Natl Acad Sci U S A. 2001;98(10):5566–5571. doi:10.1073/pnas.09143179811344299
  • Adamski-WernerSL, PalaninathanSK, SacchettiniJC, KellyJW. Diflunisal analogues stabilize the native state of transthyretin. Potent inhibition of amyloidogenesis. J Med Chem. 2004;47(2):355–374. doi:10.1021/jm030347n14711308
  • KlabundeT, PetrassiHM, OzaVB, RamanP, KellyJW, SacchettiniJC. Rational design of potent human transthyretin amyloid disease inhibitors. Nat Struct Biol. 2000;7(4):312–321. doi:10.1038/7408210742177
  • AlmeidaMR, MacedoB, CardosoI, et al. Selective binding to transthyretin and tetramer stabilization in serum from patients with familial amyloidotic polyneuropathy by an iodinated diflunisal derivative. Biochem J. 2004;381(Pt 2):351–356. doi:10.1042/BJ2004001115080795
  • MairalT, NietoJ, PintoM, et al. Iodine atoms: a new molecular feature for the design of potent transthyretin fibrillogenesis inhibitors. PLoS One. 2009;4(1):e4124. doi:10.1371/journal.pone.000412419125186
  • LoconteV, MenozziI, FerrariA, et al. Structure-activity relationships of flurbiprofen analogues as stabilizers of the amyloidogenic protein transthyretin. J Struct Biol. 2019;208(2):165–173. doi:10.1016/j.jsb.2019.08.01131473362
  • SafeS. Toxicology, structure-function relationship, and human and environmental health impacts of polychlorinated biphenyls: progress and problems. Environ Health Perspect. 1993;100:259–268. doi:10.1289/ehp.931002598354174
  • SafeSH. Polychlorinated biphenyls (PCBs): environmental impact, biochemical and toxic responses, and implications for risk assessment. Crit Rev Toxicol. 1994;24(2):87–149.8037844
  • SafeS. Human toxicology of chlorinated organic micropollutants In: HesterRE, HarrisonRM, editors. Chlorinated Organic Micropollutants. Vol. 6 The Royal Society of Chemistry; 1996:73–88.
  • KossG, WölfleD. Chapter 29 - Dioxin and dioxin-like polychlorinated hydrocarbons and biphenyls In: MarquardtH, SchäferSG, McClellanR, WelschF, editors. Toxicology. San Diego: Academic Press; 1999:699–728.
  • CheekAO, KowK, ChenJ, McLachlanJA. Potential mechanisms of thyroid disruption in humans: interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin. Environ Health Perspect. 1999;107(4):273–278. doi:10.1289/ehp.99107273
  • ChauhanKR, KodavantiPRS, McKinneyJD. Assessing the role of ortho-substitution on polychlorinated biphenyl binding to transthyretin, a thyroxine transport protein. Toxicol Appl Pharmacol. 2000;162(1):10–21. doi:10.1006/taap.1999.882610631123
  • LehmlerHJ, RobertsonLW. Synthesis of hydroxylated PCB metabolites with the Suzuki-coupling. Chemosphere. 2001;45(8):1119–1127. doi:10.1016/S0045-6535(01)00052-211695625
  • PurkeyHE, PalaninathanSK, KentKC, et al. Hydroxylated polychlorinated biphenyls selectively bind transthyretin in blood and inhibit amyloidogenesis: rationalizing rodent PCB toxicity. Chem Biol. 2004;11(12):1719–1728. doi:10.1016/j.chembiol.2004.10.00915610856
  • SandauCD, MeertsIATM, LetcherRJ, et al. Identification of 4-hydroxyheptachlorostyrene in polar bear plasma and its binding affinity to transthyretin: a metabolite of octachlorostyrene? Environ Sci Technol. 2000;34(18):3871–3877. doi:10.1021/es001134f
  • MorseDC, WehlerEK, WesselingW, KoemanJH, BrouwerA. Alterations in rat brain thyroid hormone status following pre- and postnatal exposure to polychlorinated biphenyls (Aroclor 1254). Toxicol Appl Pharmacol. 1996;136(2):269–279. doi:10.1006/taap.1996.00348619235
  • MargaretO. James. Polychlorinated Biphenyls: Metabolism and Metabolites. In: Robertson LW, Hansen LG, editors. Recent Advances in Environmental Toxicology and Health Effects. University Press of Kentucky; 2001:35–46.
