139
Views
19
CrossRef citations to date
0
Altmetric
Review

Immune checkpoint inhibitors for small cell lung cancer: opportunities and challenges

, , &
Pages 4605-4620 | Published online: 13 Jun 2019

References

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.2149230207593
  • Govindan R, Page N, Morgensztern D, et al. Changing epidemiology of small-cell lung cancer in the United States over the last 30 years: analysis of the surveillance, epidemiologic, and end results database. J Clin Oncol. 2006;24(28):4539–4544. doi:10.1200/JCO.2005.04.485917008692
  • Rudin CM, Pietanza MC, Bauer TM, et al. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol. 2017;18(1):42–51. doi:10.1016/S1470-2045(16)30565-427932068
  • Saito M, Saito K, Shiraishi K, et al. Identification of candidate responders for anti-PD-L1/PD-1 immunotherapy, Rova-T therapy, or EZH2 inhibitory therapy in small-cell lung cancer. Mol Clin Oncol. 2018;8(2):310–314. doi:10.3892/mco.2017.153629435295
  • Lung Cancer - Small Cell: Statistics [webpage on the Internet]. Alexandria, VA: American Society of Clinical Oncology (ASCO; Cancer.Net); updated 2019. Available from: https://www.cancer.net/cancer-types/lung-cancer-small-cell/statistics. Accessed August 19, 2018.
  • Amini A, Byers LA, Welsh JW, Komaki RU. Progress in the management of limited‐stage small cell lung cancer. Cancer. 2014;120(6):790–798. doi:10.1002/cncr.2850524327434
  • Spiro SG, James LE, Rudd RM, et al. Early compared with late radiotherapy in combined modality treatment for limited disease small-cell lung cancer: a London lung cancer group multicenter randomized clinical trial and meta-analysis. J Clin Oncol. 2006;24(24):3823–3830. doi:10.1200/JCO.2005.05.318116921033
  • Pietanza MC, Byers LA, Minna JD, Rudin CM. Small cell lung cancer: will recent progress lead to improved outcomes? Clin Cancer Res. 2015;21(10):2244–2255. doi:10.1158/1078-0432.CCR-14-295825979931
  • Faivre-Finn C, Snee M, Ashcroft L, et al. Concurrent once-daily versus twice-daily chemoradiotherapy in patients with limited-stage small-cell lung cancer (CONVERT): an open-label, phase 3, randomised, superiority trial. Lancet Oncol. 2017;18(8):1116–1125. doi:10.1016/S1470-2045(17)30318-228642008
  • Bristol-Myers Squibb. Bristol-Myers Squibb announces Phase 3 CheckMate -331 study does not meet primary endpoint of overall survival with Opdivo versus chemotherapy in patients with previously treated relapsed small cell lung cancer [press release]. New York, NY: Bristol-Myers Squibb; 2018 [October 12]. Available from: https://news.bms.com/press-release/corporatefinancial-news/bristol-myers-squibb-announces-phase-3-checkmate-331-study-doe. Accessed March 27, 2019.
  • FDA Approves Atezolizumab Regimen for Frontline Small Cell Lung Cancer [webpage on the Internet]. Cranbury, NJ: OncLive; 2019 Available from: https://www.onclive.com/web-exclusives/fda-approves-atezolizumab-regimen-for-frontline-small-cell-lung-cancer. Accessed April 05, 2019.
  • Horn L, Mansfield AS, Szczęsna A, et al. First-line atezolizumab plus chemotherapy in extensive-stage small-cell lung cancer. N Engl J Med. 2018;379(23):2220–2229. doi:10.1056/NEJMoa180906430280641
  • FDA Grants Pembrolizumab Priority Review for Advanced SCLC [webpage on the Internet]. Cranbury, NJ: OncLive; 2019. Available from: https://www.onclive.com/web-exclusives/fda-grants-pembrolizumab-priority-review-for-advanced-sclc. Accessed April 05, 2019.
