66
Views
36
CrossRef citations to date
0
Altmetric
Review

The role of circadian clock genes in tumors

Pages 3645-3660 | Published online: 13 May 2019

References

  • Dobson CM. Dynamics and Timekeeping in Biological Systems. Annu Rev Biochem. 2014;83(1):159–164. doi:10.1146/annurev-biochem-013014-10272424606145
  • Chaix A, Zarrinpar A, Panda S. The circadian coordination of cell biology. J Cell Biol. 2016;215(1):15–25. doi:10.1083/jcb.20160307627738003
  • Rosato E, Kyriacou CP. Origins of circadian rhythmicity. J Biol Rhythms. 2002;17(6):506–511. doi:10.1177/074873040223823212465883
  • Golombek DA, Rosenstein RE. Physiology of circadian entrainment. Physiol Rev. 2010;90(3):1063–1102. doi:10.1152/physrev.00009.200920664079
  • Greene MW. Circadian rhythms and tumor growth. Cancer Lett. 2012;318(2):115–123. doi:10.1016/j.canlet.2012.01.00122252116
  • Rohling JH, vanderLeest HT, Michel S, Vansteensel MJ, Meijer JH. Phase resetting of the mammalian circadian clock relies on a rapid shift of a small population of pacemaker neurons. PLoS One. 2011;6(9):e25437. doi:10.1371/journal.pone.002543721966529
  • Lowrey PL, Takahashi JS. Genetics of circadian rhythms in mammalian model organisms. Adv Genet. 2011;74:175–230. doi:10.1016/B978-0-12-387690-4.00006-421924978
  • Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35:445–462. doi:10.1146/annurev-neuro-060909-15312822483041
  • Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–549. doi:10.1146/annurev-physiol-021909-13582120148687
  • Storch KF, Lipan O, Leykin I, et al. Extensive and divergent circadian gene expression in liver and heart. Nature. 2002;417(6884):78–83. doi:10.1038/nature74411967526
  • Kramer A, Yang FC, Kraves S, Weitz CJ. A screen for secreted factors of the suprachiasmatic nucleus. Methods Enzymol. 2005;393:645–663. doi:10.1016/S0076-6879(05)93034-615817317
  • Schibler U, Sassone-Corsi P. A web of circadian pacemakers. Cell. 2002;111(7):919–922.12507418
  • Eckel-Mahan K, Sassone-Corsi P. Metabolism and the circadian clock converge. Physiol Rev. 2013;93(1):107–135. doi:10.1152/physrev.00016.201223303907
  • Reszka E, Zienolddiny S. Epigenetic Basis of Circadian Rhythm Disruption in Cancer. Methods Mol Biol. 2018;1856:173–201.30178252
  • Crumbley C, Wang Y, Kojetin DJ, Burris TP. Characterization of the core mammalian clock component, NPAS2, as a REV-ERBalpha/RORalpha target gene. J Biol Chem. 2010;285(46):35386–35392. doi:10.1074/jbc.M110.12928820817722
  • Mazzoccoli G, Laukkanen MO, Vinciguerra M, Colangelo T, Colantuoni V. A timeless link between circadian patterns and disease. Trends Mol Med. 2016;22(1):68–81. doi:10.1016/j.molmed.2015.11.00726691298
  • Schibler U. Mammalian circadian cogwheels are parts of macromolecular machines. Mol Cell. 2017;67(5):727–729. doi:10.1016/j.molcel.2017.08.02428886333
  • Aryal RP, Kwak PB, Tamayo AG, et al. Macromolecular assemblies of the mammalian circadian clock. Mol Cell. 2017;67(5):770–782.e776. doi:10.1016/j.molcel.2017.07.01728886335
  • Nernpermpisooth N, Qiu S, Mintz JD, et al. Obesity alters the peripheral circadian clock in the aorta and microcirculation. Microcirculation. 2015;22(4):257–266. doi:10.1111/micc.1219225660131
  • Pinho M, Sehmbi M, Cudney LE, et al. The association between biological rhythms, depression, and functioning in bipolar disorder: a large multi-center study. Acta Psychiatr Scand. 2016;133(2):102–108. doi:10.1111/acps.1244226010130
