89
Views
24
CrossRef citations to date
0
Altmetric
Review

Metabolomics: a promising diagnostic and therapeutic implement for breast cancer

, , &
Pages 6797-6811 | Published online: 21 Aug 2019

References

  • Wishart DS. Current progress in computational metabolomics. Brief Bioinform. 2007;8(5):279–293. doi:10.1093/bib/bbm03017626065
  • Gates SC, Sweeley CC. Quantitative metabolic profiling based on gas chromatography. Clin Chem. 1978;24(10):1663–1673.359193
  • Yan M, Qi H, Xia T, et al. Metabolomics profiling of metformin-mediated metabolic reprogramming bypassing AMPKalpha. Metabolism. 2019;91:18–29. doi:10.1016/j.metabol.2018.11.01030468782
  • Preti G. Metabolomics comes of age? The Scientist. 2005;19(11):8.
  • Patti GJ, Yanes O, Siuzdak G. Metabolomics: the apogee of the omics trilogy. Nat Rev Mol Cell Biol. 2012;13(4):263–269. doi:10.1038/nrm331422436749
  • Jagannathan NR, Sharma U. Breast tissue metabolism by magnetic resonance spectroscopy. Metabolites. 2017;7:2. doi:10.3390/metabo7020025
  • Hadi NI, Jamal Q, Iqbal A, Shaikh F, Somroo S, Musharraf SG. Serum metabolomic profiles for breast cancer diagnosis, grading and staging by gas chromatography-mass spectrometry. Sci Rep. 2017;7(1):1715. doi:10.1038/s41598-017-01924-928496143
  • Harvie MN, Sims AH, Pegington M, et al. Intermittent energy restriction induces changes in breast gene expression and systemic metabolism. Breast Cancer Res. 2016;18(1):57. doi:10.1186/s13058-016-0714-427233359
  • Cavaco C, Pereira JAM, Taunk K, et al. Screening of salivary volatiles for putative breast cancer discrimination: an exploratory study involving geographically distant populations. Anal Bioanal Chem. 2018;410(18):4459–4468. doi:10.1007/s00216-018-1103-x29732495
  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.2149230207593
  • Zaimenko I, Lisec J, Stein U, Brenner W. Approaches and techniques to characterize cancer metabolism in vitro and in vivo. Biochimica Et Biophysica Acta Rev Cancer. 2017;1868(2):412–419. doi:10.1016/j.bbcan.2017.08.004
  • Cardoso MR, Santos JC, Ribeiro ML, Talarico MCR, Viana LR, Derchain SFM. A metabolomic approach to predict breast cancer behavior and chemotherapy response. Int J Mol Sci. 2018;19:2. doi:10.3390/ijms19020617
  • Haukaas TH, Euceda LR, Giskeodegard GF, Bathen TF. Metabolic portraits of breast cancer by HR MAS MR spectroscopy of intact tissue samples. Metabolites. 2017;7:2. doi:10.3390/metabo7020018
  • Denkert C, Bucher E, Hilvo M, et al. Metabolomics of human breast cancer: new approaches for tumor typing and biomarker discovery. Genome Med. 2012;4(4):37.22546809
  • Fiehn O. Combining genomics, metabolome analysis, and biochemical modelling to understand metabolic networks. Comp Funct Genomics. 2001;2(3):155–168. doi:10.1002/cfg.8218628911
  • Zhang T, Zhang A, Qiu S, Yang S, Wang X. Current trends and innovations in bioanalytical techniques of metabolomics. Crit Rev Anal Chem. 2016;46(4):342–351. doi:10.1080/10408347.2015.107947526337255
  • Markley JL, Bruschweiler R, Edison AS, et al. The future of NMR-based metabolomics. Curr Opin Biotechnol. 2017;43:34–40. doi:10.1016/j.copbio.2016.08.00127580257