  • Chung HC, Lopez-Martin JA, Kao SC-H, et al. Phase 2 study of pembrolizumab in advanced small-cell lung cancer (SCLC): KEYNOTE-158. J Clin Oncol. 2018;36(15):8506. doi:10.1200/JCO.2018.36.15_suppl.8506
  • Ott PA, Elez E, Hiret S, et al. Pembrolizumab in patients with extensive-stage small-cell lung cancer: results from the phase Ib KEYNOTE-028 study. J Clin Oncol. 2017;35(34):3823–3829. doi:10.1200/JCO.2017.72.506928813164
  • Spigel DR, Socinski MA. Rationale for chemotherapy, immunotherapy, and checkpoint blockade in SCLC: beyond traditional treatment approaches. J Thorac Oncol. 2013;8(5):587–598. doi:10.1097/JTO.0b013e318286cf8823546044
  • Buchbinder EI, Desai A. CTLA-4 and PD-1 pathways: similarities, differences, and implications of their inhibition. Am J Clin Oncol. 2016;39(1):98–106. doi:10.1097/COC.000000000000023926558876
  • Pakkala S, Owonikoko TK. Immune checkpoint inhibitors in small cell lung cancer. J Thorac Dis. 2018;10(Suppl 3):S460–S467. doi:10.21037/jtd.2017.12.5129593891
  • Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–1022. doi:10.1038/ni.270324048123
  • Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):34. doi:10.1186/s13073-017-0424-228420421
  • McGranahan N, Furness AJ, Rosenthal R, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–1469. doi:10.1126/science.aaf149026940869
  • Chan TA, Yarchoan M, Jaffee E, et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol. 2018;30(1):44–56. doi:10.1093/annonc/mdy495
  • Hellmann MD, Ciuleanu T-E, Pluzanski A, et al. Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden. N Engl J Med. 2018;378(22):2093–2104. doi:10.1056/NEJMoa180194629658845
  • McLaughlin J, Han G, Schalper KA, et al. Quantitative assessment of the heterogeneity of PD-L1 expression in non–small-cell lung cancer. JAMA Oncol. 2016;2(1):46–54. doi:10.1001/jamaoncol.2015.363826562159
  • Rivalland G, Walkiewicz M, Wright GM, John T. Small cell lung cancer: the immune microenvironment and prognostic impact of checkpoint expression. J Clin Oncol. 2017;35(15):8569. doi:10.1200/JCO.2017.35.15_suppl.8569
  • Paglialunga L, Salih Z, Ricciuti B, Califano R. Immune checkpoint blockade in small cell lung cancer: is there a light at the end of the tunnel? ESMO Open. 2016;1(4):e000022. doi:10.1136/esmoopen-2015-00002227843619
  • Graziani G, Tentori L, Navarra P. Monoclonal Antibodies to CTLA-4 with Focus on Ipilimumab. In: Klink M, editor. Interaction of Immune and Cancer Cells Vienna: Springer; 2014: 233–258.
  • Tanvetyanon T, Gray JE, Antonia SJ. PD-1 checkpoint blockade alone or combined PD-1 and CTLA-4 blockade as immunotherapy for lung cancer? Expert Opin Biol Ther. 2017;17(3):305–312. doi:10.1080/14712598.2017.128045428064556
  • Ledford H. Melanoma drug wins US approval. Nature. 2011;471:(7340)561. doi:10.1038/nature09833
  • Arriola E, Wheater M, Galea I, et al. Outcome and biomarker analysis from a multicenter phase 2 study of ipilimumab in combination with carboplatin and etoposide as first-line therapy for extensive-stage SCLC. J Thorac Oncol. 2016;11(9):1511–1521. doi:10.1016/j.jtho.2016.05.02827296105
  • Reck M, Bondarenko I, Luft A, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Ann Oncol. 2012;24(1):75–83. doi:10.1093/annonc/mds21322858559
  • Reck M, Luft A, Szczesna A, et al. Phase III randomized trial of ipilimumab plus etoposide and platinum versus placebo plus etoposide and platinum in extensive-stage small-cell lung cancer. J Clin Oncol. 2016;34(31):3740–3748. doi:10.1200/JCO.2016.67.660127458307
  • Reck M, Heigener D, Reinmuth N. Immunotherapy for small-cell lung cancer: emerging evidence. Future Oncol. 2016;12(7):931–943. doi:10.2217/fon-2015-001226882955
  • Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–264. doi:10.1038/nrc323922437870
  • Topalian SL, Weiner GJ, Pardoll DM. Cancer immunotherapy comes of age. J Clin Oncol. 2011;29(36):4828–4836. doi:10.1200/JCO.2011.38.089922042955
  • Henick BS, Herbst RS, Goldberg SB. The PD-1 pathway as a therapeutic target to overcome immune escape mechanisms in cancer. Expert Opin Ther Targets. 2014;18(12):1407–1420. doi:10.1517/14728222.2014.95579425331677
  • US Food and Drug Administration. FDA grants nivolumab accelerated approval for third-line treatment of metastatic small cell lung cancer [webpage on the Internet]. Silver Spring, MD: US Food and Drug Administration; 2018. Available from:  https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-nivolumab-accelerated-approval-third-line-treatment-metastatic-small-cell-lung-cancer. Accessed September 11, 2018.
