5,279
Views
632
CrossRef citations to date
0
Altmetric
Review Article

Oxidant stress, mitochondria, and cell death mechanisms in drug-induced liver injury: Lessons learned from acetaminophen hepatotoxicity

, &
Pages 88-106 | Received 22 Apr 2011, Accepted 23 Jun 2011, Published online: 30 Jan 2012

References

  • Adams, D. H., Ju, C., Ramaiah, S. K., Uetrecht, J., Jaeschke, H. (2010). Mechanisms of immune-mediated liver injury. Toxicol Sci 115:307–321.
  • Adams, M. L., Pierce, R. H., Vail, M. E., White, C. C., Tonge, R. P., Kavanagh, T. J., et al. (2001). Enhanced acetaminophen hepatotoxicity in transgenic mice overexpressing BCL-2. Mol Pharmacol 60:907–915.
  • Agarwal, R., Macmillan-Crow, L. A., Rafferty, T. M., Saba, H., Roberts, D. W., Fifer, E. K., et al. (2011). Acetaminophen-induced hepatotoxicity in mice occurs with inhibition of activity and nitration of mitochondrial manganese superoxide dismutase. J Pharmacol Exp Ther 337:110–118.
  • Aires, C. C., Iijst, L., Stet, F., Prip-Buus, C., de Almeida, I. T., Duran, M., et al. (2010). Inhibition of hepatic carnitine palmitoyl-transferase I (CPT IA) by valproyl-CoA as a possible mechanism of valproate-induced steatosis. Biochem Pharamacol 79:792–799.
  • Andrade, R. J., Agúndez, J. A., Lucena, M. I., Martinez, C., Cueto, R., García-Martín, E. (2009). Pharmacogenomics in drug induced liver injury. Curr Drug Metab 10:956–970.
  • Andringa, K. K., Bajt, M. L., Jaeschke, H., Bailey, S. M. (2008). Mitochondrial protein thiol modifications in acetaminophen hepatotoxicity: effect on HMG-CoA synthase. Toxicol Lett 177:188–197.
  • Antoine, DJ, Williams, DP, Kipar, A, Jenkins, RE, Regan, SL, Sathish, JG, et al. (2009). High-mobility group box-1 protein and keratin-18, circulating serum proteins informative of acetaminophen-induced necrosis and apoptosis in vivo. Toxicol Sci 112:521–531.
  • Antoine, D. J., Williams, D. P., Kipar, A., Laverty, H., Park, B. K. (2010). Diet restriction inhibits apoptosis and HMGB1 oxidation and promotes inflammatory cell recruitment during acetaminophen hepatotoxicity. Mol Med 16:479–490.
  • Baines, C. P., Kaiser, R. A., Purcell, N. H., Blair, N. S., Osinska, H., Hambleton, M. A., et al. (2005). Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662.
  • Bajt, M. L., Cover, C., Lemasters, J. J., Jaeschke, H. (2006). Nuclear translocation of endonuclease G and apoptosis-inducing factor during acetaminophen-induced liver cell injury. Toxicol Sci 94:217–225.
  • Bajt, M. L., Farhood, A., Lemasters, J. J., Jaeschke, H. (2008). Mitochondrial bax translocation accelerates DNA fragmentation and cell necrosis in a murine model of acetaminophen hepatotoxicity. J Pharmacol Exp Ther 324:8–14.
  • Bajt, M. L., Knight, T. R., Farhood, A., Jaeschke, H. (2003). Scavenging peroxynitrite with glutathione promotes regeneration and enhances survival during acetaminophen-induced liver injury in mice. J Pharmacol Exp Ther 307:67–73.
  • Bajt, M. L., Knight, T. R., Lemasters, J. J., Jaeschke, H. (2004). Acetaminophen-induced oxidant stress and cell injury in cultured mouse hepatocytes: protection by N-acetyl cysteine. Toxicol Sci 80:343–349.
  • Bajt, M. L., Lawson, J. A., Vonderfecht, S. L., Gujral, J. S., Jaeschke, H. (2000). Protection against Fas receptor-mediated apoptosis in hepatocytes and nonparenchymal cells by a caspase-8 inhibitor in vivo: evidence for a postmitochondrial processing of caspase-8. Toxicol Sci 58:109–117.
  • Bajt, M. L., Ramachandran, A., Yan, H. M., Lebofsky, M., Farhood, A., Lemasters, J. J., et al. (2011). Apoptosis-inducing factor modulates mitochondrial oxidant stress in acetaminophen hepatotoxicity. Toxicol Sci 122:598–605.
  • Balakirev, M. Y., Zimmer, G. (2001). Mitochondrial injury by disulfiram: two different mechanisms of the mitochondrial permeability transition. Chem Biol Interact 138:299–311.
  • Battaglia, V., Salvi, M., Toninello, A. (2005). Oxidative stress is responsible for mitochondrial permeability transition induction by salicylate in liver mitochondria. J Biol Chem 280:33864–33872.
  • Bautista, A. P., Mészáros, K., Bojta, J., Spitzer, J. J. (1990). Superoxide anion generation in the liver during the early stage of endotoxemia in rats. J Leukoc Biol 48:123–128.
  • Bechmann, L. P., Marquitan, G., Jochum, C., Saner, F., Gerken, G., Canbay, A. (2008). Apoptosis versus necrosis rate as a predictor in acute liver failure following acetaminophen intoxication compared with acute-on-chronic liver failure. Liver Int 28:713–716.
  • Bedard, K., Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313.
  • Bellomo, G., Orrenius, S. (1985). Altered thiol and calcium homeostasis in oxidative hepatocellular injury. Hepatology 5:876–882.
  • Berson, A., Cazanave, S., Descatoire, V., Tinel, M., Grodet, A., Wolf, C., et al. (2006). The anti-inflammatory drug, nimesulide (4-nitro-2-phenoxymethane-sulfoanilide), uncouples mitochondria and induces mitochondrial permeability transition in human hepatoma cells: protection by albumin. J Pharmacol Exp Ther 318:444–454.
  • Berson, A., Descatoire, V., Sutton, A., Fau, D., Maulny, B., Vadrot, N., et al. (2001). Toxicity of alpidem, a peripheral benzodiazepine receptor ligand, but not zolpidem, in rat hepatocytes: role of mitochondrial permeability transition and metabolic activation. J Pharmacol Exp Ther 299:793–800.
  • Bhave, V. S., Donthamsetty, S., Latendresse, J. R., Cunningham, M. L., Mehendale, H. M. (2011). Secretory phospholipase A(2)-mediated progression of hepatotoxicity initiated by acetaminophen is exacerbated in the absence of hepatic COX-2. Toxicol Appl Pharmacol 251:173–180.
  • Bilzer, M., Baron, A., Schauer, R., Steib, C., Ebensberger, S., Gerbes, A. L. (2002). Glutathione treatment protects the rat liver against injury after warm ischemia and Kupffer cell activation. Digestion 66:49–57.