  • Nassar AF, Wu T, Nassar SF, Wisnewski AV. UPLC-MS for metabolomics: a giant step forward in support of pharmaceutical research. Drug Discov Today. 2017;22(2):463–470. doi:10.1016/j.drudis.2016.11.02027919805
  • Ramautar R. Capillary electrophoresis-mass spectrometry for clinical metabolomics. Adv Clin Chem. 2016;74:1–34. doi:10.1016/bs.acc.2015.12.00227117659
  • Goodacre R, Vaidyanathan S, Dunn WB, Harrigan GG, Kell DB. Metabolomics by numbers: acquiring and understanding global metabolite data. Trends Biotechnol. 2004;22(5):245–252. doi:10.1016/j.tibtech.2004.03.00715109811
  • Kim HK, Choi Yh Fau - Verpoorte R, Verpoorte R. NMR-based Plant Metabolomics: Where Do We Stand, Where Do We Go?Trends in biotechnology. 2011;29(6):267–275. doi:10.1016/j.tibtech.2011.02.001
  • Karaman I. Preprocessing and pretreatment of metabolomics data for statistical analysis. Adv Exp Med Biol. 2017;965:145–161. doi:10.1007/978-3-319-47656-8_628132179
  • Wu Y, Li L. Sample normalization methods in quantitative metabolomics. J Chromatogr A. 2016;1430:80–95. doi:10.1016/j.chroma.2015.12.00726763302
  • van Den Berg RA, Hoefsloot HC, Westerhuis JA, Smilde AK, van der Werf MJ. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics. 2006;7:142. doi:10.1186/1471-2164-7-14216762068
  • Krumsiek J, Bartel J, Theis FJ. Computational approaches for systems metabolomics. Curr Opin Biotechnol. 2016;39:198–206. doi:10.1016/j.copbio.2016.04.00927135552
  • Lind MV, Savolainen OI, Ross AB. The use of mass spectrometry for analysing metabolite biomarkers in epidemiology: methodological and statistical considerations for application to large numbers of biological samples. Eur J Epidemiol. 2016;31(8):717–733. doi:10.1007/s10654-016-0166-227230258
  • Considine EC, Thomas G, Boulesteix AL, Khashan AS, Kenny LC. Critical review of reporting of the data analysis step in metabolomics. Metabolomics. 2017;14(1):7. doi:10.1007/s11306-017-1299-330830321
  • Caesar LK, Kvalheim OM, Cech NB. Hierarchical cluster analysis of technical replicates to identify interferents in untargeted mass spectrometry metabolomics. Anal Chim Acta. 2018;1021:69–77. doi:10.1016/j.aca.2018.03.01329681286
  • Shen J, Yan L, Liu S, Ambrosone CB, Zhao H. Plasma metabolomic profiles in breast cancer patients and healthy controls: by race and tumor receptor subtypes. Transl Oncol. 2013;6(6):757–765. doi:10.1593/tlo.1361924466379
  • Audano M, Maldini M, De Fabiani E, Mitro N, Caruso D. Gender-related metabolomics and lipidomics: from experimental animal models to clinical evidence. J Proteomics. 2018;178:82–91. doi:10.1016/j.jprot.2017.11.00129122727
  • Kakkoura MG, Sokratous K, Demetriou CA, et al. Mediterranean diet-gene interactions: a targeted metabolomics study in Greek-Cypriot women. Mol Nutr Food Res. 2017;61:4. doi:10.1002/mnfr.201600558
  • Tayyari F, Gowda GAN, Olopade OF, et al. Metabolic profiles of triple-negative and luminal A breast cancer subtypes in African-American identify key metabolic differences. Oncotarget. 2018;9(14):11677–11690. doi:10.18632/oncotarget.2443329545929
  • Tredwell GD, Miller JA, Chow HH, Thompson PA, Keun HC. Metabolomic characterization of nipple aspirate fluid by (1)H NMR spectroscopy and GC-MS. J Proteome Res. 2014;13(2):883–889. doi:10.1021/pr400924k24364541
