509
Views
45
CrossRef citations to date
0
Altmetric
Original Research

Formulation of Nanospanlastics as a Promising Approach for ‎Improving the Topical Delivery of a Natural Leukotriene Inhibitor (3-‎Acetyl-11-Keto-β-Boswellic Acid): Statistical Optimization, in vitro ‎Characterization, and ex vivo Permeation Study

ORCID Icon &
Pages 3697-3721 | Published online: 15 Sep 2020

References

  • BadriaFA, El-FarahatyT, ShabanaAA, HawasSA, El-BatotyMF. Boswellia-curcumin preparation for treating knee osteoarthritis: a clinical evaluation. Altern Complement Ther. 2002;8(6):341–348. doi:10.1089/107628002761574635
  • BadriaFA, MohammedEA, El-BadrawyMK, El-DesoukyM. Natural leukotriene inhibitor from Boswellia: a potential new alternative for treating bronchial asthma. Altern Complement Ther. 2004;10(5):257–265. doi:10.1089/act.2004.10.257
  • BadriaFA, HoussenWE, El-NasharEM, SaaedSA. Effect of glycyrrhizin and Boswellia carterii extract on liver injury: biochemical and histopathological evaluation. Biosci Biotech Res Asia. 2003;1(2):93–96.
  • BadriaFA. Preparation a new product of natural origin for treatment of hyperacidity and colitis. Egyptian Patent; 2001;23376.
  • YusifRM, HashimIIA, MohamedEA, BadriaFA-E. Gastroretentive matrix tablets of boswellia oleogum resin: preparation, optimization, in vitro evaluation, and cytoprotective effect on indomethacin-induced gastric ulcer in rabbits. AAPS PharmSciTech. 2016;17(2):328–338. doi:10.1208/s12249-015-0351-826092303
  • BadriaFA, MikhaeilBR, MaatooqGT, AmerMM. Immunomodulatory triterpenoids from the oleogum resin of Boswellia carterii Birdwood. Zeitschrift für Naturforschung C. 2003;58(7–8):505–516. doi:10.1515/znc-2003-7-811
  • MostafaDM, AmmarNM, BashaM, HusseinRA, El AwdanS, AwadG. Transdermal microemulsions of Boswellia carterii Bird: formulation, characterization and in vivo evaluation of anti-inflammatory activity. Drug Deliv. 2015;22(6):748–756. doi:10.3109/10717544.2014.89834724725029
  • MehtaM, DurejaH, GargM. Development and optimization of boswellic acid-loaded proniosomal gel. Drug Deliv. 2016;23(8):3072–3081. doi:10.3109/10717544.2016.114974426953869
  • GoelA, AhmadFJ, SinghRM, SinghGN. 3‐Acetyl‐11‐keto‐β‐boswellic acid loaded‐polymeric nanomicelles for topical anti‐inflammatory and anti‐arthritic activity. J Pharm Pharmacol. 2010;62(2):273–278. doi:10.1211/jpp.62.02.001620487208
  • Al-MahallawiAM, KhowessahOM, ShoukriRA. Enhanced non invasive trans-tympanic delivery of ciprofloxacin through encapsulation into nano-spanlastic vesicles: fabrication, in-vitro characterization, and comparative ex-vivo permeation studies. Int J Pharm. 2017;522(1–2):157–164. doi:10.1016/j.ijpharm.2017.03.00528279741
  • KakkarS, KaurIP. Spanlastics—a novel nanovesicular carrier system for ocular delivery. Int J Pharm. 2011;413(1–2):202–210. doi:10.1016/j.ijpharm.2011.04.02721540093
  • BashaM, Abd El-AlimSH, ShammaRN, AwadGE. Design and optimization of surfactant-based nanovesicles for ocular delivery of Clotrimazole. J Liposome Res. 2013;23(3):203–210. doi:10.3109/08982104.2013.78802523607316
  • ElsherifNI, ShammaRN, AbdelbaryG. Terbinafine hydrochloride trans-ungual delivery via nanovesicular systems: in vitro characterization and ex vivo evaluation. AAPS PharmSciTech. 2017;18(2):551–562. doi:10.1208/s12249-016-0528-927138036
  • FarghalyDA, AboelwafaAA, HamzaMY, MohamedMI. Topical delivery of fenoprofen calcium via elastic nano-vesicular spanlastics: optimization using experimental design and in vivo evaluation. AAPS PharmSciTech. 2017;18(8):2898–2909. doi:10.1208/s12249-017-0771-828429293
  • KambojS, SainiV, MagonN, BalaS, JhawatV. Vesicular drug delivery systems: a novel approach for drug targeting. Brain. 2013;1:11.