  • Antonia SJ, López-Martin JA, Bendell J, et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016;17(7):883–895. doi:10.1016/S1470-2045(16)30098-527269741
  • Ready N, Farago AF, de Braud F, et al. Third-line nivolumab monotherapy in recurrent SCLC: checkMate 032. J Thorac Oncol. 2019;14(2):237–244. doi:10.1016/j.jtho.2018.10.00330316010
  • Syn NL, Teng MW, Mok TS, Soo RA. De-novo and acquired resistance to immune checkpoint targeting. J Thor Oncol. 2017;18(12):e731–e741.
  • Gadgeel SM, Ventimiglia J, Kalemkerian GP, et al. Phase II study of maintenance pembrolizumab (pembro) in extensive stage small cell lung cancer (ES-SCLC) patients (pts). J Clin Oncol. 2017;35:(15)8504. doi:10.1200/JCO.2017.35.15_suppl.8504
  • Chung HC, Piha-Paul SA, Lopez-Martin J, et al. CT073 - Pembrolizumab after two or more lines of prior therapy in patients with advanced small-cell lung cancer (SCLC): Results from the KEYNOTE-028 and KEYNOTE-158 studies. Proceedings of the 110th Annual Meeting of the American Association for Cancer Research, Atlanta, GA, March 29 - April 3 2019. Philadelphia, PA: AACR; 2019.
  • Pujol J-L, Greillier L, Audigier-Valette C, et al. A randomized non-comparative phase 2 study of anti-programmed cell death-ligand 1 atezolizumab or chemotherapy as second-line therapy in patients with small cell lung cancer: results from the IFCT-1603 Trial. J Thorac Oncol. 2019;S1556-0864(19):30025.
  • National Cancer Institute (NCI). Cisplatin/carboplatin and etoposide with or without nivolumab in treating patients with extensive stage small cell lung cancer. Available from: https://www.clinicaltrials.gov/ct2/show/NCT3382561. NLM identifier: NCT3382561. Accessed April 06,2019.
  • Bristol-Myers Squibb. Bristol-Myers Squibb announces CheckMate -451 study did not meet primary endpoint of overall survival with Opdivo plus Yervoy Vs. placebo as a maintenance therapy in patients with extensive-stage small cell lung cancer after completion of first-line... [press release]. New York, NY: Bristol-Myers Squibb; 2018 [November 26]. Available from: https://news.bms.com/press-release/corporatefinancial-news/bristol-myers-squibb-announces-checkmate-451-study-did-not-mee. Accessed April 04, 2019.