  • Veneroni S, Dugo M, Daidone MG, et al. Applicability of under vacuum fresh tissue sealing and cooling to omics analysis of tumor tissues. Biopreserv Biobank. 2016;14(6):480–490. doi:10.1089/bio.2015.009327403896
  • Haukaas TH, Moestue SA, Vettukattil R, et al. Impact of freezing delay time on tissue samples for metabolomic studies. Front Oncol. 2016;6:17. doi:10.3389/fonc.2016.0001726858940
  • Eroles P, Bosch A, Perez-Fidalgo JA, Lluch A. Molecular biology in breast cancer: intrinsic subtypes and signaling pathways. Cancer Treat Rev. 2012;38(6):698–707. doi:10.1016/j.ctrv.2011.11.00522178455
  • Kalimutho M, Parsons K, Mittal D, Lopez JA, Srihari S, Khanna KK. Targeted therapies for triple-negative breast cancer: combating a stubborn disease. Trends Pharmacol Sci. 2015;36(12):822–846. doi:10.1016/j.tips.2015.08.00926538316
  • Fan Y, Zhou X, Xia TS, et al. Human plasma metabolomics for identifying differential metabolites and predicting molecular subtypes of breast cancer. Oncotarget. 2016;7(9):9925–9938. doi:10.18632/oncotarget.715526848530
  • Jerby L, Wolf L, Denkert C, et al. Metabolic associations of reduced proliferation and oxidative stress in advanced breast cancer. Cancer Res. 2012;72(22):5712–5720. doi:10.1158/0008-5472.CAN-12-221522986741
  • Budczies J, Brockmoller SF, Muller BM, et al. Comparative metabolomics of estrogen receptor positive and estrogen receptor negative breast cancer: alterations in glutamine and beta-alanine metabolism. J Proteomics. 2013;94:279–288. doi:10.1016/j.jprot.2013.10.00224125731
  • Cappelletti V, Iorio E, Miodini P, Silvestri M, Dugo M, Daidone MG. Metabolic footprints and molecular subtypes in breast cancer. Dis Markers. 2017;2017:7687851. doi:10.1155/2017/768785129434411
  • Giudetti AM, De Domenico S, Ragusa A, et al. A specific lipid metabolic profile is associated with the epithelial mesenchymal transition program. Biochimica Et Biophysica Acta Mol Cell Biol Lipids. 2019;1864(3):344–357. doi:10.1016/j.bbalip.2018.12.011
  • Winnike JH, Stewart DA, Pathmasiri WW, McRitchie SL, Sumner SJ. Stable isotope-resolved metabolomic differences between hormone-responsive and triple-negative breast cancer cell lines. Int J Breast Cancer. 2018;2018:2063540. doi:10.1155/2018/206354030363973
  • Borgan E, Sitter B, Lingjaerde OC, et al. Merging transcriptomics and metabolomics–advances in breast cancer profiling. BMC Cancer. 2010;10:628. doi:10.1186/1471-2407-10-66321080935
  • Aure MR, Vitelli V, Jernstrom S, et al. Integrative clustering reveals a novel split in the luminal A subtype of breast cancer with impact on outcome. Breast Cancer Res. 2017;19(1):44. doi:10.1186/s13058-017-0812-y28356166
  • Sun YS, Zhao Z, Yang ZN, et al. Risk factors and preventions of breast cancer. Int J Biol Sci. 2017;13(11):1387–1397. doi:10.7150/ijbs.2163529209143
  • Lecuyer L, Victor Bala A, Deschasaux M, et al. NMR metabolomic signatures reveal predictive plasma metabolites associated with long-term risk of developing breast cancer. Int J Epidemiol. 2018;47(2):484–494. doi:10.1093/ije/dyx27129365091
  • Oh H, Coburn SB, Matthews CE, et al. Anthropometric measures and serum estrogen metabolism in postmenopausal women: the Women’s Health Initiative Observational Study. Breast Cancer Res. 2017;19(1):28. doi:10.1186/s13058-017-0810-028284224