  • RobertsonLW, LudewigG. Polychlorinated biphenyl (PCB) carcinogenicity with special emphasis on airborne PCBs. Air Qual Control. 2011;71(1–2):25–32.
  • LetcherRJ, Klasson-wehlerE, BergmanA. Methyl sulfone and hydroxylated metabolites of polychlorinated biphenyls In: HutzingerO, PaasivirtaJ, editors. Volume 3 Anthropogenic Compounds Part K. Berlin, Heidelberg: Springer Berlin Heidelberg; 2000:315–359.
  • LiX, ParkinS, DuffelMW, RobertsonLW, LehmlerH-J. An efficient approach to sulfate metabolites of polychlorinated biphenyls. Environ Int. 2010;36(8):843–848. doi:10.1016/j.envint.2009.02.00519345419
  • GrimmFA, LehmlerH-J, HeX, RobertsonLW, DuffelMW. Sulfated metabolites of polychlorinated biphenyls are high-affinity ligands for the thyroid hormone transport protein transthyretin. Environ Health Perspect. 2013;121(6):657–662. doi:10.1289/ehp.120619823584369
  • LashuelHA, WurthC, WooL, KellyJW. The most pathogenic transthyretin variant, L55P, forms amyloid fibrils under acidic conditions and protofilaments under physiological conditions. Biochemistry. 1999;38(41):13560–13573. doi:10.1021/bi991021c10521263
  • JohnsonSM, ConnellyS, WilsonIA, KellyJW. Biochemical and structural evaluation of highly selective 2-arylbenzoxazole-based transthyretin amyloidogenesis inhibitors. J Med Chem. 2008;51(2):260–270. doi:10.1021/jm070873518095641
  • GlaserK, SungML, O’neillK, et al. Etodolac selectively inhibits human prostaglandin G/H synthase 2 (PGHS-2) versus human PGHS-1. Eur J Pharmacol. 1995;281(1):107–111. doi:10.1016/0014-2999(95)00302-28566109
  • InoueA, YamakawaJ, YukiokaM, MorisawaS. Filter-binding assay procedure for thyroid hormone receptors. Anal Biochem. 1983;134(1):176–183. doi:10.1016/0003-2697(83)90280-46318596
  • OzaVB, PetrassiHM, PurkeyHE, KellyJW. Synthesis and evaluation of anthranilic acid-based transthyretin amyloid fibril inhibitors. Bioorg Med Chem Lett. 1999;9(1):1–6. doi:10.1016/S0960-894X(98)00696-99990446
  • BauresPW, OzaVB, PetersonSA, KellyJW. Synthesis and evaluation of inhibitors of transthyretin amyloid formation based on the non-steroidal anti-inflammatory drug, flufenamic acid. Bioorg Med Chem. 1999;7(7):1339–1347. doi:10.1016/S0968-0896(99)00066-810465408
  • MillerSR, SekijimaY, KellyJW. Native state stabilization by NSAIDs inhibits transthyretin amyloidogenesis from the most common familial disease variants. Lab Invest. 2004;84(5):545–552. doi:10.1038/labinvest.370005914968122
  • JohnsonSM, WisemanRL, SekijimaY, GreenNS, Adamski-wernerSL, KellyJW. Native state kinetic stabilization as a strategy to ameliorate protein misfolding diseases: a focus on the transthyretin amyloidoses. Acc Chem Res. 2005;38(12):911–921. doi:10.1021/ar020073i16359163
  • GreenNS, PalaninathanSK, SacchettiniJC, KellyJW. Synthesis and characterization of potent bivalent amyloidosis inhibitors that bind prior to transthyretin tetramerization. J Am Chem Soc. 2003;125(44):13404–13414. doi:10.1021/ja030294z14583036
