472
Views
34
CrossRef citations to date
0
Altmetric
Review

Dupilumab: Clinical Efficacy of Blocking IL-4/IL-13 Signalling in Chronic Rhinosinusitis with Nasal Polyps

, ORCID Icon &
Pages 1757-1769 | Published online: 08 May 2020

References

  • FokkensWJ, LundVJ, HopkinsC, et al. European position paper on rhinosinusitis and nasal polyps 2020. Rhinology. 2020;58(Suppl S29):1–464.
  • SmithKA, OrlandiRR, RudmikL. Cost of adult chronic rhinosinusitis: a systematic review. Laryngoscope. 2015;125(7):1547–1556.25640115
  • LiaoB, LiuJX, LiZY, et al. Multidimensional endotypes of chronic rhinosinusitis and their association with treatment outcomes. Allergy. 2018;73(7):1459–1469.29331025
  • DeCondeAS, SolerZM. Chronic rhinosinusitis: epidemiology and burden of disease. Am J Rhinol Allergy. 2016;30(2):134–139.
  • SolerZM, WittenbergE, SchlosserRJ, MaceJC, SmithTL. Health state utility values in patients undergoing endoscopic sinus surgery. Laryngoscope. 2011;121(12):2672–2678.22034223
  • HastanD, FokkensWJ, BachertC, et al. Chronic rhinosinusitis in Europe–an underestimated disease. A GA(2)LEN study. Allergy. 2011;66(9):1216–1223.21605125
  • KowalskiML, AgacheI, BavbekS, et al. Diagnosis and management of NSAID-Exacerbated Respiratory Disease (N-ERD)-a EAACI position paper. Allergy. 2019;74(1):28–39.30216468
  • RajanJP, WineingerNE, StevensonDD, WhiteAA. Prevalence of aspirin-exacerbated respiratory disease among asthmatic patients: a meta-analysis of the literature. J Allergy Clin Immunol. 2015;135(3):676–681.25282015
  • StevensWW, PetersAT, HirschAG, et al. Clinical characteristics of patients with chronic rhinosinusitis with nasal polyps, asthma, and aspirin-exacerbated respiratory disease. J Allergy Clin Immunol Pract. 2017;5(4):1061–1070.e1063.28286156
  • CoffmanRL. Origins of the T(H)1-T(H)2 model: a personal perspective. Nat Immunol. 2006;7(6):539–541.16715060
  • RobinsonDS, HamidQ, YingS, et al. Predominant TH2-like bronchoalveolar T-lymphocyte population in atopic asthma. N Engl J Med. 1992;326(5):298–304.1530827
  • TomassenP, VandeplasG, Van ZeleT, et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J Allergy Clin Immunol. 2016;137(5):1449–1456.e1444.26949058
  • Van ZeleT, GevaertP, HoltappelsG, et al. Oral steroids and doxycycline: two different approaches to treat nasal polyps. J Allergy Clin Immunol. 2010;125(5):1069–1076.20451040
  • HoxV, LourijsenE, JordensA, et al. Benefits and harm of systemic steroids for short- and long-term use in rhinitis and rhinosinusitis: an EAACI position paper. Clin Transl Allergy. 2020;10:1.31908763
  • HowardM, FarrarJ, HilfikerM, et al. Pillars article: identification of a T cell-derived B cell growth factor distinct from interleukin 2. J. Exp. Med. 1982. 155: 914-923. J Immunol. 2013;190(3):864–873.23335802
  • SwainSL, WeinbergAD, EnglishM, HustonG. IL-4 directs the development of Th2-like helper effectors. J Immunol. 1990;145(11):3796–3806.2147202
  • SederRA, PaulWE, DavisMM, Fazekas de St GrothB. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J Exp Med. 1992;176(4):1091–1098.1328464
  • HsiehCS, HeimbergerAB, GoldJS, O’GarraA, MurphyKM. Differential regulation of T helper phenotype development by interleukins 4 and 10 in an alpha beta T-cell-receptor transgenic system. Proc Natl Acad Sci U S A. 1992;89(13):6065–6069.1385868
  • WebbDC, McKenzieAN, KoskinenAM, YangM, MattesJ, FosterPS. Integrated signals between IL-13, IL-4, and IL-5 regulate airways hyperreactivity. J Immunol. 2000;165(1):108–113.10861042
  • PeneJ, RoussetF, BriereF, et al. IgE production by normal human B cells induced by alloreactive T cell clones is mediated by IL-4 and suppressed by IFN-gamma. J Immunol. 1988;141(4):1218–1224.3135324
  • MintyA, ChalonP, DerocqJM, et al. Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature. 1993;362(6417):248–250.8096327
  • McKenzieAN, CulpepperJA, de Waal MalefytR, et al. Interleukin 13, a T-cell-derived cytokine that regulates human monocyte and B-cell function. Proc Natl Acad Sci U S A. 1993;90(8):3735–3739.8097324
  • ZurawskiG, de VriesJE. Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol Today. 1994;15(1):19–26.7907877
  • Wills-KarpM, LuyimbaziJ, XuX, et al. Interleukin-13: central mediator of allergic asthma. Science (New York, NY). 1998;282(5397):2258–2261.