  • Moore SC, Playdon MC, Sampson JN, et al. A metabolomics analysis of body mass index and postmenopausal breast cancer risk. J Natl Cancer Inst. 2018;110(6):588–597. doi:10.1093/jnci/djx24429325144
  • Playdon MC, Ziegler RG, Sampson JN, et al. Nutritional metabolomics and breast cancer risk in a prospective study. Am J Clin Nutr. 2017;106(2):637–649. doi:10.3945/ajcn.116.15091228659298
  • Beger RD, Dunn W, Schmidt MA, et al. Metabolomics enables precision medicine: “A white paper, community perspective”. Metabolomics. 2016;12(9):149. doi:10.1007/s11306-016-1094-627642271
  • Wang Q, Sun T, Cao Y, et al. A dried blood spot mass spectrometry metabolomic approach for rapid breast cancer detection. Onco Targets Ther. 2016;9:1389–1398. doi:10.2147/OTT.S9586227042107
  • Siminska E, Koba M. Amino acid profiling as a method of discovering biomarkers for early diagnosis of cancer. Amino Acids. 2016;48(6):1339–1345. doi:10.1007/s00726-016-2215-227033065
  • Yuan B, Schafferer S, Tang Q, et al. A plasma metabolite panel as biomarkers for early primary breast cancer detection. Int J Cancer. 2019;144(11):2833–2842. doi:10.1002/ijc.3199630426507
  • Wang X, Zhao X, Chou J, et al. Taurine, glutamic acid and ethylmalonic acid as important metabolites for detecting human breast cancer based on the targeted metabolomics. Cancer Biomarkers. 2018. doi:10.3233/CBM-181500
  • Liao HW, Chen GY, Wu MS, Liao WC, Lin CH, Kuo CH. Development of a postcolumn infused-internal standard liquid chromatography mass spectrometry method for quantitative metabolomics studies. J Proteome Res. 2017;16(2):1097–1104. doi:10.1021/acs.jproteome.6b0101128067522
  • More TH, RoyChoudhury S, Christie J, et al. Metabolomic alterations in invasive ductal carcinoma of breast: a comprehensive metabolomic study using tissue and serum samples. Oncotarget. 2018;9(2):2678–2696. doi:10.18632/oncotarget.2362629416801
  • Wu J, Yang R, Zhang L, et al. Metabolomics research on potential role for 9-cis-retinoic acid in breast cancer progression. Cancer Sci. 2018;109(7):2315–2326. doi:10.1111/cas.1362929737597
  • Lipovka Y, Konhilas JP. The complex nature of oestrogen signalling in breast cancer: enemy or ally? Biosci Rep. 2016;36:3. doi:10.1042/BSR20160046
  • Okamoto Y, Aoki A, Ueda K, Jinno H. Metabolomic analysis uncovered an association of serum phospholipid levels with estrogen-induced mammary tumors in female ACI/Seg rats. Toxicol Lett. 2018;288:65–70. doi:10.1016/j.toxlet.2018.02.01729454887
  • Cala M, Aldana J, Sanchez J, Guio J, Meesters RJW. Urinary metabolite and lipid alterations in Colombian Hispanic women with breast cancer: a pilot study. J Pharm Biomed Anal. 2018;152:234–241. doi:10.1016/j.jpba.2018.02.00929428809
  • Nam H, Chung BC, Kim Y, Lee K, Lee D. Combining tissue transcriptomics and urine metabolomics for breast cancer biomarker identification. Bioinformatics. 2009;25(23):3151–3157. doi:10.1093/bioinformatics/btp55819783829
  • Sugimoto M, Wong DT, Hirayama A, Soga T, Tomita M. Capillary electrophoresis mass spectrometry-based saliva metabolomics identified oral, breast and pancreatic cancer-specific profiles. Metabolomics. 2010;6(1):78–95. doi:10.1007/s11306-009-0178-y20300169