  • Bilzer, M., Jaeschke, H., Vollmar, A. M., Paumgartner, G., Gerbes, A. L. (1999). Prevention of Kupffer cell-induced oxidant injury in rat liver by atrial natriuretic peptide. Am J Physiol 276:G1137–G1144
  • Blas-García, A., Apostolova, N., Ballesteros, D., Monleón, D., Morales, J. M., Rocha, M., et al. (2010). Inhibition of mitochondrial function by efavirenz increases lipid content in hepatic cells. Hepatology 52:115–125.
  • Boelsterli, U. A., Lim, P. L. (2007). Mitochondrial abnormalities—a link to idiosyncratic drug hepatotoxicity? Toxicol Appl Pharmacol 220:92–107.
  • Boujrad, H., Gubkina, O., Robert, N., Krantic, S., Susin, S. A. (2007). AIF-mediated programmed necrosis: a highly regulated way to die. Cell Cycle 6:2612–2619.
  • Bourdi, M., Masubuchi, Y., Reilly, T., Amouzadeh, H., Martin, J., George, J. W., et al. (2002). Protection against acetaminophen-induced liver injury and lethality by interleukin 10: role of inducible nitric oxide synthase. Hepatology 35:289–298.
  • Burgunder, J. M., Varriale, A., Lauterburg, B. H. (1989). Effect of N-acetylcysteine on plasma cysteine and glutathione following paracetamol administration. Eur J Clin Pharmacol 36:127–131.
  • Burke, A. S., MacMillan-Crow, L. A., Hinson, J. A. (2010). Reactive nitrogen species in acetaminophen-induced mitochondrial damage and toxicity in mouse hepatocytes. Chem Res Toxicol 23:1286–1292.
  • Calabrese, E. J., Canada, A. T. (1989). Catalase: its role in xenobiotic detoxification. Pharmacol Ther 44:297–307.
  • Campos, R., Garrido, A., Guerra, R., Valenzuela, A. (1989). Silybin dihemisuccinate protects against glutathione depletion and lipid peroxidation induced by acetaminophen on rat liver. Planta Med 55:417–419.
  • Chang, T. K., Abbott, F. S. (2006). Oxidative stress as a mechanism of valproic acid-associated hepatotoxicity. Drug Metab Rev 38:627–639.
  • Cohen, S. D., Pumford, N. R., Khairallah, E. A., Boekelheide, K., Pohl, L. R., Amouzadeh, H. R., et al. (1997). Selective protein covalent binding and target organ toxicity. Toxicol Appl Pharmacol 143:1–12.
  • Conde de la Rosa, L., Schoemaker, M. H., Vrenken, T. E., Buist-Homan, M., Havinga, R., Jansen, P. L., et al. (2006). Superoxide anions and hydrogen peroxide induce hepatocyte death by different mechanisms: involvement of JNK and ERK MAP kinases. J Hepatol 44:918–929.
  • Cover, C., Fickert, P., Knight, T. R., Fuchsbichler, A., Farhood, A., Trauner, M., et al. (2005a). Pathophysiological role of poly(ADP-ribose) polymerase (PARP) activation during acetaminophen-induced liver cell necrosis in mice. Toxicol Sci 84:201–208.
  • Cover, C., Liu, J., Farhood, A., Malle, E., Waalkes, M. P., Bajt, M. L., et al. (2006). Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 216:98–107.
  • Cover, C., Mansouri, A., Knight, T. R., Bajt, M. L., Lemasters, J. J., Pessayre, D., et al. (2005b). Peroxynitrite-induced mitochondrial and endonuclease-mediated nuclear DNA damage in acetaminophen hepatotoxicity. J Pharmacol Exp Ther 315:879–887.
  • Czaja, M. J. (2002). Induction and regulation of hepatocyte apoptosis by oxidative stress. Antioxid Redox Signal 4:759–767.
  • Davern, T. J., 2nd, James, L. P., Hinson, J. A., Polson, J., Larson, A. M., Fontana, R. J., et al.; Acute Liver Failure Study Group. (2006). Measurement of serum acetaminophen-protein adducts in patients with acute liver failure. Gastroenterology 130:687–694.
  • Dianzani, M. U. (2003). 4-hydroxynonenal from pathology to physiology. Mol Aspects Med 24:263–272.
  • Edwards, M. J., Keller, B. J., Kauffman, F. C., Thurman, R. G. (1993). The involvement of Kupffer cells in carbon tetrachloride toxicity. Toxicol Appl Pharmacol 119:275–279.
  • El-Hassan, H., Anwar, K., Macanas-Pirard, P., Crabtree, M., Chow, S. C., Johnson, V. L., et al. (2003). Involvement of mitochondria in acetaminophen-induced apoptosis and hepatic injury: roles of cytochrome c, Bax, Bid, and caspases. Toxicol Appl Pharmacol 191:118–129.
  • Elsby, R., Kitteringham, N. R., Goldring, C. E., Lovatt, C. A., Chamberlain, M., Henderson, C. J., et al. (2003). Increased constitutive c-Jun N-terminal kinase signaling in mice lacking glutathione S-transferase Pi. J Biol Chem 278:22243–22249.
  • elSisi, A. E., Earnest, D. L., Sipes, I. G. (1993). Vitamin A potentiation of carbon tetrachloride hepatotoxicity: role of liver macrophages and active oxygen species. Toxicol Appl Pharmacol 119:295–301.
  • Entman, M. L., Youker, K., Shoji, T., Kukielka, G., Shappell, S. B., Taylor, A. A., et al. (1992). Neutrophil induced oxidative injury of cardiac myocytes. A compartmented system requiring CD11b/CD18-ICAM-1 adherence. J Clin Invest 90:1335–1345.
  • Farber, J. L. (1994). Mechanisms of cell injury by activated oxygen species. Environ Health Perspect 102(Suppl 10):17–24.
  • Fréneaux, E, Labbe, G, Letteron, P, The Le Dinh, Degott, C., Genève, J., et al. (1988). Inhibition of the mitochondrial oxidation of fatty acids by tetracycline in mice and in man: possible role in microvesicular steatosis induced by this antibiotic. Hepatology 8:1056–1062.
  • Fujimoto, K., Kumagai, K., Ito, K., Arakawa, S., Ando, Y., Oda, S., et al. (2009). Sensitivity of liver injury in heterozygous Sod2 knockout mice treated with troglitazone or acetaminophen. Toxicol Pathol 37:193–200.
  • Gao, H., Zhou, Y. W. (2005). Anti-lipid peroxidation and protection of liver mitochondria against injuries by picroside II. World J Gastroenterol 11:3671–3674.
  • Gardner, C. R., Laskin, J. D., Dambach, D. M., Sacco, M., Durham, S. K., Bruno, M. K., et al. (2002). Reduced hepatotoxicity of acetaminophen in mice lacking inducible nitric oxide synthase: potential role of tumor necrosis factor-alpha and interleukin-10. Toxicol Appl Pharmacol 84:27–36.