  • Gery S, Koeffler HP. Circadian rhythms and cancer. Cell Cycle. 2010;9(6):1097–1103. doi:10.4161/cc.9.6.1104620237421
  • Cao Q, Gery S, Dashti A, et al. A role for the clock gene per1 in prostate cancer. Cancer Res. 2009;69(19):7619–7625. doi:10.1158/0008-5472.CAN-08-419919752089
  • Lahti TA, Partonen T, Kyyronen P, Kauppinen T, Pukkala E. Night-time work predisposes to non-Hodgkin lymphoma. Int J Cancer. 2008;123(9):2148–2151. doi:10.1002/ijc.2356618697199
  • Hansen J. Increased breast cancer risk among women who work predominantly at night. Epidemiology. 2001;12(1):74–77.11138824
  • Schernhammer ES, Laden F, Speizer FE, et al. Rotating night shifts and risk of breast cancer in women participating in the nurses‘ health study. J Natl Cancer Inst. 2001;93(20):1563–1568.11604480
  • Davis S, Mirick DK, Stevens RG. Night shift work, light at night, and risk of breast cancer. J Natl Cancer Inst. 2001;93(20):1557–1562.11604479
  • Stevens RG, Rea MS. Light in the built environment: potential role of circadian disruption in endocrine disruption and breast cancer. Cancer Causes Control. 2001;12(3):279–287. doi:10.1023/A:101123700060911405333
  • Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295(5557):1070–1073. doi:10.1126/science.106726211834835
  • Flynn-Evans EE, Stevens RG, Tabandeh H, Schernhammer ES, Lockley SW. Total visual blindness is protective against breast cancer. Cancer Causes Control. 2009;20(9):1753–1756. doi:10.1007/s10552-009-9405-019649715
  • Stevens RG. Circadian disruption and breast cancer: from melatonin to clock genes. Epidemiology. 2005;16(2):254–258.15703542
  • Kos-Kudla B, Ostrowska Z, Kozlowski A, et al. Circadian rhythm of melatonin in patients with colorectal carcinoma. Neuro Endocrinol Lett. 2002;23(3):239–242.12080285
  • Keith LG, Oleszczuk JJ, Laguens M. Circadian rhythm chaos: a new breast cancer marker. Int J Fertil Womens Med. 2001;46(5):238–247.11720196
  • Gasche JA, Goel A. Epigenetic mechanisms in oral carcinogenesis. Future Oncol. 2012;8(11):1407–1425. doi:10.2217/fon.12.13823148615
  • Masri S, Kinouchi K, Sassone-Corsi P. Circadian clocks, epigenetics, and cancer. Curr Opin Oncol. 2015;27(1):50–56. doi:10.1097/CCO.000000000000015325405464
  • Joska TM, Zaman R, Belden WJ. Regulated DNA methylation and the circadian clock: implications in cancer. Biology. 2014;3(3):560–577. doi:10.3390/biology303056025198253
  • Straif K, Baan R, Grosse Y, et al. Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 2007;8(12):1065–1066. doi:10.1016/S1470-2045(07)70373-X19271347
  • Kettner NM, Voicu H, Finegold MJ, et al. Circadian homeostasis of liver metabolism suppresses hepatocarcinogenesis. Cancer Cell. 2016;30(6):909–924. doi:10.1016/j.ccell.2016.10.00727889186
  • Dauchy RT, Xiang S, Mao L, et al. Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer. Cancer Res. 2014;74(15):4099–4110. doi:10.1158/0008-5472.CAN-13-315625062775
  • Papagiannakopoulos T, Bauer MR, Davidson SM, et al. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab. 2016;24(2):324–331. doi:10.1016/j.cmet.2016.07.00127476975
  • Duffy SA, Teknos T, Taylor JM, et al. Health behaviors predict higher interleukin-6 levels among patients newly diagnosed with head and neck squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev. 2013;22(3):374–381. doi:10.1158/1055-9965.EPI-12-098723300019
  • Duffield GE. DNA microarray analyses of circadian timing: the genomic basis of biological time. J Neuroendocrinol. 2003;15(10):991–1002.12969245