  • Zhong L, Cheng F, Lu X, Duan Y, Wang X. Untargeted saliva metabonomics study of breast cancer based on ultra performance liquid chromatography coupled to mass spectrometry with HILIC and RPLC separations. Talanta. 2016;158:351–360. doi:10.1016/j.talanta.2016.04.04927343615
  • Takayama T, Tsutsui H, Shimizu I, et al. Diagnostic approach to breast cancer patients based on target metabolomics in saliva by liquid chromatography with tandem mass spectrometry. Clin Chim Acta. 2016;452:18–26. doi:10.1016/j.cca.2015.10.03226523874
  • Mannello F. New horizon for breast cancer biomarker discoveries: what might the liquid biopsy of nipple aspirate fluid hold? Proteomics Clin appli. 2017;11:9–10. doi:10.1002/prca.v11.9-10
  • Matos Do Canto L, Marian C, Varghese RS, et al. Metabolomic profiling of breast tumors using ductal fluid. Int J Oncol. 2016;49(6):2245–2254. doi:10.3892/ijo.2016.373227748798
  • Phillips M, Cataneo R, Lebauer C, Mundada M, Saunders C. Breath mass ion biomarkers of breast cancer. J Breath Res. 2017;11(1):5. doi:10.1088/1752-7163/aa549b
  • Silva CL, Perestrelo R, Silva P, Tomas H, Camara JS. Volatile metabolomic signature of human breast cancer cell lines. Sci Rep. 2017;7:43969. doi:10.1038/srep4396928256598
  • Roig B, Rodríguez-Balada M, Samino S, et al. Metabolomics reveals novel blood plasma biomarkers associated to the BRCA1-mutated phenotype of human breast cancer. Sci Rep. 2017;7. doi:10.1038/s41598-017-17897-828127057
  • Kaddurah-Daouk R, Kristal BS, Weinshilboum RM. Metabolomics: a global biochemical approach to drug response and disease. Annu Rev Pharmacol Toxicol. 2008;48:653–683. doi:10.1146/annurev.pharmtox.48.113006.09471518184107
  • Ewens A, Luo L, Berleth E, et al. Doxorubicin plus interleukin-2 chemoimmunotherapy against breast cancer in mice. Cancer Res. 2006;66(10):5419–5426. doi:10.1158/0008-5472.CAN-05-396316707470
  • Arminan A, Palomino-Schatzlein M, Deladriere C, et al. Metabolomics facilitates the discrimination of the specific anti-cancer effects of free- and polymer-conjugated doxorubicin in breast cancer models. Biomaterials. 2018;162:144–153. doi:10.1016/j.biomaterials.2018.02.01529448142
  • Miolo G, Muraro E, Caruso D, et al. Pharmacometabolomics study identifies circulating spermidine and tryptophan as potential biomarkers associated with the complete pathological response to trastuzumab-paclitaxel neoadjuvant therapy in HER-2 positive breast cancer. Oncotarget. 2016;7(26):39809–39822. doi:10.18632/oncotarget.948927223427
  • Zhang R, Zhuang X, Zong L, Liu S, Liu Z, Song F. Investigations on the cell metabolomics basis of multidrug resistance from tumor cells by ultra-performance liquid chromatography-mass spectrometry. Anal Bioanal Chem. 2016;408(21):5843–5854. doi:10.1007/s00216-016-9696-427379392
  • Zong L, Pi Z, Liu S, Xing J, Liu Z, Song F. Liquid extraction surface analysis nanospray electrospray ionization based lipidomics for in situ analysis of tumor cells with multidrug resistance. Rapid Commun Mass Spectrom. 2018;32(19):1683–1692. doi:10.1002/rcm.822930003601