  • Gieseler, A., Schultze, A. T., Kupsch, K., Haroon, M. F., Wolf, G., Siemen, D., et al. (2009). Inhibitory modulation of the mitochondrial permeability transition by minocycline. Biochem Pharmacol 77:888–896.
  • Gonzalez, F. J. (2007). The 2006 Bernard B. Brodie Award Lecture. Cyp2e1. Drug Metab Dispos 35:1–8.
  • Guéraud, F., Atalay, M., Bresgen, N., Cipak, A., Eckl, P. M., Huc, L., et al. (2010). Chemistry and biochemistry of lipid peroxidation products. Free Radic Res 44:1098–1124.
  • Guillouzo, A., Corlu, A., Aninat, C., Glaise, D., Morel, F., Guguen-Guillouzo, C. (2007). The human hepatoma HepaRG cells: a highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem Biol Interact 168:66–73.
  • Gujral, J. S., Farhood, A., Bajt, M. L., Jaeschke, H. (2003). Neutrophils aggravate acute liver injury during obstructive cholestasis in bile duct-ligated mice. Hepatology 38:355–363.
  • Gujral, J. S., Hinson, J. A., Farhood, A., Jaeschke, H. (2004a). NADPH oxidase-derived oxidant stress is critical for neutrophil cytotoxicity during endotoxemia. Am J Physiol Gastrointest Liver Physiol 287:G243–G252
  • Gujral, J. S., Knight, T. R., Farhood, A., Bajt, M. L., Jaeschke, H. (2002). Mode of cell death after acetaminophen overdose in mice: apoptosis or oncotic necrosis? Toxicol Sci 67:322–328.
  • Gujral, J. S., Liu, J., Farhood, A., Hinson, J. A., Jaeschke, H. (2004b). Functional importance of ICAM-1 in the mechanism of neutrophil-induced liver injury in bile duct-ligated mice. Am J Physiol Gastrointest Liver Physiol 286:G499–G507
  • Gunawan, B. K., Liu, Z. X., Han, D., Hanawa, N., Gaarde, W. A., Kaplowitz, N. (2006). c-Jun N-terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology 131:165–178.
  • Ha, H. C., Snyder, S. H. (1999). Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci U S A 96:13978–13982.
  • Hanawa, N., Shinohara, M., Saberi, B., Gaarde, W. A., Han, D., Kaplowitz, N. (2008). Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen-induced liver injury. J Biol Chem 283:13565–13577.
  • Hasegawa, T., Malle, E., Farhood, A., Jaeschke, H. (2005). Generation of hypochlorite-modified proteins by neutrophils during ischemia-reperfusion injury in rat liver: attenuation by ischemic preconditioning. Am J Physiol Gastrointest Liver Physiol 289:G760–G767
  • He, L., Lemasters, J. J. (2002). Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett 512:1–7.
  • Henderson, N. C., Pollock, K. J., Frew, J., Mackinnon, A. C., Flavell, R. A., Davis, R. J., et al. (2007). Critical role of c-jun (NH2) terminal kinase in paracetamol-induced acute liver failure. Gut 56:982–990.
  • Hinson, J. A., Pike, S. L., Pumford, N. R., Mayeux, P. R. (1998). Nitrotyrosine-protein adducts in hepatic centrilobular areas following toxic doses of acetaminophen in mice. Chem Res Toxicol 11:604–607.
  • Hinson, J. A., Reid, A. B., McCullough, S. S., James, L. P. (2004). Acetaminophen-induced hepatotoxicity: role of metabolic activation, reactive oxygen/nitrogen species, and mitochondrial permeability transition. Drug Metab Rev 36:805–822.
  • Hong, J. Y., Lebofsky, M., Farhood, A., Jaeschke, H. (2009). Oxidant stress-induced liver injury in vivo: role of apoptosis, oncotic necrosis, and c-Jun NH2-terminal kinase activation. Am J Physiol Gastrointest Liver Physiol 296:G572–G581
  • Hsu, C. C., Lin, K. Y., Wang, Z. H., Lin, W. L., Yin, M. C. (2008). Preventive effect of Ganoderma amboinense on acetaminophen-induced acute liver injury. Phytomedicine 15:946–950.
  • Huang, Y. S., Su, W. J., Huang, Y. H., Chen, C. Y., Chang, F. Y., Lin, H. C., et al. (2007). Genetic polymorphisms of manganese superoxide dismutase, NAD(P)H:quinone oxidoreductase, glutathione S-transferase M1 and T1, and the susceptibility to drug-induced liver injury. J Hepatol 47:128–134.
  • Ishida, Y., Kondo, T., Kimura, A., Tsuneyama, K., Takayasu, T., Mukaida, N. (2006). Opposite roles of neutrophils and macrophages in the pathogenesis of acetaminophen-induced acute liver injury. Eur J Immunol 36:1028–1038.
  • Ito, Y., Bethea, N. W., Abril, E. R., McCuskey, R. S. (2003). Early hepatic microvascular injury in response to acetaminophen toxicity. Microcirculation 10:391–400.
  • Jacob, M., Mannherz, H. G., Napirei, M. (2007). Chromatin breakdown by deoxyribonuclease1 promotes acetaminophen-induced liver necrosis: an ultrastructural and histochemical study on male CD-1 mice. Histochem Cell Biol 128:19–33.
  • Jaeschke, H. (1990). Glutathione disulfide formation and oxidant stress during acetaminophen-induced hepatotoxicity in mice in vivo: the protective effect of allopurinol. J Pharmacol Exp Ther 255:935–941.
  • Jaeschke, H. (1992). Enhanced sinusoidal glutathione efflux during endotoxin-induced oxidant stress in vivo. Am J Physiol 263:G60–G68
  • Jaeschke, H. (2003). Molecular mechanisms of hepatic ischemia-reperfusion injury and preconditioning. Am J Physiol Gastrointest Liver Physiol 284:G15–G26
  • Jaeschke, H. (2006). Mechanisms of liver injury. II. Mechanisms of neutrophil-induced liver cell injury during hepatic ischemia-reperfusion and other acute inflammatory conditions. Am J Physiol Gastrointest Liver Physiol 290:G1083–G1088
  • Jaeschke, H. (2010). Antioxidant defense mechanisms. In: McQueen, C. A. (Ed.), Comprehensive toxicology, vol. 9 (pp. 319–337). Oxford, UK: Academic.
  • Jaeschke, H. (2011). Reactive oxygen and mechanisms of inflammatory liver injury: present concepts. J Gastroenterol Hepatol 26(Suppl 1):173–179.
  • Jaeschke, H., Bajt, M. L. (2006). Intracellular signaling mechanisms of acetaminophen-induced liver cell death. Toxicol Sci 89:31–41.