  • Qu Y, Wang Z, Huang X, et al. Circadian telomerase activity and DNA synthesis for timing peptide administration. Peptides. 2003;24(3):363–369.12732333
  • Koike N, Yoo SH, Huang HC, et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science. 2012;338(6105):349–354. doi:10.1126/science.122633922936566
  • Mure LS, Le HD. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science. 2018;359:6381. doi:10.1016/j.bbr.2018.10.026
  • Miller BH, McDearmon EL, Panda S, et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci U S A. 2007;104(9):3342–3347. doi:10.1073/pnas.061172410417360649
  • Hunt T, Sassone-Corsi P. Riding tandem: circadian clocks and the cell cycle. Cell. 2007;129(3):461–464.17482541
  • Eismann EA, Lush E, Sephton SE. Circadian effects in cancer-relevant psychoneuroendocrine and immune pathways. Psychoneuroendocrinology. 2010;35(7):963–976. doi:10.1016/j.psyneuen.2009.12.01120097011
  • Huang XL, Fu CJ, Bu RF. Role of circadian clocks in the development and therapeutics of cancer. J Int Med Res. 2011;39(6):2061–2066. doi:10.1177/14732300110390060122289520
  • Sotak M, Sumova A, Pacha J. Cross-talk between the circadian clock and the cell cycle in cancer. Ann Med. 2014;46(4):221–232. doi:10.3109/07853890.2014.89229624779962
  • Bjarnason GA, Jordan RC, Wood PA, et al. Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases. Am J Pathol. 2001;158(5):1793–1801. doi:10.1016/S0002-9440(10)64135-111337377
  • Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H. Control mechanism of the circadian clock for timing of cell division in vivo. Science. 2003;302(5643):255–259. doi:10.1126/science.108627112934012
  • Fu L, Pelicano H, Liu J, Huang P, Lee C. The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell. 2002;111(1):41–50.12372299
  • Tan XM, Ye H, Yang K, et al. Circadian variations of clock gene Per2 and cell cycle genes in different stages of carcinogenesis in golden hamster buccal mucosa. Sci Rep. 2015;5:9997. doi:10.1038/srep0999725950458
  • Borgs L, Beukelaers P, Vandenbosch R, Belachew S, Nguyen L, Cell MB. “circadian” cycle: new role for mammalian core clock genes. Cell Cycle. 2009;8(6):832–837. doi:10.4161/cc.8.6.786919221497
  • Dang CV. MYC on the path to cancer. Cell. 2012;149(1):22–35. doi:10.1016/j.cell.2012.03.00322464321
  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem. 2004;73:39–85. doi:10.1146/annurev.biochem.73.011303.07372315189136
  • Grechez-Cassiau A, Rayet B, Guillaumond F, Teboul M, Delaunay F. The circadian clock component BMAL1 is a critical regulator of p21WAF1/CIP1 expression and hepatocyte proliferation. J Biol Chem. 2008;283(8):4535–4542. doi:10.1074/jbc.M70557620018086663
  • Yang X, Wood PA, Ansell CM, et al. The circadian clock gene Per1 suppresses cancer cell proliferation and tumor growth at specific times of day. Chronobiol Int. 2009;26(7):1323–1339. doi:10.3109/0742052090343130119916834
  • Gery S, Komatsu N, Baldjyan L, Yu A, Koo D, Koeffler HP. The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell. 2006;22(3):375–382. doi:10.1016/j.molcel.2006.03.03816678109
  • Gu X, Xing L, Shi G, et al. The circadian mutation PER2(S662G) is linked to cell cycle progression and tumorigenesis. Cell Death Differ. 2012;19(3):397–405. doi:10.1038/cdd.2011.10321818120
  • Sato F, Wu Y, Bhawal UK, et al. PERIOD1 (PER1) has anti-apoptotic effects, and PER3 has pro-apoptotic effects during cisplatin (CDDP) treatment in human gingival cancer CA9-22 cells. Eur J Cancer. 2011;47(11):1747–1758. doi:10.1016/j.ejca.2011.02.02521459569