  • GrunigG, WarnockM, WakilAE, et al. Requirement for IL-13 independently of IL-4 in experimental asthma. Science. 1998;282(5397):2261–2263.9856950
  • ZhuZ, HomerRJ, WangZ, et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest. 1999;103(6):779–788.10079098
  • SamitasK, CarterA, KariyawasamHH, XanthouG. Upper and lower airway remodelling mechanisms in asthma, allergic rhinitis and chronic rhinosinusitis: the one airway concept revisited. Allergy. 2018;73(5):993–1002.29197105
  • McCormickSM, HellerNM. Commentary: IL-4 and IL-13 receptors and signaling. Cytokine. 2015;75(1):38–50.26187331
  • GandhiNA, PirozziG, GrahamNMH. Commonality of the IL-4/IL-13 pathway in atopic diseases. Expert Rev Clin Immunol. 2017;13(5):425–437.28277826
  • JunttilaIS, CreusotRJ, MoragaI, et al. Redirecting cell-type specific cytokine responses with engineered interleukin-4 superkines. Nat Chem Biol. 2012;8(12):990–998.23103943
  • HeimMH. The Jak-STAT pathway: cytokine signalling from the receptor to the nucleus. Journal of Receptor and Signal Transduction Research. 1999;19(1–4):75–120.10071751
  • ShirleyM. Dupilumab: first Global Approval. Drugs. 2017;77(10):1115–1121.28547386
  • BachertC, HanJK, DesrosiersM, et al. Efficacy and safety of dupilumab in patients with severe chronic rhinosinusitis with nasal polyps (LIBERTY NP SINUS-24 and LIBERTY NP SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-group phase 3 trials. Lancet. 2019;394(10209):1638–1650.31543428
  • TomaS, HopkinsC. Stratification of SNOT-22 scores into mild, moderate or severe and relationship with other subjective instruments. Rhinology. 2016;54(2):129–133.27017484
  • BachertC, MannentL, NaclerioRM, et al. Effect of subcutaneous dupilumab on nasal polyp burden in patients with chronic sinusitis and nasal polyposis: a randomized clinical trial. JAMA. 2016;315(5):469–479.26836729
  • LaidlawTM, MullolJ, FanC, et al. Dupilumab improves nasal polyp burden and asthma control in patients with CRSwNP and AERD. J Allergy Clin Immunol Pract. 2019;7(7):2462–2465.e2461.30954643
  • BraddockM, HananiaNA, SharafkhanehA, ColiceG, CarlssonM. Potential risks related to modulating interleukin-13 and interleukin-4 signalling: a systematic review. Drug Saf. 2018;41(5):489–509.29411337
  • AgacheI, SongY, RochaC, et al. Efficacy and safety of treatment with dupilumab for severe asthma. Allergy. 2020.
  • RamalingamTR, PesceJT, SheikhF, et al. Unique functions of the type II interleukin 4 receptor identified in mice lacking the interleukin 13 receptor alpha1 chain. Nat Immunol. 2008;9(1):25–33.18066066
  • GevaertP, CalusL, Van ZeleT, et al. Omalizumab is effective in allergic and nonallergic patients with nasal polyps and asthma. J Allergy Clin Immunol. 2013;131(1):110–116.23021878
  • BidderT, SahotaJ, RennieC, LundVJ, RobinsonDS, KariyawasamHH. Omalizumab treats chronic rhinosinusitis with nasal polyps and asthma together-a real life study. Rhinology. 2018;56(1):42–45.29288573
  • GouldHJ, BeavilRL, VercelliD. IgE isotype determination: epsilon-germline gene transcription, DNA recombination and B-cell differentiation. Br Med Bull. 2000;56(4):908–924.11359628
  • ZhangN, HoltappelsG, GevaertP, et al. Mucosal tissue polyclonal IgE is functional in response to allergen and SEB. Allergy. 2011;66(1):141–148.20659077
  • ChenJB, JamesLK, DaviesAM, et al. Antibodies and superantibodies in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2017;139(4):1195–1204.e1111.27658758
  • JeffeJS, SeshadriS, HamillKJ, et al. A role for anti-BP180 autoantibodies in chronic rhinosinusitis. Laryngoscope. 2013;123(9):2104–2111.24167818
  • TanBK, LiQZ, SuhL, et al. Evidence for intranasal antinuclear autoantibodies in patients with chronic rhinosinusitis with nasal polyps. J Allergy Clin Immunol. 2011;128(6):1198–1206.e1191.21996343