  • Jaeschke, H., Bautista, A. P., Spolarics, Z., Spitzer, J. J. (1991). Superoxide generation by Kupffer cells and priming of neutrophils during reperfusion after hepatic ischemia. Free Radic Res Commun 15:277–284.
  • Jaeschke, H., Bautista, A. P., Spolarics, Z., Spitzer, J. J. (1992). Superoxide generation by neutrophils and Kupffer cells during in vivo reperfusion after hepatic ischemia in rats. J Leukoc Biol 52:377–382.
  • Jaeschke, H., Cover, C., Bajt, M. L. (2006). Role of caspases in acetaminophen-induced liver injury. Life Sci 78:1670–1676.
  • Jaeschke, H., Farhood, A. (1991). Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury in rat liver. Am J Physiol 260:G355–G362
  • Jaeschke, H., Farhood, A., Bautista, A. P., Spolarics, Z., Spitzer, J. J., Smith, C. W. (1993). Functional inactivation of neutrophils with a Mac-1 (CD11b/CD18) monoclonal antibody protects against ischemia-reperfusion injury in rat liver. Hepatology 17:915–923.
  • Jaeschke, H., Farhood, A., Smith, C. W. (1990). Neutrophils contribute to ischemia/reperfusion injury in rat liver in vivo. FASEB J 4:3355–3359.
  • Jaeschke, H., Fisher, M. A., Lawson, J. A., Simmons, C. A., Farhood, A., Jones, D. A. (1998). Activation of caspase 3 (CPP32)-like proteases is essential for TNF-alpha-induced hepatic parenchymal cell apoptosis and neutrophil-mediated necrosis in a murine endotoxin shock model. J Immunol 160:3480–3486.
  • Jaeschke, H., Gujral, J. S., Bajt, M. L. (2004). Apoptosis and necrosis in liver disease. Liver Int 24:85–89.
  • Jaeschke, H., Hasegawa, T. (2006). Role of neutrophils in acute inflammatory liver injury. Liver Int 26:912–919.
  • Jaeschke, H., Ho, Y. S., Fisher, M. A., Lawson, J. A., Farhood, A. (1999). Glutathione peroxidase-deficient mice are more susceptible to neutrophil-mediated hepatic parenchymal cell injury during endotoxemia: importance of an intracellular oxidant stress. Hepatology 29:443–450.
  • Jaeschke, H., Knight, T. R., Bajt, M. L. (2003). The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity. Toxicol Lett 144:279–288.
  • Jaeschke, H., Koerner, M., Williams, C. D. (2011a). Activation of caspases during acetaminophen toxicity is a strain dependent phenomenon [abstract]. Toxicol Sci 120(Suppl 2):96.
  • Jaeschke, H., Lemasters, J. J. (2003). Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology 125:1246–1257.
  • Jaeschke, H., Liu, J. (2007). Neutrophil depletion protects against murine acetaminophen hepatotoxicity: another perspective. Hepatology 45:1588–1589.
  • Jaeschke, H., McGill, M. R., Williams, C. D., Ramachandran, A. (2011b). Current issues with acetaminophen hepatotoxicity—a clinically relevant model to test the efficacy of natural products. Life Sci 88:737–745.
  • Jaeschke, H., Smith, C. W. (1997). Mechanisms of neutrophil-induced parenchymal cell injury. J Leukoc Biol 61:647–653.
  • Jahr, S., Hentze, H., Englisch, S., Hardt, D., Fackelmayer, F. O., Hesch, R. D., et al. (2001). DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res 61:1659–1665.
  • James, L. P., Letzig, L., Simpson, P. M., Capparelli, E., Roberts, D. W., Hinson, J. A., et al. (2009). Pharmacokinetics of acetaminophen-protein adducts in adults with acetaminophen overdose and acute liver failure. Drug Metab Dispos 37:1779–1784.
  • James, L. P., McCullough, S. S., Knight, T. R., Jaeschke, H., Hinson, J. A. (2003a). Acetaminophen toxicity in mice lacking NADPH oxidase activity: role of peroxynitrite formation and mitochondrial oxidant stress. Free Radic Res 37:1289–1297.
  • James, L. P., McCullough, S. S., Lamps, L. W., Hinson, J. A. (2003b). Effect of N-acetylcysteine on acetaminophen toxicity in mice: relationship to reactive nitrogen and cytokine formation. Toxicol Sci 75:458–467.
  • Jimenez-Rodriguezvila, M., Caro-Patón, A., Dueña-Laita, A., Conde, M., Coca, M. C., Martin-Lorente, J. L., et al. (1985). Histological, ultrastructural, and mitochondrial oxidative phosphorylation studies in liver of rats chronically treated with oral valproic acid. J Hepatol 1:453–465.
  • Ju, C., Reilly, T. P., Bourdi, M., Radonovich, M. F., Brady, J. N., George, J. W., et al. (2002). Protective role of Kupffer cells in acetaminophen-induced hepatic injury in mice. Chem Res Toxicol 15:1504–1513.
  • Kashimshetty, R., Desai, V. G., Kale, V. M., Lee, T., Moland, C. L., Branham, W. S., et al. (2009). Underlying mitochondrial dysfunction triggers flutamide-induced oxidative liver injury in a mouse model of idiosyncratic drug toxicity. Toxicol Appl Pharmacol 238:150–159.
  • Kaufmann, P., Török, M., Hänni, A., Roberts, P., Gasser, R., Krähenbühl, S. (2005). Mechanisms of benzarone and benzbromarone-induced hepatic toxicity. Hepatology 41:925–935.
  • Kehrer, J. P. (1993). Free radicals as mediators of tissue injury and disease. Crit Rev Toxicol 23:21–48.
  • Kietzmann, T., Jungermann, K. (1997). Modulation by oxygen of zonal gene expression in liver studied in primary rat hepatocyte cultures. Cell Biol Toxicol 13:243–255.
  • Knight, T. R., Fariss, M. W., Farhood, A., Jaeschke, H. (2003). Role of lipid peroxidation as a mechanism of liver injury after acetaminophen overdose in mice. Toxicol Sci 76:229–236.
  • Knight, T. R., Jaeschke, H. (2002). Acetaminophen-induced inhibition of Fas receptor-mediated liver cell apoptosis: mitochondrial dysfunction versus glutathione depletion. Toxicol Appl Pharmacol 181:133–141.
  • Knight, T. R., Jaeschke, H. (2004). Peroxynitrite formation and sinusoidal endothelial cell injury during acetaminophen-induced hepatotoxicity in mice. Comp Hepatol 3(Suppl 1):S46.
  • Knight, T. R., Kurtz, A., Bajt, M. L., Hinson, J. A., Jaeschke, H. (2001). Vascular and hepatocellular peroxynitrite formation during acetaminophen toxicity: role of mitochondrial oxidant stress. Toxicol Sci 62:212–220.