  • Sato F, Nagata C, Liu Y, et al. PERIOD1 is an anti-apoptotic factor in human pancreatic and hepatic cancer cells. J Biochem. 2009;146(6):833–838. doi:10.1093/jb/mvp12619675098
  • Elshazley M, Sato M, Hase T, et al. The circadian clock gene BMAL1 is a novel therapeutic target for malignant pleural mesothelioma. Int J Cancer. 2012;131(12):2820–2831. doi:10.1002/ijc.2759822510946
  • Canaple L, Kakizawa T, Laudet V. The days and nights of cancer cells. Cancer Res. 2003;63(22):7545–7552.14633665
  • Chan S, Rowbottom L, McDonald R, et al. Does the time of radiotherapy affect treatment outcomes? A review of the literature. Clin Oncol (R Coll Radiol). 2017;29(4):231–238. doi:10.1016/j.clon.2016.12.00528034487
  • Vincenzi B, Santini D, La Cesa A, Tonini G. Cancer chronotherapy: principles, applications, and perspectives. Cancer. 2003;98(4):881–882. author reply 882-883. doi:10.1002/cncr.1160012910534
  • Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature. 2009;461(7267):1071–1078. doi:10.1038/nature0846719847258
  • Harper JW, Elledge SJ. The DNA damage response: ten years after. Mol Cell. 2007;28(5):739–745. doi:10.1016/j.molcel.2007.11.01518082599
  • Purvis JE, Karhohs KW, Mock C, Batchelor E, Loewer A, Lahav G. p53 dynamics control cell fate. Science. 2012;336(6087):1440–1444. doi:10.1126/science.121835122700930
  • Fu XJ, Li HX, Yang K, Chen D, Tang H. The important tumor suppressor role of PER1 in regulating the cyclin-CDK-CKI network in SCC15 human oral squamous cell carcinoma cells. Onco Targets Ther. 2016;9:2237–2245. doi:10.2147/OTT.S10095227143919
  • Li HX, Fu XJ, Yang K, Chen D, Tang H, Zhao Q. The clock gene PER1 suppresses expression of tumor-related genes in human oral squamous cell carcinoma. Oncotarget. 2016;7(15):20574–20583. doi:10.18632/oncotarget.782726943040
  • Yang X, He X, Yang Z, Jabbari E. Mammalian PER2 regulates AKT activation and DNA damage response. Biochem Cell Biol. 2012;90(6):675–682. doi:10.1139/o2012-02522905719
  • Bouchard-Cannon P, Mendoza-Viveros L, Yuen A, Kaern M, Cheng HY. The circadian molecular clock regulates adult hippocampal neurogenesis by controlling the timing of cell-cycle entry and exit. Cell Rep. 2013;5(4):961–973. doi:10.1016/j.celrep.2013.10.03724268780
  • Gotoh T, Vila-Caballer M, Liu J, Schiffhauer S, Finkielstein CV. Association of the circadian factor Period 2 to p53 influences p53‘s function in DNA-damage signaling. Mol Biol Cell. 2015;26(2):359–372. doi:10.1091/mbc.E14-05-099425411341
  • Unsal-Kacmaz K, Chastain PD, Qu PP, et al. The human Tim/Tipin complex coordinates an Intra-S checkpoint response to UV that slows replication fork displacement. Mol Cell Biol. 2007;27(8):3131–3142. doi:10.1128/MCB.02190-0617296725
  • Yang X, Wood PA, Hrushesky WJ. Mammalian TIMELESS is required for ATM-dependent CHK2 activation and G2/M checkpoint control. J Biol Chem. 2010;285(5):3030–3034. doi:10.1074/jbc.M109.05023719996108
  • Engelen E, Janssens RC, Yagita K, Smits VA, van der Horst GT, Tamanini F. Mammalian TIMELESS is involved in period determination and DNA damage-dependent phase advancing of the circadian clock. PLoS One. 2013;8(2):e56623. doi:10.1371/journal.pone.005662323418588
  • Papp SJ, Huber AL, Jordan SD, et al. DNA damage shifts circadian clock time via Hausp-dependent Cry1 stabilization. Elife. 2015;4. doi:10.7554/eLife.04883.