  • WisemanRL, JohnsonSM, KelkerMS, FossT, WilsonIA, KellyJW. Kinetic stabilization of an oligomeric protein by a single ligand binding event. J Am Chem Soc. 2005;127(15):5540–5551. doi:10.1021/ja042929f15826192
  • PetrassiHM, JohnsonSM, PurkeyHE, et al. Potent and selective structure-based dibenzofuran inhibitors of transthyretin amyloidogenesis: kinetic stabilization of the native state. J Am Chem Soc. 2005;127(18):6662–6671. doi:10.1021/ja044351f15869287
  • JohnsonSM, PetrassiHM, PalaninathanSK, et al. Bisaryloxime ethers as potent inhibitors of transthyretin amyloid fibril formation. J Med Chem. 2005;48(5):1576–1587. doi:10.1021/jm049274d15743199
  • RazaviH, PalaninathanSK, PowersET, et al. Benzoxazoles as transthyretin amyloid fibril inhibitors: synthesis, evaluation, and mechanism of action. Angew Chem Int Ed Engl. 2003;42(24):2758–2761. doi:10.1002/anie.20035117912820260
  • BauresPW, PetersonSA, KellyJW. Discovering transthyretin amyloid fibril inhibitors by limited screening. Bioorg Med Chem. 1998;6(8):1389–1401. doi:10.1016/S0968-0896(98)00130-89784876
  • FerreiraN, SaraivaMJ, AlmeidaMR. Uncovering the neuroprotective mechanisms of curcumin on transthyretin amyloidosis. Int J Mol Sci. 2019;20:6. doi:10.3390/ijms20061287
  • ConnellyS, MortensonDE, ChoiS, et al. Semi-quantitative models for identifying potent and selective transthyretin amyloidogenesis inhibitors. Bioorg Med Chem Lett. 2017;27(15):3441–3449. doi:10.1016/j.bmcl.2017.05.08028625364
  • TrivellaDBB, Dos ReisCV, LimaLMTR, FoguelD, PolikarpovI. Flavonoid interactions with human transthyretin: combined structural and thermodynamic analysis. J Struct Biol. 2012;180(1):143–153. doi:10.1016/j.jsb.2012.07.00822842046
  • IakovlevaI, BegumA, PokrzywaM, WalfridssonM, Sauer-erikssonAE, OlofssonA. The flavonoid luteolin, but not luteolin-7-O-glucoside, prevents a transthyretin mediated toxic response. PLoS One. 2015;10(5):e0128222. doi:10.1371/journal.pone.012822226020516
  • GreenNS, FossTR, KellyJW. Genistein, a natural product from soy, is a potent inhibitor of transthyretin amyloidosis. Proc Natl Acad Sci U S A. 2005;102(41):14545–14550. doi:10.1073/pnas.050160910216195386
  • MacchiaB, BalsamoA, LapucciA, et al. Molecular design, synthesis, and antiinflammatory activity of a series of beta-aminoxypropionic acids. J Med Chem. 1990;33(5):1423–1430. doi:10.1021/jm00167a0232329564
  • BalsamoA, BertiniS, GervasiG, et al. Enantiopure 3-(arylmethylidene)aminoxy-2-methylpropionic acids: synthesis and antiinflammatory properties. Eur J Med Chem. 2001;36(10):799–807. doi:10.1016/S0223-5234(01)01275-211738487
  • PalaninathanSK, MohamedmohaideenNN, OrlandiniE, et al. Novel transthyretin amyloid fibril formation inhibitors: synthesis, biological evaluation, and X-ray structural analysis. PLoS One. 2009;4(7):e6290. doi:10.1371/journal.pone.000629019621084
  • OshimaT, SuetsuguA, BabaY. Extraction and separation of a lysine-rich protein by formation of supramolecule between crown ether and protein in aqueous two-phase system. Anal Chim Acta. 2010;674(2):211–219. doi:10.1016/j.aca.2010.06.03920678632
