109
Views
6
CrossRef citations to date
0
Altmetric
Original Research

iTRAQ-Based Quantitative Proteomic Analysis of Intestines in Murine Polymicrobial Sepsis with Hydrogen Gas Treatment

, , , , , ORCID Icon & show all
Pages 4885-4900 | Published online: 12 Nov 2020

References

  • SchorrCA, ZanottiS, DellingerRP. Severe sepsis and septic shock: management and performance improvement. Virulence. 2014;5(1):190–199. doi:10.4161/viru.2740924335487
  • FerlitoM, WangQ, FultonWB, et al. Hydrogen sulfide [corrected] increases survival during sepsis: protective effect of CHOP inhibition. J Immunol. 2014;192(4):1806–1814. doi:10.4049/jimmunol.130083524403532
  • OsterburK, MannFA, KurokiK, DeClueA. Multiple organ dysfunction syndrome in humans and animals. J Vet Intern Med. 2014;28(4):1141–1151. doi:10.1111/jvim.1236424773159
  • TerryS, NieM, MatterK, BaldaMS. Rho signaling and tight junction functions. Physiology (Bethesda). 2010;25(1):16–26.20134025
  • GongZY, YuanZQ, DongZW, PengYZ. Glutamine with probiotics attenuates intestinal inflammation and oxidative stress in a rat burn injury model through altered iNOS gene aberrant methylation. Am J Transl Res. 2017;9(5):2535–2547.28560003
  • HuangCS, KawamuraT, ToyodaY, NakaoA. Recent advances in hydrogen research as a therapeutic medical gas. Free Radic Res. 2010;44(9):971–982. doi:10.3109/10715762.2010.50032820815764
  • LiuL, XieK, ChenH, et al. Inhalation of hydrogen gas attenuates brain injury in mice with cecal ligation and puncture via inhibiting neuroinflammation, oxidative stress and neuronal apoptosis. Brain Res. 2014;1589:78–92. doi:10.1016/j.brainres.2014.09.03025251596
  • YuY, YangY, BianY, et al. Hydrogen gas protects against intestinal injury in wild type but not NRF2 knockout mice with severe sepsis by regulating HO-1 and HMGB1 release. Shock. 2017;48(3):364–370. doi:10.1097/SHK.000000000000085628234792
  • YuY, YangY, YangM, WangC, XieK, YuY. Hydrogen gas reduces HMGB1 release in lung tissues of septic mice in an Nrf2/HO-1-dependent pathway. Int Immunopharmacol. 2019;69:11–18. doi:10.1016/j.intimp.2019.01.02230660872
  • YangT, WangL, SunR, et al. Hydrogen-rich medium ameliorates lipopolysaccharide-induced barrier dysfunction via Rhoa-Mdia1 signaling in Caco-2 cells. Shock. 2016;45(2):228–237. doi:10.1097/SHK.000000000000050326529665
  • AggarwalS, YadavAK. Dissecting the iTRAQ data analysis. Methods Mol Biol. 2016;1362:277–291.26519184
  • BianY, QinC, XinY, et al. Itraq-based quantitative proteomic analysis of lungs in murine polymicrobial sepsis with hydrogen gas treatment. Shock. 2018;49(2):187–195. doi:10.1097/SHK.000000000000092728632510
  • JinY, HofsethAB, CuiX, et al. American ginseng suppresses colitis through p53-mediated apoptosis of inflammatory cells. Cancer Prev Res (Phila). 2010;3(3):339–347. doi:10.1158/1940-6207.CAPR-09-011620179294
  • YosephBP, KlingensmithNJ, LiangZ, et al. Mechanisms of intestinal barrier dysfunction in sepsis. Shock. 2016;46(1):52–59. doi:10.1097/SHK.000000000000056527299587
  • AngusDC, van der PollT. Severe sepsis and septic shock. N Engl J Med. 2013;369(9):840–851. doi:10.1056/NEJMra120862323984731
  • RhodesA, EvansLE, AlhazzaniW, et al. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43(3):304–377.28101605
  • SalehAS. Early, goal-directed therapy for septic shock - a patient-level meta-analysis. N Engl J Med. 2017;377(10):994.28880501
  • BastaracheJA, MatthayMA. Cecal ligation model of sepsis in mice: new insights. Crit Care Med. 2013;41(1):356–357. doi:10.1097/CCM.0b013e318270e3ee23269150