  • Borgquist S, Bjarnadottir O, Kimbung S, Ahern TP. Statins: a role in breast cancer therapy? J Intern Med. 2018;284(4):346–357. doi:10.1111/joim.1280629923256
  • Klawitter J, Shokati T, Moll V, Christians U, Klawitter J. Effects of lovastatin on breast cancer cells: a proteo-metabonomic study. Breast Cancer Res. 2010;12(2):R16. doi:10.1186/bcr272220205716
  • Hart CD, Vignoli A, Tenori L, et al. Serum metabolomic profiles identify ER-positive early breast cancer patients at increased risk of disease recurrence in a multicenter population. Clin Cancer Res. 2017;23(6):1422–1431. doi:10.1158/1078-0432.CCR-16-115328082280
  • Keun HC, Sidhu J, Pchejetski D, et al. Serum molecular signatures of weight change during early breast cancer chemotherapy. Clin Cancer Res. 2009;15(21):6716–6723. doi:10.1158/1078-0432.CCR-09-145219861449
  • Arenas M, Rodriguez E, Garcia-Heredia A, et al. Metabolite normalization with local radiotherapy following breast tumor resection. PLoS One. 2018;13(11):e0207474. doi:10.1371/journal.pone.020747430444915
  • Dasari S, Tchounwou PB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol. 2014;740:364–378. doi:10.1016/j.ejphar.2014.07.02525058905
  • Ezaki T, Nishiumi S, Azuma T, Yoshida M. Metabolomics for the early detection of cisplatin-induced nephrotoxicity. Toxicol Res (Camb). 2017;6(6):843–853. doi:10.1039/c7tx00171a30090547
  • Lyon DE, Starkweather A, Yao Y, et al. Pilot study of metabolomics and psychoneurological symptoms in women with early stage breast cancer. Biol Res Nurs. 2018;20(2):227–236. doi:10.1177/109980041774741129258398
  • Sun Y, Kim JH, Vangipuram K, et al. Pharmacometabolomics reveals a role for histidine, phenylalanine, and threonine in the development of paclitaxel-induced peripheral neuropathy. Breast Cancer Res Treat. 2018;171(3):657–666. doi:10.1007/s10549-018-4862-329946863
  • Lindon JC, Holmes E, Bollard ME, Stanley EG, Nicholson JK. Metabonomics technologies and their applications in physiological monitoring, drug safety assessment and disease diagnosis. Biomarkers. 2004;9(1):1–31. doi:10.1080/1354750041000166837915204308
  • Warburg O, Wind F, Negelein E. THE METABOLISM OF TUMORS IN THE BODY. J Gen Physiol. 1927;8(6):519–530. doi:10.1085/jgp.8.6.51919872213
  • Martinez-Outschoorn UE, Prisco M, Ertel A, et al. Ketones and lactate increase cancer cell “stemness,” driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via metabolo-genomics. Cell Cycle. 2011;10(8):1271–1286. doi:10.4161/cc.10.8.1533021512313
  • O’Day EM, Idos GE, Hill C, Chen JW, Wagner G. Cytidine monophosphate N-acetylneuraminic acid synthetase enhances invasion of human triple-negative breast cancer cells. Onco Targets Ther. 2018;11:6827–6838. doi:10.2147/OTT.S17763930349315
  • Kyrgiou M, Kalliala I, Markozannes G, et al. Adiposity and cancer at major anatomical sites: umbrella review of the literature. BMJ. 2017;356:j477. doi:10.1136/bmj.j47728246088
  • Baek AE, Yu YA, He S, et al. The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat Commun. 2017;8(1):864. doi:10.1038/s41467-017-00910-z29021522
  • Wang S, Chen X, Luan H, et al. Matrix-assisted laser desorption/ionization mass spectrometry imaging of cell cultures for the lipidomic analysis of potential lipid markers in human breast cancer invasion. Rapid Commun Mass Spectrom. 2016;30(4):533–542. doi:10.1002/rcm.746626777684