  • Kim J, D‘Annibale S, Magliozzi R, et al. USP17- and SCFbetaTrCP–regulated degradation of DEC1 controls the DNA damage response. Mol Cell Biol. 2014;34(22):4177–4185. doi:10.1128/MCB.00530-1425202122
  • Wang F, Li C, Yongluo CL. The circadian gene clock plays an important role in cell apoptosis and the DNA damage response in vitro. Technol Cancer Res Treat. 2016;15(3):480–486. doi:10.1177/153303461558543325976934
  • Cotta-Ramusino C, McDonald ER 3rd, Hurov K, Sowa ME, Harper JW, Elledge SJ. A DNA damage response screen identifies RHINO, a 9-1-1 and TopBP1 interacting protein required for ATR signaling. Science. 2011;332(6035):1313–1317. doi:10.1126/science.120343021659603
  • Mullenders J, Fabius AW, Madiredjo M, Bernards R, Beijersbergen RL. A large scale shRNA barcode screen identifies the circadian clock component ARNTL as putative regulator of the p53 tumor suppressor pathway. PLoS One. 2009;4(3):e4798. doi:10.1371/journal.pone.000479819277210
  • Ryan KM, Phillips AC, Vousden KH. Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol. 2001;13(3):332–337.11343904
  • Miki T, Matsumoto T, Zhao Z, Lee CC. p53 regulates Period2 expression and the circadian clock. Nat Commun. 2013;4:2444. doi:10.1038/ncomms344424051492
  • Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000;408(6810):307–310. doi:10.1038/3504267511099028
  • Xiong H, Yang Y, Yang K, Zhao D, Tang H, Ran X. Loss of the clock gene PER2 is associated with cancer development and altered expression of important tumor-related genes in oral cancer. Int J Oncol. 2018;52(1):279–287. doi:10.3892/ijo.2017.418029115399
  • Deng C, Zhang P, Harper JW, Elledge SJ, Leder P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell. 1995;82(4):675–684.7664346
  • el-Deiry WS, Tokino T, Velculescu VE, et al. WAF1, a potential mediator of p53 tumor suppression. Cell. 1993;75(4):817–825.8242752
  • Hua H, Wang Y, Wan C, et al. Circadian gene mPer2 overexpression induces cancer cell apoptosis. Cancer Sci. 2006;97(7):589–596. doi:10.1111/j.1349-7006.2006.00225.x16827798
  • Sun CM, Huang SF, Zeng JM, et al. Per2 inhibits k562 leukemia cell growth in vitro and in vivo through cell cycle arrest and apoptosis induction. Pathol Oncol Res. 2010;16(3):403–411. doi:10.1007/s12253-009-9227-019957060
  • Gotoh T, Vila-Caballer M, Santos CS, Liu J, Yang J, Finkielstein CV. The circadian factor Period 2 modulates p53 stability and transcriptional activity in unstressed cells. Mol Biol Cell. 2014;25(19):3081–3093. doi:10.1091/mbc.E14-05-099325103245
  • Lee S, Donehower LA, Herron AJ, Moore DD, Fu L. Disrupting circadian homeostasis of sympathetic signaling promotes tumor development in mice. PLoS One. 2010;5(6):e10995. doi:10.1371/journal.pone.001099520539819
  • Liu J, Zou X. Distinct control of PERIOD2 degradation and circadian rhythms by the oncoprotein and ubiquitin ligase MDM2. Sci Signal. 2018;11(556).
  • Wang Y, Solt LA, Kojetin DJ, Burris TP. Regulation of p53 stability and apoptosis by a ROR agonist. PLoS One. 2012;7(4):e34921. doi:10.1371/journal.pone.003492122509368
  • Altman BJ, Hsieh AL, Sengupta A, et al. MYC disrupts the circadian clock and metabolism in cancer cells. Cell Metab. 2015;22(6):1009–1019. doi:10.1016/j.cmet.2015.09.00326387865
  • Walz S, Lorenzin F, Morton J, et al. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature. 2014;511(7510):483–487. doi:10.1038/nature1347325043018
  • Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of oncogenic signatures across human cancers. Nat Genet. 2013;45(10):1127–1133. doi:10.1038/ng.276224071851
  • Boone DN, Qi Y, Li Z, Hann SR. Egr1 mediates p53-independent c-Myc-induced apoptosis via a noncanonical ARF-dependent transcriptional mechanism. Proc Natl Acad Sci U S A. 2011;108(2):632–637. doi:10.1073/pnas.100884810821187408
  • Wang C, Tai Y, Lisanti MP, Liao DJ. c-Myc induction of programmed cell death may contribute to carcinogenesis: a perspective inspired by several concepts of chemical carcinogenesis. Cancer Biol Ther. 2011;11(7):615–626. doi:10.4161/cbt.11.7.1468821278493
  • Soucek L, Whitfield JR, Sodir NM, et al. Inhibition of Myc family proteins eradicates KRas-driven lung cancer in mice. Genes Dev. 2013;27(5):504–513. doi:10.1101/gad.205542.11223475959
  • Felsher DW. MYC inactivation elicits oncogene addiction through both tumor cell-intrinsic and host-dependent mechanisms. Genes Cancer. 2010;1(6):597–604. doi:10.1177/194760191037779821037952
  • Lin CY, Loven J, Rahl PB, et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell. 2012;151(1):56–67. doi:10.1016/j.cell.2012.08.02623021215
  • Sabo A, Kress TR, Pelizzola M, et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature. 2014;511(7510):488–492. doi:10.1038/nature1353725043028
  • Wolf E, Lin CY, Eilers M, Levens DL. Taming of the beast: shaping Myc-dependent amplification. Trends Cell Biol. 2015;25(4):241–248. doi:10.1016/j.tcb.2014.10.00625475704
  • Kress TR, Sabo A, Amati B. MYC: connecting selective transcriptional control to global RNA production. Nat Rev Cancer. 2015;15(10):593–607. doi:10.1038/nrc398426383138
  • Lorenzin F, Benary U, Baluapuri A, et al. Different promoter affinities account for specificity in MYC-dependent gene regulation. Elife. 2016;5.