  • Lee-C-C, Maestre-reynaM, HsuK-C, et al. Crowning proteins: modulating the protein surface properties using crown ethers. Angew Chem Int Ed Engl. 2014;53(48):13054–13058. doi:10.1002/anie.20140566425287606
  • TomarD, KhanT, SinghRR, et al. Crystallographic study of novel transthyretin ligands exhibiting negative-cooperativity between two thyroxine binding sites. PLoS One. 2012;7(9):e43522. doi:10.1371/journal.pone.004352222973437
  • SinhaS, LopesDHJ, DuZ, et al. Lysine-specific molecular tweezers are broad-spectrum inhibitors of assembly and toxicity of amyloid proteins. J Am Chem Soc. 2011;133(42):16958–16969. doi:10.1021/ja206279b21916458
  • FerreiraN, Pereira-henriquesA, AttarA, et al. Molecular tweezers targeting transthyretin amyloidosis. Neurotherapeutics. 2014;11(2):450–461. doi:10.1007/s13311-013-0256-824459092
  • ColonW, KellyJW. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry. 1992;31(36):8654–8660. doi:10.1021/bi00151a0361390650
  • JuliusRL, FarhaOK, ChiangJ, PerryLJ, HawthorneMF. Synthesis and evaluation of transthyretin amyloidosis inhibitors containing carborane pharmacophores. Proc Natl Acad Sci U S A. 2007;104(12):4808–4813. doi:10.1073/pnas.070031610417360344
  • MiroyGJ, LaiZ, LashuelHA, PetersonSA, StrangC, KellyJW. Inhibiting transthyretin amyloid fibril formation via protein stabilization. Proc Natl Acad Sci U S A. 1996;93(26):15051–15056. doi:10.1073/pnas.93.26.150518986762
  • RazaviH, PowersET, PurkeyHE, et al. Design, synthesis, and evaluation of oxazole transthyretin amyloidogenesis inhibitors. Bioorg Med Chem Lett. 2005;15(4):1075–1078. doi:10.1016/j.bmcl.2004.12.02215686915
  • YokoyamaT, UedaM, AndoY, MizuguchiM. Discovery of γ-mangostin as an amyloidogenesis inhibitor. Sci Rep. 2015;5:13570. doi:10.1038/srep1357026310724
  • KimB, ParkH, LeeSK, et al. Systemic optimization and structural evaluation of quinoline derivatives as transthyretin amyloidogenesis inhibitors. Eur J Med Chem. 2016;123:777–787. doi:10.1016/j.ejmech.2016.08.00327541261
  • ButlerJS, ChanA, CostelhaS, et al. Preclinical evaluation of RNAi as a treatment for transthyretin-mediated amyloidosis. Amyloid. 2016;23(2):109–118. doi:10.3109/13506129.2016.116088227033334
  • GoncalvesP, MartinsH, CostelhaS, MaiaLF, SaraivaMJ. Efficiency of silencing RNA for removal of transthyretin V30M in a TTR leptomeningeal animal model. Amyloid. 2016;23(4):249–253. doi:10.1080/13506129.2016.125628227884058
  • CardosoI, SaraivaMJ. Doxycycline disrupts transthyretin amyloid: evidence from studies in a FAP transgenic mice model. FASEB J. 2006;20(2):234–239. doi:10.1096/fj.05-4509com16449795
  • WardJE, RenR, ToraldoG, et al. Doxycycline reduces fibril formation in a transgenic mouse model of AL amyloidosis. Blood. 2011;118(25):6610–6617. doi:10.1182/blood-2011-04-35164321998211
  • CardosoI, MartinsD, RibeiroT, MerliniG, SaraivaMJ. Synergy of combined doxycycline/TUDCA treatment in lowering Transthyretin deposition and associated biomarkers: studies in FAP mouse models. J Transl Med. 2010;8:74. doi:10.1186/1479-5876-8-7420673327