  • Knight, T. R., Ho, Y. S., Farhood, A., Jaeschke, H. (2002). Peroxynitrite is a critical mediator of acetaminophen hepatotoxicity in murine livers: protection by glutathione. J Pharmacol Exp Ther 303:468–475.
  • Kodali, P., Wu, P., Lahiji, P. A., Brown, E. J., Maher, J. J. (2006). ANIT toxicity toward mouse hepatocytes in vivo is mediated primarily by neutrophils via CD18. Am J Physiol Gastrointest Liver Physiol 291:G355–G363
  • Kon, K., Kim, J. S., Jaeschke, H., Lemasters, J. J. (2004). Mitochondrial permeability transition in acetaminophen-induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology 40:1170–1179.
  • Kon, K., Kim, J. S., Uchiyama, A., Jaeschke, H., Lemasters, J. J. (2010). Lysosomal iron mobilization and induction of the mitochondrial permeability transition in acetaminophen-induced toxicity to mouse hepatocytes. Toxicol Sci 117:101–108.
  • Kono, H., Fujii, H., Asakawa, M., Yamamoto, M., Maki, A., Matsuda, M., et al. (2002). Functional heterogeneity of the kupffer cell population is involved in the mechanism of gadolinium chloride in rats administered endotoxin. J Surg Res 106:179–187.
  • Küpeli, E., Orhan, D. D., Yesilada, E. (2006). Effect of Cistus laurifolius L. leaf extracts and flavonoids on acetaminophen-induced hepatotoxicity in mice. J Ethnopharmacol 103:455–460.
  • Kupsch, K., Hertel, S., Kreutzmann, P., Wolf, G., Wallesch, C. W., Siemen D., et al. (2009). Impairment of mitochondrial function by minocycline. FEBS J 276:1729–1738.
  • Larson, A. M. (2007). Acetaminophen hepatotoxicity. Clin Liver Dis 11:525–548.
  • Larson, A. M., Polson, J., Fontana, R. J., Davern, T. J., Lalani, E., Hynan, L. S., et al. (2005). Acetaminophen-induced acute liver failure: results of a United States multicenter, prospective study. Hepatology 42:1364–1372.
  • Laskin, D. L., Gardner, C. R., Price, V. F., Jollow, D. J. (1995). Modulation of macrophage functioning abrogates the acute hepatotoxicity of acetaminophen. Hepatology 21:1045–1050.
  • Latchoumycandane, C., Goh, C. W., Ong, M. M., Boelsterli, U. A. (2007). Mitochondrial protection by the JNK inhibitor leflunomide rescues mice from acetaminophen-induced liver injury. Hepatology 45:412–421.
  • Latchoumycandane, C., Seah, Q. M., Tan, R. C., Sattabongkot, J., Beerheide, W., Boelsterli, U. A. (2006). Leflunomide or A77 1726 protect from acetaminophen-induced cell injury through inhibition of JNK-mediated mitochondrial permeability transition in immortalized human hepatocytes. Toxicol Appl Pharmacol 217:125–133.
  • Lauterburg, B. H., Mitchell, J. R. (1987). Therapeutic doses of acetaminophen stimulate the turnover of cysteine and glutathione in man. J Hepatol 4:206–211.
  • Lauterburg, B. H., Smith, C. V., Hughes, H., Mitchell, J. R. (1984). Biliary excretion of glutathione and glutathione disulfide in the rat. Regulation and response to oxidative stress. J Clin Invest 73:124–133.
  • Lawson, J. A., Farhood, A., Hopper, R. D., Bajt, M. L., Jaeschke, H. (2000). The hepatic inflammatory response after acetaminophen overdose: role of neutrophils. Toxicol Sci 54:509–516.
  • Lawson, J. A., Fisher, M. A., Simmons, C. A., Farhood, A., Jaeschke, H. (1999). Inhibition of Fas receptor (CD95)-induced hepatic caspase activation and apoptosis by acetaminophen in mice. Toxicol Appl Pharmacol 156:179–186.
  • Lheureux, P. E., Hanston, P. (2009). Carnitine in the treatment of valproic-acid induced toxicity. Clin Toxicol (Phila) 47:101–111.
  • Lim, M. S., Lim, P. L., Gupta, R., Boelsterli, U. A. (2006). Critical role of free cytosolic calcium, but not uncoupling, in mitochondrial permeability transition and cell death induced by diclofenac oxidative metabolites in immortalized human hepatocytes. Toxicol Appl Pharmacol 217:322–331.
  • Lim, P. L., Tan, W., Latchoumycandane, C., Mok, W. C., Khoo, Y. M., Lee, H. S., et al. (2007). Molecular and functional characterization of drug-metabolizing enzymes and transporter expression in the novel spontaneously immortalized human hepatocyte line HC-04. Toxicol In Vitro 21:1390–1401.
  • Limaye, P. B., Apte, U. M., Shankar, K., Bucci, T. J., Warbritton, A., Mehendale, H. M. (2003). Calpain released from dying hepatocytes mediates progression of acute liver injury induced by model hepatotoxicants. Toxicol Appl Pharmacol 191:211–226.
  • Liu, P., Fisher, M. A., Farhood, A., Smith, C. W., Jaeschke, H. (1994). Beneficial effects of extracellular glutathione against endotoxin-induced liver injury during ischemia and reperfusion. Circ Shock 43:64–70.
  • Liu, P., McGuire, G. M., Fisher, M. A., Farhood, A., Smith, C. W., Jaeschke, H. (1995). Activation of Kupffer cells and neutrophils for reactive oxygen formation is responsible for endotoxin-enhanced liver injury after hepatic ischemia. Shock 3:56–62.
  • Liu, P. G., He, S. Q., Zhang, Y. H., Wu, J. (2008). Protective effects of apocynin and allopurinol on ischemia/reperfusion-induced liver injury in mice. World J Gastroenterol 14:2832–2837.
  • Liu, Z. X., Han, D., Gunawan, B., Kaplowitz, N. (2006). Neutrophil depletion protects against murine acetaminophen hepatotoxicity. Hepatology 43:1220–1230.
  • Loguidice, A., Boelsterli, U. A. (2011). Acetaminophen overdose-induced liver injury in mice is mediated by peroxynitrite independently of the cyclophilin D-regulated permeability transition. Hepatology May 29. [Epub ahead of print]
  • Lucena, M. I., García-Martín, E., Andrade, R. J., Martinez, C., Stephens, C., Ruiz, J. D., et al. (2010). Mitochondrial superoxide dismutase and glutathione peroxidase in idiosyncratic drug-induced liver injury. Hepatology 52:303–312.
  • Marnett, L. J. (2002). Oxy radicals, lipid peroxidation, and DNA damage. Toxicology 181–182:219–222.
  • Masubuchi, Y., Nakayama, S., Horie, T. (2002). Role of mitochondrial permeability transition in diclofenac-induced hepatocyte injury in rats. Hepatology 35:544–551.