  • Huber AL, Papp SJ, Chan AB, et al. CRY2 and FBXL3 Cooperatively Degrade c-MYC. Mol Cell. 2016;64(4):774–789. doi:10.1016/j.molcel.2016.10.01227840026
  • Repouskou A, Sourlingas TG, Sekeri-Pataryas KE, Prombona A. The circadian expression of c-MYC is modulated by the histone deacetylase inhibitor trichostatin A in synchronized murine neuroblastoma cells. Chronobiol Int. 2010;27(4):722–741. doi:10.3109/0742052100378680020560708
  • Shostak A, Ruppert B, Ha N, et al. MYC/MIZ1-dependent gene repression inversely coordinates the circadian clock with cell cycle and proliferation. Nat Commun. 2016;7:11807. doi:10.1038/ncomms1180727339797
  • Repouskou A, Prombona A. c-MYC targets the central oscillator gene Per1 and is regulated by the circadian clock at the post-transcriptional level. Biochim Biophys Acta. 2016;1859(4):541–552. doi:10.1016/j.bbagrm.2016.02.00126850841
  • Granda TG, Liu XH, Smaaland R, et al. Circadian regulation of cell cycle and apoptosis proteins in mouse bone marrow and tumor. FASEB J. 2005;19(2):304–306. doi:10.1096/fj.04-2665fje15545298
  • Koyanagi S, Kuramoto Y, Nakagawa H, et al. A molecular mechanism regulating circadian expression of vascular endothelial growth factor in tumor cells. Cancer Res. 2003;63(21):7277–7283.14612524
  • Falcao AS, Kataoka MS, Ribeiro NA, et al. A novel cell line derived from pleomorphic adenoma expresses MMP2, MMP9, TIMP1, TIMP2, and shows numeric chromosomal anomalies. PLoS One. 2014;9(8):e105231. doi:10.1371/journal.pone.010523125137137
  • Ye H, Yang K, Tan XM, Fu XJ, Li HX. Daily rhythm variations of the clock gene PER1 and cancer-related genes during various stages of carcinogenesis in a golden hamster model of buccal mucosa carcinoma. Onco Targets Ther. 2015;8:1419–1426. doi:10.2147/OTT.S8371026089690
  • Bjarnason GA, Jordan RC, Sothern RB. Circadian variation in the expression of cell-cycle proteins in human oral epithelium. Am J Pathol. 1999;154(2):613–622. doi:10.1016/S0002-9440(10)65306-010027418
  • Anea CB, Ali MI, Osmond JM, et al. Matrix metalloproteinase 2 and 9 dysfunction underlie vascular stiffness in circadian clock mutant mice. Arterioscler Thromb Vasc Biol. 2010;30(12):2535–2543. doi:10.1161/ATVBAHA.110.21437920829506
  • Zieker D, Jenne I, Koenigsrainer I, et al. Circadian expression of clock- and tumor suppressor genes in human oral mucosa. Cell Physiol Biochem. 2010;26(2):155–166. doi:10.1159/00032054720798499
  • Jensen LD, Cao Z, Nakamura M, et al. Opposing effects of circadian clock genes bmal1 and period2 in regulation of VEGF-dependent angiogenesis in developing zebrafish. Cell Rep. 2012;2(2):231–241. doi:10.1016/j.celrep.2012.07.00522884368
  • Oda A, Katayose Y, Yabuuchi S, et al. Clock gene mouse period2 overexpression inhibits growth of human pancreatic cancer cells and has synergistic effect with cisplatin. Anticancer Res. 2009;29(4):1201–1209.19414365
  • Zhanfeng N, Yanhui L, Zhou F, Shaocai H, Guangxing L, Hechun X. Circadian genes Per1 and Per2 increase radiosensitivity of glioma in vivo. Oncotarget. 2015;6(12):9951–9958. doi:10.18632/oncotarget.317925760074
  • Wu Y, Sato F, Uk B, et al. Basic helix-loop-helix transcription factors DEC1 and DEC2 regulate the paclitaxel-induced apoptotic pathway of MCF-7 human breast cancer cells. Int J Mol Med. 2011;27(4):491–495. doi:10.3892/ijmm.2011.61721327324