  • SharmaN, BhardwajV, SinghS, et al. Simultaneous quantification of triterpenoic acids by high performance liquid chromatography method in the extracts of gum resin of Boswellia serrata obtained by different extraction techniques. Chem Cent J. 2016;10(1):49. doi:10.1186/s13065-016-0194-827493682
  • ChevrierMR, RyanAE, LeeDY-W, ZhongzeM, Wu-YanZ, ViaCS. Boswellia carterii extract inhibits TH1 cytokines and promotes TH2 cytokines in vitro. Clin Diagn Lab Immunol. 2005;12(5):575–580. doi:10.1128/CDLI.12.5.575-580.200515879017
  • JauchJ, BergmannJ. An efficient method for the large-scale preparation of 3- O -Acetyl-11-oxo- β - boswellic acid and other boswellic acids. Eur J Org Chem. 2003;24:4752–4756. doi:10.1002/ejoc.200300386
  • SinghS, KhajuriaA, TanejaC, KhajuriaRK, NabiG. Boswellic acids and glucosamine show synergistic effect in preclinical anti-inflammatory study in rats. Bioorg Med Chem Lett. 2007;17:3706–3711. doi:10.1016/j.bmcl.2007.04.03417481895
  • GohelM, SoniT, HingoraniL, PatelA, PatelN. Development and optimization of plant extract loaded nanoemulsion mixtures for the treatment of inflammatory disorder. Curr Res Drug Discov. 2014;1(2):29–38. doi:10.3844/crddsp.2014.29.38
  • AlamMA, Al-JenoobiFI, Al-MohizeaAM, AliR. Effervescence assisted fusion technique to enhance the solubility of drugs. AAPS PharmSciTech. 2015;16(6):1487–1494. doi:10.1208/s12249-015-0381-226265190
  • LarssonJMethods for measurement of solubility and dissolution rate of sparingly soluble drugs; 2009.
  • RohitK. Preliminary test of phytochemical screening of crude ethanolic and aqueous extract of Moringa pterygosperma Gaertn. J Pharmacogn Phytochem. 2015;4(1):07–09.
  • KumarU, KumarB, BhandariA, KumarY. Phytochemical investigation and comparison of antimicrobial screening of clove and cardamom. Int J Pharm Sci Res. 2010;1(12):138–147.
  • AlotaibiS. Biophysical properties and finger print of Boswellia Sp. Burseraceae. Saudi J Biol Sci. 2019;26(7):1450–1457. doi:10.1016/j.sjbs.2019.09.01931762608
  • SailerER, SubramanianLR, RallB, HoernleinRF, AmmonHP, SafayhiH. Acetyl‐11‐keto‐β‐boswellic acid (AKBA): structure requirements for binding and 5‐lipoxygenase inhibitory activity. Br J Pharmacol. 1996;117(4):615–618. doi:10.1111/j.1476-5381.1996.tb15235.x8646405
  • ShahSA, RathodIS, SuhagiaBN, PandyaSS, ParmarVK. A simple high-performance liquid chromatographic method for the estimation of boswellic acids from the market formulations containing Boswellia serrata extract. J Chromatogr Sci. 2008;46(8):735–738. doi:10.1093/chromsci/46.8.73518796232
  • MehtaM, SatijaS, GargM. Comparison between HPLC and HPTLC densitometry for the determination of 11-keto-β-boswellic acid and 3-acetyl-11-keto-β-boswellic acid from boswellia serrata extract. Indian J Pharm Educ Res. 2016;50(3):418–423. doi:10.5530/ijper.50.3.15
  • MisciosciaE, ShmalbergJ, ScottKC. Measurement of 3-acetyl-11-keto-beta-boswellic acid and 11-keto-beta-boswellic acid in boswellia serrata supplements administered to dogs. BMC Vet Res. 2019;15(1):270. doi:10.1186/s12917-019-2021-731370899
  • MaliN, DarandaleS, VaviaP. Niosomes as a vesicular carrier for topical administration of minoxidil: formulation and in vitro assessment. Drug Deliv Transl Res. 2013;3(6):587–592. doi:10.1007/s13346-012-0083-125786376
