269
Views
23
CrossRef citations to date
0
Altmetric
Original Research

Novel HDAC/Tubulin Dual Inhibitor: Design, Synthesis and Docking Studies of α-Phthalimido-Chalcone Hybrids as Potential Anticancer Agents with Apoptosis-Inducing Activity

, &
Pages 3111-3130 | Published online: 03 Aug 2020

References

  • PetrelliA, GiordanoS. From single- to multi-target drugs in cancer therapy: when a specificity becomes an advantage. Curr Med Chem. 2008;15:422–432. doi:10.2174/09298670878350321218288997
  • OuyangL, ShiZ, ZhaoS, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45:487–498. doi:10.1111/j.1365-2184.2012.00845.x23030059
  • FitzmauriceC, AkinyemijuTF, Al LamiFH, et al. Global burden of disease cancer, global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 32 cancer groups, 1990 to 2015: a systematic analysis for the global burden of disease study. JAMA Oncol. 2017;3:524–548. doi:10.1001/jamaoncol.2016.568827918777
  • TangZ-Y. Hepatocellular carcinoma: cause, treatment and metastasis. World J Gastroenterol. 2001;7(4):445–454. doi:10.3748/wjg.v7.i4.44511819809
  • Available from: https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/. Accessed 630, 2020.
  • TangY, WangY, KianiMF, WangB. Classification, treatment strategy, and associated drug resistance in breast cancer. Clin Breast Cancer. 2016;16:335–343. doi:10.1016/j.clbc.2016.05.01227268750
  • MinucciS, PelicciPG. Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer. 2006;6:38–51. doi:10.1038/nrc177916397526
  • MarksPA, DokmanovicM. Histone deacetylase inhibitors: discovery and development as anticancer agents. Expert Opin Invest Drugs. 2005;14(12):1497–1511. doi:10.1517/13543784.14.12.1497
  • BoldenJE, PeartMJ, JohnstoneRW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov. 2006;5:769–784. doi:10.1038/nrd213316955068
  • YoungJL, WonAJ, JaewonL, et al. Molecular mechanism of SAHA on regulation of autophagic cell death in tamoxifen-resistant MCF-7 breast cancer cells. Int J Med Sci. 2012;9(10):881–893. doi:10.7150/ijms.501123155362
  • RosatoRR, GrantS. Histone deacetylase inhibitors in clinical development. Expert Opin Invest Drugs. 2004;13(1):21–38. doi:10.1517/13543784.13.1.21
  • KumarN, TomarR, PandeyA, TomarV, SinghVK, ChandraR. Preclinical evaluation and molecular docking of 1,3-benzodioxole propargyl ether derivatives as novel inhibitor for combating the histone deacetylase enzyme in cancer. Artif Nano Biotech. 2018;46:1288–1299. doi:10.1080/21691401.2017.1369423
  • DowningKH, NogalesE. Tubulin structure: insights into microtubule properties and functions. Curr Opin Struct Biol. 1998;8:785–791. doi:10.1016/S0959-440X(98)80099-79914260
  • TomarV, KumarN, TomarR, et al. Biological evaluation of noscapine analogues as potent and microtubule-targeted anticancer agents. Sci Rep. 2019;9:19542–19552. doi:10.1038/s41598-019-55839-831862933
  • KaurR, KaurG, KaurR, GillRK, SoniR, BariwalJ. Recent developments in tubulin polymerization inhibitors: an overview. Eur J Med Chem. 2014;87:89–124. doi:10.1016/j.ejmech.2014.09.05125240869
  • SackettDL. Podophyllotoxin, steganacin and combretastatin: natural products that bind at the colchicine site of tubulin. Pharmac Ther. 1993;59:163–228. doi:10.1016/0163-7258(93)90044-E
  • CastañoLF, CuartasV, BernalA, et al. New chalcone-sulfonamide hybrids exhibiting anticancer and antituberculosis activity. Eur J Med Chem. 2019;175:50–60. doi:10.1016/j.ejmech.2019.05.013