  • GevaertP, HoltappelsG, JohanssonSG, CuvelierC, CauwenbergeP, BachertC. Organization of secondary lymphoid tissue and local IgE formation to Staphylococcus aureus enterotoxins in nasal polyp tissue. Allergy. 2005;60(1):71–79.15575934
  • PatadiaM, DixonJ, ConleyD, et al. Evaluation of the presence of B-cell attractant chemokines in chronic rhinosinusitis. Am J Rhinol Allergy. 2010;24(1):11–16.20109310
  • BabaS, KondoK, Toma-HiranoM, et al. Local increase in IgE and class switch recombination to IgE in nasal polyps in chronic rhinosinusitis. Clin Exp Allergy. 2014;44(5):701–712.24931597
  • GevaertP, Nouri-AriaKT, WuH, et al. Local receptor revision and class switching to IgE in chronic rhinosinusitis with nasal polyps. Allergy. 2013;68(1):55–63.23157682
  • ZhangYN, SongJ, WangH, et al. Nasal IL-4(+)CXCR5(+)CD4(+) T follicular helper cell counts correlate with local IgE production in eosinophilic nasal polyps. J Allergy Clin Immunol. 2016;137(2):462–473.26329514
  • FinkelmanFD, KatonaIM, UrbanJF Jr, et al. IL-4 is required to generate and sustain in vivo IgE responses. J Immunol. 1988;141(7):2335–2341.2459206
  • BeckLA, ThaciD, HamiltonJD, et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N Engl J Med. 2014;371(2):130–139.25006719
  • NogaO, HanfG, BrachmannI, et al. Effect of omalizumab treatment on peripheral eosinophil and T-lymphocyte function in patients with allergic asthma. J Allergy Clin Immunol. 2006;117(6):1493–1499.16751018
  • van RensenEL, EvertseCE, van SchadewijkWA, et al. Eosinophils in bronchial mucosa of asthmatics after allergen challenge: effect of anti-IgE treatment. Allergy. 2009;64(1):72–80.19076931
  • JonstamK, SwansonBN, MannentLP, et al. Dupilumab reduces local type 2 pro-inflammatory biomarkers in chronic rhinosinusitis with nasal polyposis. Allergy. 2019;74(4):743–752.30488542
  • LamEP, KariyawasamHH, RanaBM, et al. IL-25/IL-33-responsive T2 cells characterize nasal polyps with a default T17 signature in nasal mucosa. J Allergy Clin Immunol. 2015.
  • LiaoB, CaoPP, ZengM, et al. Interaction of thymic stromal lymphopoietin, IL-33, and their receptors in epithelial cells in eosinophilic chronic rhinosinusitis with nasal polyps. Allergy. 2015;70(9):1169–1180.26095319
  • BuchheitKM, CahillKN, KatzHR, et al. Thymic stromal lymphopoietin controls prostaglandin D2 generation in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2016;137(5):1566–1576.e1565.26691435
  • PanchSR, BozikME, BrownT, et al. Dexpramipexole as an oral steroid-sparing agent in hypereosinophilic syndromes. Blood. 2018;132(5):501–509.29739754
  • LaidlawTM, PrussinC, PanettieriRA, et al. Dexpramipexole depletes blood and tissue eosinophils in nasal polyps with no change in polyp size. Laryngoscope. 2019;129(2):E61–e66.30284267
  • KariyawasamHH, RobinsonDS. The role of eosinophils in airway tissue remodelling in asthma. Curr Opin Immunol. 2007;19(6):681–686.17949963
  • BachertC, SousaAR, LundVJ, et al. Reduced need for surgery in severe nasal polyposis with mepolizumab: randomized trial. J Allergy Clin Immunol. 2017;140(4):1024–1031.e1014.28687232
  • GevaertP, VanBN, CattaertT, et al. Mepolizumab, a humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis. J Allergy Clin Immunol. 2011;128(5):989–995.21958585
  • DenburgJA, SilverJE, AbramsJS. Interleukin-5 is a human basophilopoietin: induction of histamine content and basophilic differentiation of HL-60 cells and of peripheral blood basophil-eosinophil progenitors. Blood. 1991;77(7):1462–1468.1706953
  • HumbertM, TailleC, MalaL, Le GrosV, JustJ, MolimardM. Omalizumab effectiveness in patients with severe allergic asthma according to blood eosinophil count: the STELLAIR study. Eur Respir J. 2018;51(5).