  • FahmyAM, El-SetouhyDA, IbrahimAB, HabibBA, TayelSA, BayoumiNA. Penetration enhancer-containing spanlastics (PECSs) for transdermal delivery of haloperidol: in vitro characterization, ex vivo permeation and in vivo biodistribution studies. Drug Deliv. 2018;25(1):12–22. doi:10.1080/10717544.2017.141026229219628
  • JiangJ, MaT, ZhangL, ChengX, WangC. The transdermal performance, pharmacokinetics, and anti-inflammatory pharmacodynamics evaluation of harmine-loaded ethosomes. Drug Dev Ind Pharm. 2020;46(1):101–108. doi:10.1080/03639045.2019.170654931851523
  • ManosroiA, JantrawutP, ManosroiJ. Anti-inflammatory activity of gel containing novel elastic niosomes entrapped with diclofenac diethylammonium. Int J Pharm. 2008;360(1–2):156–163. doi:10.1016/j.ijpharm.2008.04.03318539416
  • Al-mahallawiAM, KhowessahOM, ShoukriRA. Nano-transfersomal ciprofloxacin loaded vesicles for non-invasive trans-tympanic ototopical delivery: in-vitro optimization, ex-vivo permeation studies, and in-vivo assessment. Int J Pharm. 2014;472(1–2):304–314. doi:10.1016/j.ijpharm.2014.06.04124971692
  • MazyedEA, AbdelazizAE. Fabrication of transgelosomes for enhancing the ocular delivery of acetazolamide: statistical optimization, in vitro characterization, and in vivo study. Pharmaceutics. 2020;12(5):465. doi:10.3390/pharmaceutics12050465
  • El GamalSS, NaggarVF, AllamAN. Optimization of acyclovir oral tablets based on gastroretention technology: factorial design analysis and physicochemical characterization studies. Drug Dev Ind Pharm. 2011;37(7):855–867. doi:10.3109/03639045.2010.54640421401342
  • FinninB, WaltersKA, FranzTJ. In vitro skin permeation methodology. In: Heather AEB, Adam CW, eds. Transdermal and Topical Drug Delivery: Principles and Practice. Hoboken, NJ, USA: John Wiley & Sons; 2012:85-108.
  • MazyedEA, ZakariaS. Enhancement of dissolution characteristics of clopidogrel bisulphate by proniosomes. Int J Appl Pharm. 2019;11(2):77–85. doi:10.22159/ijap.2019v11i2.30575
  • Abd-ElalRM, ShammaRN, RashedHM, BendasER. Trans-nasal zolmitriptan novasomes: in-vitro preparation, optimization and in-vivo evaluation of brain targeting efficiency. Drug Deliv. 2016;23(9):3374–3386. doi:10.1080/10717544.2016.118372127128792
  • BansalS, AggarwalG, ChandelP, HarikumarS. Design and development of cefdinir niosomes for oral delivery. J Pharm Bioallied Sci. 2013;5(4):318. doi:10.4103/0975-7406.12008024302841
  • DasB, SenSO, MajiR, NayakAK, SenKK. Transferosomal gel for transdermal delivery of risperidone: formulation optimization and ex vivo permeation. J Drug Deliv Sci Technol. 2017;38:59–71. doi:10.1016/j.jddst.2017.01.006
  • GuptaA, PrajapatiSK, BalamuruganM, SinghM, BhatiaD. Design and development of a proniosomal transdermal drug delivery system for captopril. Trop J Pharm Res. 2007;6(2):687–693. doi:10.4314/tjpr.v6i2.14647
  • MooreJW, FlannerHH. Mathematical comparison of curves with an emphasis on in Vitro Dissolution Profiles. Pharm Technol. 1996;20(6):64-74.
  • KilkennyC, BrowneWJ, CuthillIC, EmersonM, AltmanDG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 2010;8(6):e1000412. doi:10.1371/journal.pbio.100041220613859
  • HollandsC. The animals (scientific procedures) Act 1986. Lancet (London, England). 1986;2(8497):32. doi:10.1016/S0140-6736(86)92571-7
  • Directive E. 63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes. Off J Eur Union. 2010;276(33):33–79.