  • Bondarenko I, Juan-Vidal O, Pajkos G, et al. 1665PD Preliminary efficacy of durvalumab plus tremelimumab in platinum-refractory/resistant ED-SCLC from arm A of the phase II BALTIC study. Ann Oncol. 2018;29(suppl8):mdy298.001. doi:10.1093/annonc/mdx807
  • Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–242. doi:10.1038/nri340523470321
  • Workman CJ, Dugger KJ, Vignali DA. Cutting edge: molecular analysis of the negative regulatory function of lymphocyte activation gene-3. J Immunol. 2002;169(10):5392–5395. doi:10.4049/jimmunol.169.10.539212421911
  • Dholaria B, Hammond W, Shreders A, Lou Y. Emerging therapeutic agents for lung cancer. J Hematol Oncol. 2016;9(1):138. doi:10.1186/s13045-016-0365-z27938382
  • Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004. doi:10.1016/j.immuni.2016.05.00127192565
  • He Y, Rivard CJ, Rozeboom L, et al. Lymphocyte‐activation gene‐3, an important immune checkpoint in cancer. Cancer Sci. 2016;107(9):1193–1197. doi:10.1111/cas.1298627297395
  • Woo S-R, Turnis ME, Goldberg MV, et al. Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res. 2012;72(4):917–927. doi:10.1158/0008-5472.CAN-11-162022186141
  • Andrews LP, Marciscano AE, Drake CG, Vignali DA. LAG 3 (CD 223) as a cancer immunotherapy target. Immunol Rev. 2017;276(1):80–96. doi:10.1111/imr.1251928258692
  • Piha-Paul SA, Amin A, Kovacs C, Magley A, Purkayastha DD, Zhuo Y. A phase 2, open-label study of the combination of spartalizumab (PDR001) and LAG525 for patients with advanced solid tumors and hematologic malignancies. Journal of Clinical Oncology 2018;36(15):Abstract TPS2616.
  • Dempke WCM, Fenchel K, Uciechowski P, et al. Second- and third-generation drugs for immune-oncology treatment-The more the better? Eur J Cancer. 2017;74:55–72. doi:10.1016/j.ejca.2017.01.00128335888
  • Sagiv-Barfi I, Czerwinski DK, Levy S, et al. Eradication of spontaneous malignancy by local immunotherapy. Sci Transl Med. 2018;10(426):eaan4488. doi:10.1126/scitranslmed.aao449629386357
  • Chester C, Ambulkar S, Kohrt HE. 4-1BB agonism: adding the accelerator to cancer immunotherapy. Cancer Immunol Immunother. 2016;65(10):1243–1248. doi:10.1007/s00262-016-1829-227034234
  • Vinay DS, Kwon BS. 4-1BB (CD137), an inducible costimulatory receptor, as a specific target for cancer therapy. BMB Rep. 2014;47(3):122–129.24499671
  • Massagué J. TGFβ in cancer. Cell. 2008;134(2):215–230. doi:10.1016/j.cell.2008.07.00118662538
  • Wendt MK, Tian M, Schiemann WP. Deconstructing the mechanisms and consequences of TGF-β-induced EMT during cancer progression. Cell Tissue Res. 2012;347(1):85–101. doi:10.1007/s00441-011-1199-121691718
  • Thomas DA, Massagué J. TGF-β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer Cell. 2005;8(5):369–380. doi:10.1016/j.ccr.2005.10.01216286245
  • Knudson KM, Hicks KC, Luo X, Chen J-Q, Schlom J, Gameiro SR. M7824, a novel bifunctional anti-PD-L1/TGFβ Trap fusion protein, promotes anti-tumor efficacy as monotherapy and in combination with vaccine. Oncoimmunology. 2018;7(5):e1426519. doi:10.1080/2162402X.2018.149085429721396
  • Lan Y, Zhang D, Xu C, et al. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-β. Sci Transl Med. 2018;10(424):eaan5488. doi:10.1126/scitranslmed.aao449629343622
  • Platten M, Wick W, Van Den Eynde BJ. Tryptophan catabolism in cancer: beyond IDO and tryptophan depletion. Cancer Res. 2012;72(21):5435–5440. doi:10.1158/0008-5472.CAN-12-056923090118
  • Moon YW, Hajjar J, Hwu P, Naing A. Targeting the indoleamine 2, 3-dioxygenase pathway in cancer. J Immunother Cancer. 2015;3(1):51. doi:10.1186/s40425-015-0094-926674411