  • SahotaJ, BidderT, LivingstonR, et al. Chronic rhinosinusitis and omalizumab: eosinophils not IgE predict treatment response in real-life. Rhinol. 2018;1:147–153.
  • MellorEA, AustenKF, BoyceJA. Cysteinyl leukotrienes and uridine diphosphate induce cytokine generation by human mast cells through an interleukin 4-regulated pathway that is inhibited by leukotriene receptor antagonists. J Exp Med. 2002;195(5):583–592.11877481
  • BoesveldtS, PostmaEM, BoakD, et al. Anosmia-A clinical review. Chem Senses. 2017;42(7):513–523.28531300
  • SolerZM, YooF, SchlosserRJ, et al. Correlation of mucus inflammatory proteins and olfaction in chronic rhinosinusitis. Int Forum Allergy Rhinol. 2019.
  • Ordovas-MontanesJ, DwyerDF, NyquistSK, et al. Allergic inflammatory memory in human respiratory epithelial progenitor cells. Nature. 2018;560(7720):649–654.30135581
  • KoopmansT, GosensR. Revisiting asthma therapeutics: focus on WNT signal transduction. Drug Discov Today. 2018;23(1):49–62.28890197
  • RockJR, RandellSH, HoganBL. Airway basal stem cells: a perspective on their roles in epithelial homeostasis and remodeling. Dis Models Mech. 2010;3(9–10):545–556.
  • GraziadeiGA, GraziadeiPP. Neurogenesis and neuron regeneration in the olfactory system of mammals. II. Degeneration and reconstitution of the olfactory sensory neurons after axotomy. J Neurocytol. 1979;8(2):197–213.469573
  • NicholsonGC, KariyawasamHH, TanAJ, et al. The effects of an anti-IL-13 mAb on cytokine levels and nasal symptoms following nasal allergen challenge. J Allergy Clin Immunol. 2011;128(4):800–807.21719078
  • KabeschM, SchedelM, CarrD, et al. IL-4/IL-13 pathway genetics strongly influence serum IgE levels and childhood asthma. J Allergy Clin Immunol. 2006;117:269–274.16461126
  • WenzelSE, BalzarS, AmplefordE, et al. IL4R alpha mutations are associated with asthma exacerbations and mast cell/IgE expression. Am J Respir Crit Care Med. 2007;175(6):570–576.17170387
  • PalikheNS, KimSH, ChoBY, et al. IL-13 gene polymorphisms are associated with rhinosinusitis and eosinophilic inflammation in aspirin intolerant asthma. Allergy Asthma Immunol Res. 2010;2(2):134–140.20358028
  • AslanF, AltunE, PaksoyS, TuranG. Could eosinophilia predict clinical severity in nasal polyps? Multidiscip Respir Med. 2017;12:21.28835819
  • KhouryP, GraysonPC, KlionAD. Eosinophils in vasculitis: characteristics and roles in pathogenesis. Nat Rev Rheumatol. 2014;10(8):474–483.25003763
  • CastroM, CorrenJ, PavordID, et al. Dupilumab efficacy and safety in moderate-to-severe uncontrolled asthma. N Engl J Med. 2018;378(26):2486–2496.29782217
  • GAS, AWW, JYT, et al. Cost utility analysis of dupilumab versus endoscopic sinus surgery for chronic rhinosinusitis with nasal polyps. Laryngoscope. 2020.
  • FokkensWJ, LundV, BachertC, et al. EUFOREA consensus on biologics for CRSwNP with or without asthma. Allergy. 2019;74(12):2312–2319.31090937
  • KariyawasamHH, RotirotiG. Allergic rhinitis, chronic rhinosinusitis and asthma: unravelling a complex relationship. Curr Opin Otolaryngol Head Neck Surg. 2013;21(1):79–86.23241653
  • RobinsonDS, CampbellDA, DurhamSR, PfefferJ, BarnesPJ, ChungKF. Systematic assessment of difficult-to-treat asthma. Eur Respir J. 2003;22(3):478–483.14516138
  • RobinsonDS, KariyawasamHH, HeaneyLG. Phase three studies of biologics for severe asthma: could do better? Eur Respir J. 2017;50(3).
  • WenzelS, CastroM, CorrenJ, et al. Dupilumab efficacy and safety in adults with uncontrolled persistent asthma despite use of medium-to-high-dose inhaled corticosteroids plus a long-acting beta2 agonist: a randomised double-blind placebo-controlled pivotal phase 2b dose-ranging trial. Lancet. 2016;388(10039):31–44.27130691
  • KariyawasamHH. Chronic rhinosinusitis with nasal polyps: insights into mechanisms of disease from emerging biological therapies. Expert Rev Clin Immunol. 2019;15(1):59–71.30370785