  • MustaphaRB, LafforgueC, FeninaN, MartyJ. Influence of drug concentration on the diffusion parameters of caffeine. Indian J Pharmacol. 2011;43(2):157. doi:10.4103/0253-7613.7735121572649
  • El MaghrabyGM, AhmedAA, OsmanMA. Penetration enhancers in proniosomes as a new strategy for enhanced transdermal drug delivery. Saudi Pharm J. 2015;23(1):67–74. doi:10.1016/j.jsps.2014.05.00125685045
  • Jaafar-MaalejC, DiabR, AndrieuV, ElaissariA, FessiH. Ethanol injection method for hydrophilic and lipophilic drug-loaded liposome preparation. J Liposome Res. 2010;20(3):228–243. doi:10.3109/0898210090334792319899957
  • GargV, SinghH, BhatiaA, et al. Systematic development of transethosomal gel system of piroxicam: formulation optimization, in vitro evaluation, and ex vivo assessment. AAPS PharmSciTech. 2017;18(1):58–71. doi:10.1208/s12249-016-0489-z26868380
  • LeonyzaA, SuriniS. Optimization of sodium deoxycholate-based transfersomes for percutaneous delivery of peptides and proteins. Int J Appl Pharm. 2019;329–332. doi:10.22159/ijap.2019v11i5.33615
  • ElazregR. Formulation and in vitro evaluation of methazolamide elastic vesicular systems. Al-Azhar J Pharm Sci. 2014;49(1):75–84. doi:10.21608/ajps.2014.6958
  • GuptaPN, MishraV, SinghP, et al. Tetanus toxoid‐loaded transfersomes for topical immunization. J Pharm Pharmacol. 2005;57(3):295–301. doi:10.1211/002235705551515807984
  • YassinGE, AmerRI, FayezAM. Carbamazepine loaded vesicular structures for enhanced brain targeting via intranasal route: optimization, in vitro evaluation, and in vivo study. Int J Appl Pharm. 2019;11(4):264–274. doi:10.22159/ijap.2019v11i4.33474
  • AraujoJ, Gonzalez-MiraE, EgeaM, GarciaM, SoutoE. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int J Pharm. 2010;393(1–2):168–176. doi:10.1016/j.ijpharm.2010.03.034
  • FangJ-Y, YuS-Y, WuP-C, HuangY-B, TsaiY-H. In vitro skin permeation of estradiol from various proniosome formulations. Int J Pharm. 2001;215(1–2):91–99. doi:10.1016/S0378-5173(00)00669-411250095
  • ChauhanM, MalikS. Formulation and optimization of novel elastic nano-vesicular carrier of vancomycin hydrochloride for enhanced corneal permeability. IJPRS. 2016;5(4):88–100.
  • NganCL, BasriM, LyeFF, et al. Comparison of process parameter optimization using different designs in nanoemulsion-based formulation for transdermal delivery of fullerene. Int J Nanomedicine. 2014;9:4375. doi:10.2147/IJN.S6568925258528
  • LiP-H, ChiangB-H. Process optimization and stability of D-limonene-in-water nanoemulsions prepared by ultrasonic emulsification using response surface methodology. Ultrason Sonochem. 2012;19(1):192–197. doi:10.1016/j.ultsonch.2011.05.01721680223
  • AndersenT, VanićŽ, FlatenGE, MattssonS, ThoI, Škalko-BasnetN. Pectosomes and chitosomes as delivery systems for metronidazole: the one-pot preparation method. Pharmaceutics. 2013;5(3):445–456. doi:10.3390/pharmaceutics503044524300517
  • El ZaafaranyGM, AwadGA, HolayelSM, MortadaND. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm. 2010;397(1–2):164–172. doi:10.1016/j.ijpharm.2010.06.03420599487
  • JainS, JainP, UmamaheshwariR, JainN. Transfersomes—a novel vesicular carrier for enhanced transdermal delivery: development, characterization, and performance evaluation. Drug Dev Ind Pharm. 2003;29(9):1013–1026. doi:10.1081/DDC-12002545814606665
  • GaurPK, MishraS, PurohitS. Solid lipid nanoparticles of guggul lipid as drug carrier for transdermal drug delivery. Biomed Res Int. 2013;2013:1–10. doi:10.1155/2013/750690
  • DeshkarSS, SonkambleKG, MahoreJG. Formulation and optimization of nanosuspension for improving solubility and dissolution of gemfibrozil. Asian J Pharm Clin Res. 2019;12(1):157–163. doi:10.22159/ajpcr.2019.v12i1.26724
  • DoraCP, SinghSK, KumarS, DatusaliaAK, DeepA. Development and characterization of nanoparticles of glibenclamide by solvent displacement method. Acta Pol Pharm. 2010;67(3):283–290.20524431
  • DanaeiM, DehghankholdM, AtaeiS, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57. doi:10.3390/pharmaceutics10020057
  • DarwhekarG, JainDK, ChoudharyA. Elastic liposomes for delivery of neomycin sulphate in deep skin infection. Asian J Pharm Sci. 2012;7:230–240.