  • Liu Y, Sato F, Kawamoto T, et al. Anti-apoptotic effect of the basic helix-loop-helix (bHLH) transcription factor DEC2 in human breast cancer cells. Genes Cells. 2010;15(4):315–325. doi:10.1111/j.1365-2443.2010.01381.x20236182
  • Jung CH, Kim EM, Park JK, et al. Bmal1 suppresses cancer cell invasion by blocking the phosphoinositide 3-kinase-Akt-MMP-2 signaling pathway. Oncol Rep. 2013;29(6):2109–2113. doi:10.3892/or.2013.238123563360
  • Matsumoto CS, Almeida LO, Guimaraes DM, et al. PI3K-PTEN dysregulation leads to mTOR-driven upregulation of the core clock gene BMAL1 in normal and malignant epithelial cells. Oncotarget. 2016;7(27):42393–42407. doi:10.18632/oncotarget.987727285754
  • Cully M, You H, Levine AJ, Mak TW. Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer. 2006;6(3):184–192. doi:10.1038/nrc181916453012
  • Lee JH, Sancar A. Regulation of apoptosis by the circadian clock through NF-kappaB signaling. Proc Natl Acad Sci U S A. 2011;108(29):12036–12041. doi:10.1073/pnas.110812510821690409
  • Jensen LD, Cao Y. Clock controls angiogenesis. Cell Cycle. 2013;12(3):405–408. doi:10.4161/cc.2359623324349
  • Sato F, Uk B, Kawamoto T, et al. Basic-helix-loop-helix (bHLH) transcription factor DEC2 negatively regulates vascular endothelial growth factor expression. Genes Cells. 2008;13(2):131–144. doi:10.1111/j.1365-2443.2007.01153.x18233956
  • Hsu CM, Lin SF, Lu CT, Lin PM, Yang MY. Altered expression of circadian clock genes in head and neck squamous cell carcinoma. Tumour Biol. 2012;33(1):149–155. doi:10.1007/s13277-011-0258-222081375
  • Cao Q, Zhao X, Bai J, et al. Circadian clock cryptochrome proteins regulate autoimmunity. Proc Natl Acad Sci U S A. 2017;114(47):12548–12553. doi:10.1073/pnas.161911911429109286
  • Cermakian N, Lange T, Golombek D, et al. Crosstalk between the circadian clock circuitry and the immune system. Chronobiol Int. 2013;30(7):870–888. doi:10.3109/07420528.2013.78231523697902
  • Gibbs JE, Blaikley J, Beesley S, et al. The nuclear receptor REV-ERBalpha mediates circadian regulation of innate immunity through selective regulation of inflammatory cytokines. Proc Natl Acad Sci U S A. 2012;109(2):582–587. doi:10.1073/pnas.110675010922184247
  • Logan RW, Sarkar DK. Circadian nature of immune function. Mol Cell Endocrinol. 2012;349(1):82–90. doi:10.1016/j.mce.2011.06.03921784128
  • Riedel F, Zaiss I, Herzog D, Gotte K, Naim R, Hormann K. Serum levels of interleukin-6 in patients with primary head and neck squamous cell carcinoma. Anticancer Res. 2005;25(4):2761–2765.16080523
  • Sephton S, Spiegel D. Circadian disruption in cancer: a neuroendocrine-immune pathway from stress to disease? Brain Behav Immun. 2003;17(5):321–328.12946654
  • Curtis AM, Bellet MM, Sassone-Corsi P, O‘Neill LA. Circadian clock proteins and immunity. Immunity. 2014;40(2):178–186. doi:10.1016/j.immuni.2014.02.00224560196
  • Taniguchi H, Fernandez AF, Setien F, et al. Epigenetic inactivation of the circadian clock gene BMAL1 in hematologic malignancies. Cancer Res. 2009;69(21):8447–8454. doi:10.1158/0008-5472.CAN-09-055119861541
  • Sun Y, Yang Z, Niu Z, et al. MOP3, a component of the molecular clock, regulates the development of B cells. Immunology. 2006;119(4):451–460. doi:10.1111/j.1365-2567.2006.02456.x16925591