  • ModzelewskaA, PettitC, AchantaG, DavidsonNE, HuangP, KhanSR. Anticancer activities of novel chalcone and bis-chalcone derivatives. Bioorg Med Chem. 2006;14(10):3491–3495. doi:10.1016/j.bmc.2006.01.00316434201
  • WuJ, LiJ, CaiY, et al. Evaluation and discovery of novel synthetic chalcone derivatives as antiinflammatory agents. J Med Chem. 2011;54(23):8110–8123. doi:10.1021/jm200946h21988173
  • SinghN, KumarN, RatheeG, et al. Privileged scaffold chalcone: synthesis, characterization and its mechanistic interaction studies with BSA employing spectroscopic and chemoinformatics approaches. ACS Omega. 2020;5:2267–2279. doi:10.1021/acsomega.9b0347932064388
  • ChiaradiaLD, MascarelloA, PurificaçãoM, et al. Synthetic chalcones as efficient inhibitors of Mycobacterium tuberculosis protein tyrosine phosphatase PtpA. Bioorg Med Chem Lett. 2008;18(23):6227–6230. doi:10.1016/j.bmcl.2008.09.10518930396
  • ColeAL, HossainS, ColeAM, PhanstielO. Synthesis and bioevaluation of substituted chalcones, coumaranones and other flavonoids as anti-HIV agents. Bioorg Med Chem. 2016;15(12):2768–2776. doi:10.1016/j.bmc.2016.04.045
  • SyahriJ 1, YuanitaE, NurohmahBA, ArmunantoR, Purwono.B. Chalcone analogue as potent anti-malarial compounds against Plasmodium falciparum: synthesis, biological evaluation, and docking simulation study. Asian Pac J Biomed. 2017;7:675–679. doi:10.1016/j.apjtb.2017.07.004
  • Escribano-FerrerE, ReguéJQ, Garcia-SalaX, MontañésAB, Lamuela-RaventosRM. In vivo anti-inflammatory and antiallergic activity of pure naringenin, naringenin chalcone, and quercetin in mice. Nat Prod. 2019;82:177–182. doi:10.1021/acs.jnatprod.8b00366
  • Espinoza-HicksJC, Chacón-VargasKF, Hernández-RiveraJL, et al. Novel prenyloxy chalcones as potential leishmanicidal and trypanocidal agents: design, synthesis and evaluation. Eur J Med Chem. 2019;167:402–413. doi:10.1016/j.ejmech.2019.02.02830784876
  • SharmaV, KumarV, KumarP. Heterocyclic chalcone analogues as potential anticancer agents. Anticancer Agents Med Chem. 2013;13(3):422–432. doi:10.2174/187152061131303000622721390
  • ZuoY, YuY, WangS, et al. Synthesis and cytotoxicity evaluation of biaryl-based chalcones and their potential in TNFα-induced nuclear factor-kB activation inhibition. Eur J Med Chem. 2012;50:393. doi:10.1016/j.ejmech.2012.02.02322386368
  • DuckiS. Antimitotic chalcones and related compounds as inhibitors of tubulin assembly. Anticancer Agents Med Chem. 2009;9(3):336–347. doi:10.2174/187152061090903033619275525
  • AlanziAM, El-AzabAS, Al-SuidanIA, et al. Structure based design of phthalimide derivatives as potential cyclooxygenase-2 (COX-2) inhibitors: anti-inflammatory and analgesic activities. Eur J Med Chem. 2015;92:115–123. doi:10.1016/j.ejmech.2014.12.03925549551
  • KarthikCS, MalleshaL, MalluP. Investigation of antioxidant properties of phthalimide derivatives. Canad Chem Trans. 2015;3:199–206. doi:10.13179/canchemtrans.2015.03.02.0194
  • MercurioA, SharplesL, FranchiniCC, et al. Phthalimide derivative shows anti-angiogenic activity in a 3D microfluidic model and no teratogenicity in zebrafish embryos. Front Pharmacol. 2019;10:349. doi:10.3389/fphar.2019.0034931057399
  • MahapatraSP, GhodeP, JainDK, ChaturvediSC, MaitiBC, MaityTK. Synthesis and hypoglycemic activity of some phthalimide derivatives. J Pharm Sci & Res. 2010;2:567–578.