  • OhsawaI, IshikawaM, TakahashiK, et al. Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals. Nat Med. 2007;13(6):688–694. doi:10.1038/nm157717486089
  • IchiharaM, SobueS, ItoM, ItoM, HirayamaM, OhnoK. Beneficial biological effects and the underlying mechanisms of molecular hydrogen - comprehensive review of 321 original articles. Med Gas Res. 2015;5:12.26483953
  • KlingensmithNJ, CoopersmithCM. The gut as the motor of multiple organ dysfunction in critical illness. Crit Care Clin. 2016;32(2):203–212. doi:10.1016/j.ccc.2015.11.00427016162
  • IkedaM, ShimizuK, OguraH, et al. Hydrogen-rich saline regulates intestinal barrier dysfunction, dysbiosis, and bacterial translocation in a murine model of sepsis. Shock. 2018;50(6):640–647. doi:10.1097/SHK.000000000000109829293174
  • RittirschD, Huber-LangMS, FlierlMA, WardPA. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat Protoc. 2009;4(1):31–36. doi:10.1038/nprot.2008.21419131954
  • BaumgartDC, DignassAU. Intestinal barrier function. Curr Opin Clin Nutr Metab Care. 2002;5(6):685–694. doi:10.1097/00075197-200211000-0001212394645
  • LevyMM, MaciasWL, VincentJL, et al. Early changes in organ function predict eventual survival in severe sepsis. Crit Care Med. 2005;33(10):2194–2201. doi:10.1097/01.CCM.0000182798.39709.8416215369
  • LiveraniE, RicoMC, YarathaL, TsygankovAY, KilpatrickLE, KunapuliSP. LPS-induced systemic inflammation is more severe in P2Y12 null mice. J Leukoc Biol. 2014;95(2):313–323. doi:10.1189/jlb.101251824142066
  • XieKL, LianNQ, KanYF, et al. iTRAQ-based quantitative proteomic analysis of the therapeutic effects of 2% hydrogen gas inhalation on brain injury in septic mice. Brain Res. 2020;1746:147003. doi:10.1016/j.brainres.2020.14700332603701
  • Conway-MorrisA, WilsonJ, Shankar-HariM. Immune activation in sepsis. Crit Care Clin. 2018;34(1):29–42. doi:10.1016/j.ccc.2017.08.00229149940
  • HotchkissRS, MonneretG, PayenD. Sepsis-induced immunosuppression: from cellular dysfunctions to immunotherapy. Nat Rev Immunol. 2013;13(12):862–874. doi:10.1038/nri355224232462
  • HaakBW, WiersingaWJ. The role of the gut microbiota in sepsis. Lancet Gastroenterol Hepatol. 2017;2(2):135–143. doi:10.1016/S2468-1253(16)30119-428403983
  • LinX, ShiS, ShiS. Sepsis leads to thyroid impairment and dysfunction in rat model. Tissue Cell. 2016;48(5):511–515. doi:10.1016/j.tice.2016.07.00127521250
  • PowandaMC, WannemacherRW, CockerellGL. Nitrogen metabolism and protein synthesis during pneumococcal sepsis in rats. Infect Immun. 1972;6(3):266–271. doi:10.1128/IAI.6.3.266-271.19724404682
  • OrellanaRA, WilsonFA, GazzaneoMC, SuryawanA, DavisTA, NguyenHV. Sepsis and development impede muscle protein synthesis in neonatal pigs by different ribosomal mechanisms. Pediatr Res. 2011;69(6):473–478. doi:10.1203/PDR.0b013e3182176da121364490
  • DeLanoFA, HoytDB, Schmid-SchonbeinGW. Pancreatic digestive enzyme blockade in the intestine increases survival after experimental shock. Sci Transl Med. 2013;5(169):169ra111. doi:10.1126/scitranslmed.3005046
  • Schmid-SchonbeinGW, ChangM. The autodigestion hypothesis for shock and multi-organ failure. Ann Biomed Eng. 2014;42(2):405–414. doi:10.1007/s10439-013-0891-623989761
  • LiW, TaoS, WuQ, WuT, TaoR, FanJ. Glutamine reduces myocardial cell apoptosis in a rat model of sepsis by promoting expression of heat shock protein 90. J Surg Res. 2017;220:247–254. doi:10.1016/j.jss.2017.06.09029180187