  • Spengler ML, Kuropatwinski KK, Comas M, et al. Core circadian protein CLOCK is a positive regulator of NF-kappaB-mediated transcription. Proc Natl Acad Sci U S A. 2012;109(37):E2457–E2465. doi:10.1073/pnas.120627410922895791
  • Arjona A, Sarkar DK. The circadian gene mPer2 regulates the daily rhythm of IFN-gamma. J Interferon Cytokine Res. 2006;26(9):645–649. doi:10.1089/jir.2006.26.64516978068
  • Yan J, Wang H, Liu Y, Shao C. Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput Biol. 2008;4(10):e1000193. doi:10.1371/journal.pcbi.100019318846204
  • Narasimamurthy R, Hatori M, Nayak SK, Liu F, Panda S, Verma IM. Circadian clock protein cryptochrome regulates the expression of proinflammatory cytokines. Proc Natl Acad Sci U S A. 2012;109(31):12662–12667. doi:10.1073/pnas.120996510922778400
  • Zhou M, Wang W, Karapetyan S, et al. Redox rhythm reinforces the circadian clock to gate immune response. Nature. 2015;523(7561):472–476. doi:10.1038/nature1444926098366
  • Tong X, Buelow K, Guha A, Rausch R, Yin L. USP2a protein deubiquitinates and stabilizes the circadian protein CRY1 in response to inflammatory signals. J Biol Chem. 2012;287(30):25280–25291. doi:10.1074/jbc.M112.34078622669941
  • Sand L, Wallstrom M, Hirsch JM. Smokeless tobacco, viruses and oral cancer. Oral Health Dent Manag. 2014;13(2):372–378.24984650
  • Yuan H, Li H, Ma H, et al. Genetic polymorphisms in key DNA repair genes and risk of head and neck cancer in a Chinese population. Exp Ther Med. 2012;3(4):719–724. doi:10.3892/etm.2012.47622969958
  • Amit M, Yen TC, Liao CT, et al. Improvement in survival of patients with oral cavity squamous cell carcinoma: an international collaborative study. Cancer. 2013;119(24):4242–4248. doi:10.1002/cncr.2835724114787
  • Wolff D, Hassfeld S, Hofele C. Influence of marginal and segmental mandibular resection on the survival rate in patients with squamous cell carcinoma of the inferior parts of the oral cavity. J Craniomaxillofac Surg. 2004;32(5):318–323. doi:10.1016/j.jcms.2004.05.00515458675
  • Johnson NW, Warnakulasuriya S, Gupta PC, et al. Global oral health inequalities in incidence and outcomes for oral cancer: causes and solutions. Adv Dent Res. 2011;23(2):237–246. doi:10.1177/002203451140208221490236
  • Zhao N, Tang H, Yang K, Chen D. Circadian rhythm characteristics of oral squamous cell carcinoma growth in an orthotopic xenograft model. Onco Targets Ther. 2013;6:41–46. doi:10.2147/OTT.S3995523378773
  • Hsu CM, Lin PM, Lai CC, Lin HC, Lin SF, Yang MY. PER1 and CLOCK: potential circulating biomarkers for head and neck squamous cell carcinoma. Head Neck. 2014;36(7):1018–1026. doi:10.1002/hed.2340223784787
  • Chen R, Yang K, Zhao NB, et al. Abnormal expression of PER1 circadian-clock gene in oral squamous cell carcinoma. Onco Targets Ther. 2012;5:403–407. doi:10.2147/OTT.S3850823226027
  • Su X, Chen D, Yang K, et al. The circadian clock gene PER2 plays an important role in tumor suppression through regulating tumor-associated genes in human oral squamous cell carcinoma. Oncol Rep. 2017;38(1):472–480. doi:10.3892/or.2017.565328535015
  • Tang Q, Cheng B, Xie M, et al. Circadian clock gene Bmal1 inhibits tumorigenesis and increases paclitaxel sensitivity in tongue squamous cell carcinoma. Cancer Res. 2017;77(2):532–544. doi:10.1158/0008-5472.CAN-16-132227821487