  • BellutiS, OrtecaG, RigilloSG, ParentiF, FerrariE, ImbrianoC. Potent anti-cancer properties of phthalimide-based curcumin derivatives on prostate tumor cells. Int J Mol Sci. 2019;20:28–49. doi:10.3390/ijms20010028
  • SantosJL, YamasakiPR, ChinCM, TakashiCH, PavanFR, LeiteCQF. Synthesis and in vitro anti Mycobacterium tuberculosis activity of a series of phthalimide derivatives. Bioorg Med Chem. 2009;17:3795–3799. doi:10.1016/j.bmc.2009.04.04219427791
  • KushwahaN, KaushikD. Recent advances and future prospects of phthalimide derivatives. J App Pharm Sci. 2016;26:159–171. doi:10.7324/JAPS.2016.60330
  • NomuraS, Endo-UmedaK, AoyamaA, MakishimaM, HashimotoY, IshikawaM. Styrylphenylphthalimides as novel transrepression-selective Liver X Receptor (LXR) Modulators. ACS Med Chem Lett. 2015;6(8):902–907. doi:10.1021/acsmedchemlett.5b0017026288691
  • LimaML, de BritoFCF, de SouzaSD, et al. Novel phthalimide derivatives, designed as leukotriene D4 receptor antagonists. Bioorg Med Chem Lett. 2002;12:1533–1535. doi:10.1016/S0960-894X(02)00203-212031336
  • MachadoAL, LimaLM, AraujoJX, FragaCAM, KoatzVLG, BarreiroEJ. Design, synthesis and anti-inflammatory activity of novel phthalimide derivatives, structurally related to thalidomide. Bioorg Med Chem Lett. 2005;15:1169–1172. doi:10.1016/j.bmcl.2004.12.01215686935
  • NoguchiT, FujimotoH, SanoH, MiyajimaA, MiyachiH, HashimotoY. Angiogenesis inhibitors derived from thalidomide. Bioorg Med Chem Lett. 2005;15:5509–5513. doi:10.1016/j.bmcl.2005.08.08616183272
  • BornsteinJ, BedellSF, DrummondPE, KosloskiCL. The synthesis of α-amino-o-tolualdehyde diethylacetal and its attempted conversion to pseudoisoindole. J Amer Chem Soc. 1956;78:83–86. doi:10.1021/ja01582a026
  • JermyBR, RavinayagamV, AlamoudiWA, et al. Targeted therapeutic effect against the breast cancer cell line MCF-7 with a CuFe2O4/silica/cisplatin nanocomposite formulation. Beilstein J Nanotechnol. 2019;10:2217–2228. doi:10.3762/bjnano.10.21431807407
  • El-BakhshawangyNM, El-NassanHB, KassabAE, TaherAT. Design, synthesis and biological evaluation of chromenopyrimidines as potential cytotoxic agents. Future Med Chem. 2018;10:1465–1481. doi:10.4155/fmc-2017-032429779400
  • LuW, WangF, ZhangT, et al. Search for novel histone deacetylase inhibitors. Part II: design and synthesis of novel isoferulic acid derivatives. Bioorg Med Chem. 2014;22:2707–2713. doi:10.1016/j.bmc.2014.03.01924702857
  • JamalzadehL, GhafooriH, AghamaaliM, SaririR. Induction of apoptosis in human breast cancer MCF-7 cells by a semisynthetic derivative of artemisinin: a caspase-related mechanism. Iran J Biotech. 2017;15:157–165. doi:10.15171/ijb.1567
  • SheldrickGM. Crystal structure refinement with SHELXL. Acta Cryst C. 2015;71:3–8. doi:10.1107/S2053229614024218