  • ObiciL, CorteseA, LozzaA, et al. Doxycycline plus tauroursodeoxycholic acid for transthyretin amyloidosis: a Phase II study. Amyloid. 2012;19(Suppl 1):34–36. doi:10.3109/13506129.2012.67850822551192
  • SekijimaY, DendleMA, KellyJW. Orally administered diflunisal stabilizes transthyretin against dissociation required for amyloidogenesis. Amyloid. 2006;13(4):236–249. doi:10.1080/1350612060096088217107884
  • TojoK, SekijimaY, KellyJW, IkedaS-I. Diflunisal stabilizes familial amyloid polyneuropathy-associated transthyretin variant tetramers in serum against dissociation required for amyloidogenesis. Neurosci Res. 2006;56(4):441–449. doi:10.1016/j.neures.2006.08.01417028027
  • SekijimaY. Recent progress in the understanding and treatment of transthyretin amyloidosis. J Clin Pharm Ther. 2014;39(3):225–233. doi:10.1111/jcpt.2014.39.issue-324749898
  • CoelhoT, MaiaLF, da SilvaAM, et al. Long-term effects of tafamidis for the treatment of transthyretin familial amyloid polyneuropathy. J Neurol. 2013;260(11):2802–2814. doi:10.1007/s00415-013-7051-723974642
  • CorteseA, VitaG, LuigettiM, et al. Monitoring effectiveness and safety of Tafamidis in transthyretin amyloidosis in Italy: a longitudinal multicenter study in a non-endemic area. J Neurol. 2016;263(5):916–924. doi:10.1007/s00415-016-8064-926984605
  • BulawaCE, ConnellyS, DevitM, et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc Natl Acad Sci U S A. 2012;109(24):9629–9634. doi:10.1073/pnas.112100510922645360
  • Waddington CruzM, BensonMD. A review of tafamidis for the treatment of transthyretin-related amyloidosis. Neurol Ther. 2015;4(2):61–79. doi:10.1007/s40120-015-0031-326662359
  • MaurerMS, SchwartzJH, GundapaneniB, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018;379(11):1007–1016. doi:10.1056/NEJMoa180568930145929
  • MathewV, WangAK. Inotersen: new promise for the treatment of hereditary transthyretin amyloidosis. Drug Des Devel Ther. 2019;13:1515–1525. doi:10.2147/DDDT.S162913
  • KeamSJ. Inotersen: first global approval. Drugs. 2018;78(13):1371–1376. doi:10.1007/s40265-018-0968-530120737
  • MerelesD, BussSJ, HardtSE, HunsteinW, KatusHA. Effects of the main green tea polyphenol epigallocatechin-3-gallate on cardiac involvement in patients with AL amyloidosis. Clin Res Cardiol. 2010;99(8):483–490. doi:10.1007/s00392-010-0142-x20221615
  • BourgaultS, ChoiS, BuxbaumJN, KellyJW, PriceJL, ReixachN. Mechanisms of transthyretin cardiomyocyte toxicity inhibition by resveratrol analogs. Biochem Biophys Res Commun. 2011;410(4):707–713. doi:10.1016/j.bbrc.2011.04.13321557933
  • FerreiraN, SaraivaMJ, AlmeidaMR. Epigallocatechin-3-gallate as a potential therapeutic drug for TTR-related amyloidosis: “In vivo” evidence from FAP mice models. PLoS One. 2012;7(1):e29933. doi:10.1371/journal.pone.002993322253829
  • Aus Dem SiepenF, BauerR, AurichM, et al. Green tea extract as a treatment for patients with wild-type transthyretin amyloidosis: an observational study. Drug Des Devel Ther. 2015;9:6319––6325.