  • Masubuchi, Y., Suda, C., Horie, T. (2005). Involvement of mitochondrial permeability transition in acetaminophen-induced liver injury in mice. J Hepatol 42:110–116.
  • Mathews, W. R., Guido, D. M., Fisher, M. A., Jaeschke, H. (1994). Lipid peroxidation as molecular mechanism of liver cell injury during reperfusion after ischemia. Free Radic Biol Med 16:763–770.
  • Matthews, A. M., Hinson, J. A., Roberts, D. W., Pumford, N. R. (1997). Comparison of covalent binding of acetaminophen and the regioisomer 3′-hydroxyacetanilide to mouse liver protein. Tox Lett 90:77–82.
  • McGill, M. R., Sharpe, M. R., Williams, C. D., Taha, M., Jaeschke, H. (2011a). Acetaminophen hepatotoxicity in humans: mitochondrial injury and DNA fragmentation in overdose patients [abstract]. Toxicol Sci 120(Suppl. 2):97.
  • McGill, M. R., Yan, H. M., Ramachandran, A., Murray, G. J., Rollins, D. E., Jaeschke, H. (2011b). HepaRG cells: a human model to study mechanisms of acetaminophen hepatotoxicity. Hepatology 53:974–982.
  • Michael, S. L., Mayeux, P. R., Bucci, T. J., Warbritton, A. R., Irwin, L. K., Pumford, N. R., et al. (2001). Acetaminophen-induced hepatotoxicity in mice lacking inducible nitric oxide synthase activity. Nitric Oxide 5:432–441.
  • Michael, S. L., Pumford, N. R., Mayeux, P. R., Niesman, M. R., Hinson, J. A. (1999). Pretreatment of mice with macrophage inactivators decreases acetaminophen hepatotoxicity and the formation of reactive oxygen and nitrogen species. Hepatology 30:186–195.
  • Miramar, M. D., Costantini, P., Ravagnan, L., Saraiva, L. M., Haouzi, D., Brothers, G., et al. (2001). NADH oxidase activity of mitochondrial apoptosis-inducing factor. J Biol Chem 276:16391–16398.
  • Mitchell, J. R., Jollow, D. J., Potter, W. Z., Gillette, J. R., Brodie, B. B. (1973). Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J Pharmacol Exp Ther 187:211–217.
  • Muldrew, K. L., James, L. P., Coop, L., McCullough, S. S., Hendrickson, H. P., Hinson, J. A., et al. (2002). Determination of acetaminophen-protein adducts in mouse liver and serum and human serum after hepatotoxic doses of acetaminophen using high-performance liquid chromatography with electrochemical detection. Drug Metab Dispos 30:446–451.
  • Murphy, M. P. (2009). How mitochondria produce reactive oxygen species. Biochem J 417:1–13.
  • Myers, T. G., Dietz, E. C., Anderson, N. L., Khairallah, E. A., Cohen, S. D., Nelson, S. D. (1995). A comparative study of mouse liver proteins arylated by reactive metabolites of acetaminophen and its nonhepatotoxic regioisomer, 3′-hydroxyacetanilide. Chem Res Toxicol 8:403–413.
  • Nakae, D., Yoshiji, H., Amanuma, T., Kinugasa, T., Farber, J. L., Konishi, Y. (1990). Endocytosis-independent uptake of liposome-encapsulated superoxide dismutase prevents the killing of cultured hepatocytes by tert-butyl hydroperoxide. Arch Biochem Biophys 279:315–319.
  • Nakagawa, H., Maeda, S., Hikiba, Y., Ohmae, T., Shibata, W., Yanai, A., et al. (2008). Deletion of apoptosis signal-regulating kinase 1 attenuates acetaminophen-induced liver injury by inhibiting c-Jun N-terminal kinase activation. Gastroenterology 135:1311–1321.
  • Napirei, M., Basnakian, A. G., Apostolov, E. O., Mannherz, H. G. (2006). Deoxyribonuclease 1 aggravates acetaminophen-induced liver necrosis in male CD-1 mice. Hepatology 43:297–305.
  • Napirei, M., Wulf, S., Eulitz, D., Mannherz, H. G., Kloeckl, T. (2005). Comparative characterization of rat deoxyribonuclease 1 (Dnase1) and murine deoxyribonuclease 1-like 3 (Dnase1l3). Biochem J 389:355–364.
  • Napirei, M., Wulf, S., Mannherz, H. G. (2004). Chromatin breakdown during necrosis by serum Dnase1 and the plasminogen system. Arthritis Rheum 50:1873–1883.
  • Negre-Salvayre, A., Auge, N., Ayala, V., Basaga, H., Boada, J., Brenke, R., et al. (2010). Pathological aspects of lipid peroxidation. Free Radic Res 44:1125–1171.
  • Nieminen, A. L., Byrne, A. M., Herman, B., Lemasters, J. J. (1997). Mitochondrial permeability transition in hepatocytes induced by t-BuOOH: NAD(P)H and reactive oxygen species. Am J Physiol 272:C1286–C1294
  • Nieminen, A. L., Saylor, A. K., Tesfai, S. A., Herman, B., Lemasters, J. J. (1995). Contribution of the mitochondrial permeability transition to lethal injury after exposure of hepatocytes to t-butylhydroperoxide. Biochem J 307:99–106.
  • Norberg, E., Orrenius, S., Zhivotovsky, B. (2010). Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF). Biochem Biophys Res Commun 396:95–100.
  • Ohta, Y., Imai, Y., Matsura, T., Kitagawa, A., Yamada, K. (2006). Preventive effect of neutropenia on carbon tetrachloride-induced hepatotoxicity in rats. J Appl Toxicol 26:178–186.
  • Ong, M. M., Latchoumycandane, C., Boelsterli, U. A. (2007). Troglitazone-induced hepatic necrosis in an animal model of silent genetic mitochondrial abnormalities. Toxicol Sci 97:205–213.
  • Ong, M. M., Wang, A. S., Leow, K. Y., Khoo, Y. M., Boelsterli, U. A. (2006). Nimesulide-induced hepatic mitochondrial injury in heterozygous Sod2 (+/-) mice. Free Radic Biol Med 40:420–429.
  • Park, B. K., Laverty, H., Srivastava, A., Antoine, D. J., Naisbitt, D., Williams, D. P. (2011). Drug bioactivation and protein adduct formation in the pathogenesis of drug-induced toxicity. Chem Biol Interact 192:30–36.
  • Pessayre, D., Mansouri, A., Berson, A., Fromenty, B. (2010). Mitochondrial involvement in drug-induced liver injury. Handb Exp Pharmacol 196:311–365.
  • Prescott, L. F., Park, J., Ballantyne, A., Adriaenssens, P., Proudfoot, A. T. (1977). Treatment of paracetamol (acetaminophen) poisoning with N-acetylcysteine. Lancet 2:432–434.