  • ElMeshadAN, MohsenAM. Enhanced corneal permeation and antimycotic activity of itraconazole against Candida albicans via a novel nanosystem vesicle. Drug Deliv. 2016;23(7):2115–2123. doi:10.3109/10717544.2014.94281125080226
  • BasaliousEB, ShawkyN, Badr-EldinSM. SNEDDS containing bioenhancers for improvement of dissolution and oral absorption of lacidipine. I: development and optimization. Int J Pharm. 2010;391(1–2):203–211. doi:10.1016/j.ijpharm.2010.03.00820214965
  • KaziKM, MandalAS, BiswasN, et al. Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res. 2010;1(4):374. doi:10.4103/0110-5558.7643522247876
  • DasMK, PaleiNN. Sorbitan ester niosomes for topical delivery of rofecoxib. Indian J Exp Biol. 2011;49:438–445.21702223
  • SengodanT, SunilB, VaishaliR, ChandraRJ, NagarS, NagarO. Formulation and evaluation of maltodextrin based proniosomes loaded with indomethacin. Int J PharmTech Res. 2009;1(3):517–523.
  • RenW, TianG, JianS, et al. TWEEN coated NaYF 4: yb, Er/NaYF4 core/shell upconversion nanoparticles for bioimaging and drug delivery. RSC Adv. 2012;2(18):7037–7041. doi:10.1039/c2ra20855e
  • El-SayedMM, HusseinAK, SarhanHA, MansourHF. Flurbiprofen-loaded niosomes-in-gel system improves the ocular bioavailability of flurbiprofen in the aqueous humor. Drug Dev Ind Pharm. 2017;43(6):902–910. doi:10.1080/03639045.2016.127212027977311
  • FathallaD, YoussefEM, SolimanGM. Liposomal and ethosomal gels for the topical delivery of anthralin: preparation, comparative evaluation and clinical assessment in psoriatic patients. Pharmaceutics. 2020;12(5):446. doi:10.3390/pharmaceutics12050446
  • BairwaK, JachakSM. Development and optimisation of 3-Acetyl-11-keto-β-boswellic acid loaded poly-lactic-co-glycolic acid-nanoparticles with enhanced oral bioavailability and in-vivo anti-inflammatory activity in rats. J Pharm Pharmacol. 2015;67(9):1188–1197. doi:10.1111/jphp.1242025851251
  • FangJ-Y, FangC-L, LiuC-H, SuY-H. Lipid nanoparticles as vehicles for topical psoralen delivery: solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC). Eur J Pharm Biopharm. 2008;70(2):633–640. doi:10.1016/j.ejpb.2008.05.00818577447
  • PramodK, SuneeshCV, ShanavasS, AnsariSH, AliJ. Unveiling the compatibility of eugenol with formulation excipients by systematic drug-excipient compatibility studies. J Anal Sci Technol. 2015;6(1):34. doi:10.1186/s40543-015-0073-2
  • RahmanSA, AbdelmalakNS, BadawiA, ElbayoumyT, SabryN, RamlyAE. Formulation of tretinoin-loaded topical proniosomes for treatment of acne: in-vitro characterization, skin irritation test and comparative clinical study. Drug Deliv. 2015;22(6):731–739. doi:10.3109/10717544.2014.89642824670094
  • KakkarS, Pal KaurI. A novel nanovesicular carrier system to deliver drug topically. Pharm Dev Technol. 2013;18(3):673–685. doi:10.3109/10837450.2012.68565522612232
  • SalamaHA, MahmoudAA, KamelAO, Abdel HadyM, AwadGA. Brain delivery of olanzapine by intranasal administration of transfersomal vesicles. J Liposome Res. 2012;22(4):336–345. doi:10.3109/08982104.2012.70046022881283
  • BrodinB, SteffansenB, NielsenCU. Passive diffusion of drug substances: the concepts of flux and permeability. Mol Biopharm. 2010;135–152.