  • CappelliF, MartoneR, TaborchiG, et al. Epigallocatechin-3-gallate tolerability and impact on survival in a cohort of patients with transthyretin-related cardiac amyloidosis. A single-center retrospective study. Intern Emerg Med. 2018;13(6):873–880. doi:10.1007/s11739-018-1887-x29882023
  • AndradeS, RamalhoMJ, PereiraM, LoureiroJA. Resveratrol brain delivery for neurological disorders prevention and treatment. Front Pharmacol. 2018;9:1261. doi:10.3389/fphar.2018.0126130524273
  • SaqibU, KelleyTT, PanguluriSK, et al. Polypharmacology or promiscuity? Structural interactions of resveratrol with its bandwagon of targets. Front Pharmacol. 2018;9:1201. doi:10.3389/fphar.2018.0120130405416
  • PalhaJA, HaysMT. Morreale de EscobarG, EpiskopouV, GottesmanME, SaraivaMJ. Transthyretin is not essential for thyroxine to reach the brain and other tissues in transthyretin-null mice. Am J Physiol. 1997;272(3 Pt 1):E485–E493. doi:10.1152/ajpendo.1997.272.3.E4859124556
  • NiemietzC, ChandhokG, SchmidtH. Therapeutic oligonucleotides targeting liver disease: TTR amyloidosis. Molecules. 2015;20(10):17944–17975. doi:10.3390/molecules20101794426437390
  • CrookeST, WitztumJL, BennettCF, BakerBF. RNA-targeted therapeutics. Cell Metab. 2018;27(4):714–739. doi:10.1016/j.cmet.2018.03.00429617640
  • ShenX, CoreyDR. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res. 2018;46(4):1584–1600. doi:10.1093/nar/gkx123929240946
  • RossorAM, ReillyMM, SleighJN. Antisense oligonucleotides and other genetic therapies made simple. Pract Neurol. 2018;18(2):126–131. doi:10.1136/practneurol-2017-00176429455156
  • CoelhoT, AdamsD, SilvaA, et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N Engl J Med. 2013;369(9):819–829. doi:10.1056/NEJMoa120876023984729
  • AdamsD, Gonzalez-duarteA, O’riordanWD, et al. Patisiran, an RNAi Therapeutic, for Hereditary Transthyretin Amyloidosis. N Engl J Med. 2018;379(1):11–21. doi:10.1056/NEJMoa171615329972753
  • GarberK. Alnylam terminates revusiran program, stock plunges. Nat Biotechnol. 2016;34(12):1213–1214. doi:10.1038/nbt1216-121327926717
  • AckermannEJ, GuoS, BootenS, et al. Clinical development of an antisense therapy for the treatment of transthyretin-associated polyneuropathy. Amyloid. 2012;19(Suppl 1):43–44. doi:10.3109/13506129.2012.67314022494066
  • HayashiY, JonoH. Recent advances in oligonucleotide-based therapy for transthyretin amyloidosis: clinical impact and future prospects. Biol Pharm Bull. 2018;41(12):1737–1744. doi:10.1248/bpb.b18-0062530504675
  • Sant’annaR, GallegoP, RobinsonLZ, et al. Repositioning tolcapone as a potent inhibitor of transthyretin amyloidogenesis and associated cellular toxicity. Nat Commun. 2016;7:10787. doi:10.1038/ncomms1078726902880
  • GamezJ, SalvadoM, ReigN, et al. Transthyretin stabilization activity of the catechol-O-methyltransferase inhibitor tolcapone (SOM0226) in hereditary ATTR amyloidosis patients and asymptomatic carriers: proof-of-concept study. Amyloid. 2019;26(2):74–84. doi:10.1080/13506129.2019.159770231119947
  • FerreiraN, SaraivaMJ, AlmeidaMR. Natural polyphenols inhibit different steps of the process of transthyretin (TTR) amyloid fibril formation. FEBS Lett. 2011;585(15):2424–2430. doi:10.1016/j.febslet.2011.06.03021740906