  • Przybocki, J. M., Reuhl, K. R., Thurman, R. G., Kauffman, F. C. (1992). Involvement of nonparenchymal cells in oxygen-dependent hepatic injury by allyl alcohol. Toxicol Appl Pharmacol 115:57–63.
  • Qiu, Y., Benet, L. Z., Burlingame, A. L. (1998). Identification of the hepatic protein targets of reactive metabolites of acetaminophen in vivo in mice using two-dimensional gel electrophoresis and mass spectrometry. J Biol Chem 273:17940–17953.
  • Qiu, Y., Benet, L. Z., Burlingame, A. L. (2001). Identification of hepatic protein targets of the reactive metabolites of the non-hepatotoxic regioisomer of acetaminophen, 3′-hydroxyacetanilide, in the mouse in vivo using two-dimensional gel electrophoresis and mass spectrometry. Adv Exp Med Biol 500:663–673.
  • Radi, R., Peluffo, G., Alvarez, M. N., Naviliat, M., Cayota, A. (2001). Unraveling peroxynitrite formation in biological systems. Free Radic Biol Med 30:463–488.
  • Ramachandran, A., Lebofsky, M., Baines, C. P., Lemasters, J. J., Jaeschke, H. (2011a). Cyclophilin D deficiency protects against acetaminophen-induced oxidant stress and liver injury. Free Radic Res 45:156–164.
  • Ramachandran, A., Lebofsky, M., Weinman, S. A., Jaeschke, H. (2011b). The impact of partial manganese superoxide dismutase (SOD2)-deficiency on mitochondrial oxidant stress, DNA fragmentation, and liver injury during acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 251:226–233.
  • Ray, S. D., Sorge, C. L., Raucy, J. L., Corcoran, G. B. (1990). Early loss of large genomic DNA in vivo with accumulation of Ca2+ in the nucleus during acetaminophen-induced liver injury. Toxicol Appl Pharmacol 106:346–351.
  • Rehman, H., Ramshesh, V. K., Theruvath, T. P., Kim, I., Currin, R. T., Giri, S., et al. (2008). NIM811 (N-methyl-4-isoleucine cyclosporine), a mitochondrial permeability transition inhibitor, attenuates cholestatic liver injury but not fibrosis in mice. J Pharmacol Exp Ther 327:699–706.
  • Reid, A. B., Kurten, R. C., McCullough, S. S., Brock, R. W., Hinson, J. A. (2005). Mechanisms of acetaminophen-induced hepatotoxicity: role of oxidative stress and mitochondrial permeability transition in freshly isolated mouse hepatocytes. J Pharmacol Exp Ther 312:509–516.
  • Roth, R. A., Dahm, L. J. (1997). Neutrophil- and glutathione-mediated hepatotoxicity of alpha-naphthylisothiocyanate. Drug Metab Rev 29:153–165.
  • Rubin, R., Farber, J. L. (1984). Mechanisms of the killing of cultured hepatocytes by hydrogen peroxide. Arch Biochem Biophys 228:450–459.
  • Rutherford, AE, Hynan, LS, Borges, CB, Forcione, DG, Blackard, JT, Lin, W, et al.; ALF Study Group. (2007). Serum apoptosis markers in acute liver failure: a pilot study. Clin Gastroenterol Hepatol 5:1477–1483.
  • Saito, C., Lemasters, J. J., Jaeschke, H. (2010a). c-Jun N-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 246:8–17.
  • Saito, C., Zwingmann, C., Jaeschke, H. (2010b). Novel mechanisms of protection against acetaminophen hepatotoxicity in mice by glutathione and N-acetylcysteine. Hepatology 51:246–254.
  • Saitoh, M, Nishitoh, H, Fujii, M, Takeda, K, Tobiume, K, Sawada, Y, et al. (1998). Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606.
  • Salhanick, S. D., Orlow, D., Holt, D. E., Pavlides, S., Reenstra, W., Buras, J. A. (2006). Endothelially derived nitric oxide affects the severity of early acetaminophen-induced hepatic injury in mice. Acad Emerg Med 13:479–485.
  • Sauer, J. M., Waalkes, M. P., Hooser, S. B., Kuester, R. K., McQueen, C. A., Sipes, I. G. (1997). Suppression of Kupffer cell function prevents cadmium induced hepatocellular necrosis in the male Sprague-Dawley rat. Toxicology 121:155–164.
  • Schauer, R. J., Gerbes, A. L., Vonier, D., Meissner, H., Michl, P., Leiderer, R., et al. (2004). Glutathione protects the rat liver against reperfusion injury after prolonged warm ischemia. Ann Surg 239:220–231.
  • Schauer, R. J., Gerbes, A. L., Vonier, D., op den Winkel, M., Fraunberger, P., Bilzer, M. (2003). Induction of cellular resistance against Kupffer cell-derived oxidant stress: a novel concept of hepatoprotection by ischemic preconditioning. Hepatology 37:286–295.
  • Sevanian, A., Hochstein, P. (1985). Mechanisms and consequences of lipid peroxidation in biological systems. Annu Rev Nutr 5:365–390.
  • Shen, W., Kamendulis, L. M., Ray, S. D., Corcoran, G. B. (1992). Acetaminophen-induced cytotoxicity in cultured mouse hepatocytes: effects of Ca(2+)-endonuclease, DNA repair, and glutathione depletion inhibitors on DNA fragmentation and cell death. Toxicol Appl Pharmacol 112:32–40.
  • Shinohara, M., Ybanez, M. D., Win, S., Than, T. A., Jain, S., Gaarde, W. A., et al. (2010). Silencing glycogen synthase kinase-3beta inhibits acetaminophen hepatotoxicity and attenuates JNK activation and loss of glutamate cysteine ligase and myeloid cell leukemia sequence 1. J Biol Chem 285:8244–8255.
  • Siu, W. P., Pun, P. B., Latchoumycandane, C., Boelsterli, U. A. (2008). Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: multiple protective roles of cyclosprin A. Toxicol Appl Pharmacol 227:451–461.
  • Smith, C. V. (1987). Evidence for participation of lipid peroxidation and iron in diquat-induced hepatic necrosis in vivo. Mol Pharmacol 32:417–422.
  • Smith, C. V., Hughes, H., Lauterburg, B. H., Mitchell, J. R. (1985). Oxidant stress and hepatic necrosis in rats treated with diquat. J Pharmacol Exp Ther 235:172–177.
  • Smith, C. V., Jaeschke, H. (1989). Effect of acetaminophen on hepatic content and biliary efflux of glutathione disulfide in mice. Chem Biol Interact 70:241–248.
  • Starke, P. E., Farber, J. L. (1985). Ferric iron and superoxide ions are required for the killing of cultured hepatocytes by hydrogen peroxide. Evidence for the participation of hydroxyl radicals formed by an iron-catalyzed Haber-Weiss reaction. J Biol Chem 260:10099–10104.