  • Kim HY, Lee KM, Kim SH, Kwon YJ, Chun YJ, Choi HK. Comparative metabolic and lipidomic profiling of human breast cancer cells with different metastatic potentials. Oncotarget. 2016;7(41):67111–67128. doi:10.18632/oncotarget.1156027564096
  • Cui M, Wang Q, Chen G. Serum metabolomics analysis reveals changes in signaling lipids in breast cancer patients. Biomed Chromatogr. 2016;30(1):42–47. doi:10.1002/bmc.355626179699
  • Xie H-Y, Shao Z-M, Li D-Q. Tumor microenvironment: driving forces and potential therapeutic targets for breast cancer metastasis. Chin J Cancer. 2017;36(1):36. doi:10.1186/s40880-017-0202-y28356139
  • Kus K, Kij A, Zakrzewska A, et al. Alterations in arginine and energy metabolism, structural and signalling lipids in metastatic breast cancer in mice detected in plasma by targeted metabolomics and lipidomics. Breast Cancer Res. 2018;20(1):148. doi:10.1186/s13058-018-1075-y30514398
  • Larkin JR, Dickens AM, Claridge TD, et al. Early diagnosis of brain metastases using a biofluids-metabolomics approach in mice. Theranostics. 2016;6(12):2161–2169. doi:10.7150/thno.1653827924154
  • Krzeszinski JY, Schwaid AG, Cheng WY, et al. Lipid osteoclastokines regulate breast cancer bone metastasis. Endocrinology. 2017;158(3):477–489. doi:10.1210/en.2016-157027967239
  • Auslander N, Yizhak K, Weinstock A, et al. A joint analysis of transcriptomic and metabolomic data uncovers enhanced enzyme-metabolite coupling in breast cancer. Sci Rep. 2016;6:29662. doi:10.1038/srep2966227406679
  • Helland T, Henne N, Bifulco E, et al. Serum concentrations of active tamoxifen metabolites predict long-term survival in adjuvantly treated breast cancer patients. Breast Cancer Res. 2017;19(1):125. doi:10.1186/s13058-017-0916-429183390
  • El Ansari R, McIntyre A, Craze ML, Ellis IO, Rakha EA, Green AR. Altered glutamine metabolism in breast cancer; subtype dependencies and alternative adaptations. Histopathology. 2018;72(2):183–190. doi:10.1111/his.1333428771772
  • Dong J, Xiao D, Zhao Z, et al. Epigenetic silencing of microRNA-137 enhances ASCT2 expression and tumor glutamine metabolism. Oncogenesis. 2017;6(7):e356. doi:10.1038/oncsis.2017.5928692032
  • Cha YJ, Kim ES, Koo JS. Amino acid transporters and glutamine metabolism in breast cancer. Int J Mol Sci. 2018;19:3. doi:10.3390/ijms19030907
  • McCartney A, Vignoli A, Biganzoli L, et al. Metabolomics in breast cancer: a decade in review. Cancer Treat Rev. 2018;67:88–96. doi:10.1016/j.ctrv.2018.04.01229775779
  • Coloff JL, Murphy JP, Braun CR, et al. Differential glutamate metabolism in proliferating and quiescent mammary epithelial cells. Cell Metab. 2016;23(5):867–880. doi:10.1016/j.cmet.2016.03.01627133130
  • Beatty A, Fink LS, Singh T, et al. Metabolite profiling reveals the glutathione biosynthetic pathway as a therapeutic target in triple-negative breast cancer. Mol Cancer Ther. 2018;17(1):264–275. doi:10.1158/1535-7163.MCT-17-040729021292
  • Teoh ST, Ogrodzinski MP, Ross C, Hunter KW, Lunt SY. Sialic acid metabolism: a key player in breast cancer metastasis revealed by metabolomics. Front Oncol. 2018;8:174. doi:10.3389/fonc.2018.0017429892572