  • BriassouliE, TzanoudakiM, GoukosD, et al. Glutamine may repress the weak LPS and enhance the strong heat shock induction of monocyte and lymphocyte HSP72 proteins but may not modulate the HSP72 mRNA in patients with sepsis or trauma. Biomed Res Int. 2015;2015:806042. doi:10.1155/2015/80604226550577
  • GaddnasF, KoskelaM, KoivukangasV, et al. Markers of collagen synthesis and degradation are increased in serum in severe sepsis: a longitudinal study of 44 patients. Crit Care. 2009;13(2):R53. doi:10.1186/cc778019358720
  • ShoganBD, BelogortsevaN, LuongPM, et al. Collagen degradation and MMP9 activation by Enterococcus faecalis contribute to intestinal anastomotic leak. Sci Transl Med. 2015;7(286):286ra268. doi:10.1126/scitranslmed.3010658
  • TingL, RadR, GygiSP, HaasW. MS3 eliminates ratio distortion in isobaric multiplexed quantitative proteomics. Nat Methods. 2011;8(11):937–940. doi:10.1038/nmeth.171421963607
  • YuN, ZhangS, LuJ, et al. Serum amyloid A, an acute phase protein, stimulates proliferative and proinflammatory responses of keratinocytes. Cell Prolif. 2017;50(3):e12320. doi:10.1111/cpr.12320
  • TamamotoT, OhnoK, Goto-KoshinoY, FujinoY, TsujimotoH. Serum amyloid A uptake by feline peripheral macrophages. Vet Immunol Immunopathol. 2012;150(1–2):47–52. doi:10.1016/j.vetimm.2012.08.00522944261
  • ZhouH, ChenM, ZhangG, YeRD. Suppression of lipopolysaccharide-induced inflammatory response by fragments from serum amyloid A. J Immunol. 2017;199(3):1105–1112. doi:10.4049/jimmunol.170047028674180
  • YuMH, LiX, LiQ, et al. SAA1 increases NOX4/ROS production to promote LPS-induced inflammation in vascular smooth muscle cells through activating p38MAPK/NF-kappaB pathway. BMC Mol Cell Biol. 2019;20(1):15. doi:10.1186/s12860-019-0197-031216990
  • OkudaT, HigashiY, KokameK, TanakaC, KondohH, MiyataT. Ndrg1-deficient mice exhibit a progressive demyelinating disorder of peripheral nerves. Mol Cell Biol. 2004;24(9):3949–3956. doi:10.1128/MCB.24.9.3949-3956.200415082788
  • HosoiF, IzumiH, KawaharaA, et al. N-myc downstream regulated gene 1/Cap43 suppresses tumor growth and angiogenesis of pancreatic cancer through attenuation of inhibitor of kappaB kinase beta expression. Cancer Res. 2009;69(12):4983–4991. doi:10.1158/0008-5472.CAN-08-488219491262
  • MurakamiY, WatariK, ShibataT, et al. N-myc downstream-regulated gene 1 promotes tumor inflammatory angiogenesis through JNK activation and autocrine loop of interleukin-1alpha by human gastric cancer cells. J Biol Chem. 2013;288(35):25025–25037. doi:10.1074/jbc.M113.47206823846687
  • MollenhauerJ, HolmskovU, WiemannS, et al. The genomic structure of the DMBT1 gene: evidence for a region with susceptibility to genomic instability. Oncogene. 1999;18(46):6233–6240. doi:10.1038/sj.onc.120307110597221
  • MollenhauerJ, HerbertzS, HelmkeB, et al. Deleted in malignant brain tumors 1 is a versatile mucin-like molecule likely to play a differential role in digestive tract cancer. Cancer Res. 2001;61(24):8880–8886.11751412
  • RosenstielP, SinaC, EndC, et al. Regulation of DMBT1 via NOD2 and TLR4 in intestinal epithelial cells modulates bacterial recognition and invasion. J Immunol. 2007;178(12):8203–8211. doi:10.4049/jimmunol.178.12.820317548659
  • UekiK, KondoT, KahnCR. Suppressor of cytokine signaling 1 (SOCS-1) and SOCS-3 cause insulin resistance through inhibition of tyrosine phosphorylation of insulin receptor substrate proteins by discrete mechanisms. Mol Cell Biol. 2004;24(12):5434–5446. doi:10.1128/MCB.24.12.5434-5446.200415169905