  • Starke, P. E., Gilbertson, J. D., Farber, J. L. (1985). Lysosomal origin of the ferric iron required for cell killing by hydrogen peroxide. Biochem Biophys Res Commun 133:371–379.
  • Stewart, J. D., Horvath, R., Baruffini, E., Ferrero, I., Bulst, S., Watkins, P. B., et al. (2010). Polymerase γ gene POLG determines the risk of sodium valproate-induced liver toxicity. Hepatology 52:1791–1796.
  • Theruvath, T. P., Zhong, Z., Pediaditakis, P., Ramshesh, V. K., Currin, R. T., Tikunov, A., et al. (2008). Minocycline and N-methyl-4-isoleucine cyclosporine (NIM811) mitigate storage/reperfusion injury after rat liver transplantation through suppression of the mitochondrial permeability transition. Hepatology 47:236–246.
  • Tirmenstein, M. A., Nelson, S. D. (1989). Subcellular binding and effects on calcium homeostasis produced by acetaminophen and a nonhepatotoxic regioisomer, 3′-hydroxyacetanilide, in mouse liver. J Biol Chem 264:9814–9819.
  • Tirmenstein, M. A., Nelson, S. D. (1990). Acetaminophen-induced oxidation of protein thiols. Contribution of impaired thiol-metabolizing enzymes and the breakdown of adenine nucleotides. J Biol Chem 265:3059–3065.
  • Tong, V., Teng, X. W., Chang, T. K., Abbott, F. S. (2005a). Valproic acid I: time course of lipid peroxidation in biomarkers, liver toxicity, and valproic acid metabolite levels in rats. Toxicol Sci 86:427–435.
  • Tong, V., Teng, X. W., Chang, T. K., Abbott, F. S. (2005b). Valproic acid II: effects on oxidative stress, mitochondrial membrane potential, and cytotoxicity in glutathione-depleted rat hepatocytes. Toxicol Sci 86:436–443.
  • Toppo, S., Flohé, L., Ursini, F., Vanin, S., Maiorino, M. (2009). Catalytic mechanisms and specificities of glutathione peroxidases: variations of a basic scheme. Biochim Biophys Acta 1790:1486–1500.
  • Trost, L. C., Lemasters, J. J. (1997). Role of the mitochondrial permeability transition in salicylate toxicity to cultured rat hepatocytes: implications for the pathogenesis of Reye’s syndrome. Toxicol Appl Pharmacol 147:431–441.
  • Uchiyama, A., Kim, J. S., Kon, K., Jaeschke, H., Ikejima, K., Watanabe, S., et al. (2008). Translocation of iron from lysosomes into mitochondria is a key event during oxidative stress-induced hepatocellular injury. Hepatology 48:1644–1654.
  • Uetrecht, J. (2009). Immunoallergic drug-induced liver injury in humans. Semin Liver Dis 29:383–392.
  • Vahsen, N., Candé, C., Brière, J. J., Bénit, P., Joza, N., Larochette, N., et al. (2004). AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689.
  • Volkmann, X., Anstaett, M., Hadem, J., Stiefel, P., Bahr, M. J., Lehner, F., et al. (2008). Caspase activation is associated with spontaneous recovery from acute liver failure. Hepatology 47:1624–1633.
  • Waldhauser, K. M., Turuk, M., Ha, H. R., Thomet, U., Konrad, D., Brecht, K., et al. (2006). Hepatocellular toxicity and pharmacological effect of amiodarone and amiodarone derivatives. J Pharmacol Exp Ther 319:1413–1423.
  • Watanabe, I., Tomita, A., Shimizu, M., Sugawara, M., Yasumo, H., Koishi, R., et al. (2003). A study to survey susceptible genetic factors responsible for troglitazone-associated hepatotoxicity in Japanese patients with type 2 diabetes mellitus. Clin Pharmacol Ther 73:435–455.
  • Watson, W. H., Yang, X., Choi, Y. E., Jones, D. P., Kehrer, J. P. (2004). Thioredoxin and its role in toxicology. Toxicol Sci 78:3–14.
  • Wendel, A., Feuerstein, S. (1981). Drug-induced lipid peroxidation in mice—I. Modulation by monooxygenase activity, glutathione, and selenium status. Biochem Pharmacol 30:2513–2520.
  • Wendel, A., Feuerstein, S., Konz, K. H. (1979). Acute paracetamol intoxication of starved mice leads to lipid peroxidation in vivo. Biochem Pharmacol 28:2051–2055.
  • Wendel, A., Jaeschke, H., Gloger, M. (1982). Drug-induced lipid peroxidation in mice—II. Protection against paracetamol-induced liver necrosis by intravenous liposomally entrapped glutathione. Biochem Pharmacol 31:3601–3605.
  • Werner, C., Wendel, A. (1990). Hepatic uptake and antihepatotoxic properties of vitamin E and liposomes in the mouse. Chem Biol Interact 75:83–92.
  • Widlak, P., Garrard, W. T. (2005). Discovery, regulation, and action of the major apoptotic nucleases DFF40/CAD and endonuclease G. J Cell Biochem 94:1078–1087.
  • Williams, C. D., Bajt, M. L., Farhood, A., Jaeschke, H. (2010a). Acetaminophen-induced hepatic neutrophil accumulation and inflammatory liver injury in CD18-deficient mice. Liver Int 30:1280–1292.
  • Williams, C. D., Farhood, A., Jaeschke, H. (2010b). Role of caspase-1 and interleukin-1beta in acetaminophen-induced hepatic infla-mmation and liver injury. Toxicol Appl Pharmacol 247:169–178.
  • Wu, Y. L., Piao, D. M., Han, X. H., Nan, J. X. (2008). Protective effects of salidroside against acetaminophen-induced toxicity in mice. Biol Pharm Bull 31:1523–1529.
  • Yan, H. M., Ramachandran, A., Bajt, M. L., Lemasters, J. J., Jaeschke, H. (2010). The oxygen tension modulates acetaminophen-induced mitochondrial oxidant stress and cell injury in cultured hepatocytes. Toxicol Sci 117:515–523.
  • Yoon, M. Y., Kim, S. J., Lee, B. H., Chung, J. H., Kim, Y. C. (2006). Effects of dimethylsulfoxide on metabolism and toxicity of acetaminophen in mice. Biol Pharm Bull 29:1618–1624.
  • You, Q., Cheng, L., Reilly, T. P., Wegmann, D., Ju, C. (2006). Role of neutrophils in a mouse model of halothane-induced liver injury. Hepatology 44:1421–1431.
  • Yuan, H. D., Jin, G. Z., Piao, G. C. (2010). Hepatoprotective effects of an active part from Artemisia sacrorum Ledeb. against acetaminophen-induced toxicity in mice. J Ethnopharmacol 127:528–533.
  • Zhang, X., Liu, F., Chen, X., Zhu, X., Uetrecht, J. (2011). Involvement of the immune system in idiosyncratic drug reactions. Drug Metab Pharmacokinet 26, 47–59.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.