2,112
Views
91
CrossRef citations to date
0
Altmetric
Review Article

Metabolic activation in drug-induced liver injury

, &
Pages 18-33 | Received 26 Apr 2011, Accepted 12 Jul 2011, Published online: 30 Jan 2012

References

  • Abboud, G., Kaplowitz, N. (2007). Drug induced liver injury. Drug Saf 30:277–294.
  • Albano, E., Tomasi, A. (1987). Spin trapping of free radical intermediates produced during the metabolism of isoniazid and iproniazid in isolated hepatocytes. Biochem Pharmacol 36:2913–2920.
  • Alvarez-Sanchez, R., Montavon, F., Hartung, T., Pähler, A. (2006). Thiazolidinedione bioactivation: a comparison of the bioactivation potentials of troglitazone, rosiglitazone, and pioglitazone using stable isotope-labeled analogues and liquid chromatography tandem mass spectrometry. Chem Res Toxicol 19:1106–1116.
  • Antunes, A. M. M., Godinho, A. L. A., Martins, I. L., Justino, G. C., Beland, F. A., Marques, M. M. (2010). Amino acid adduct formation by the nevirapine metabolite, 12-hydroxynevirapine—a possible factor in nevirapine toxicity. Chem Res Toxicol 23:888–899.
  • Argoti, D, Liang, L, Conteh, A, Chen, L, Bershas, D, Yu, CP, et al. (2005). Cyanide trapping of iminium ion reactive intermediates followed by detection and structure identification using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Chem Res Toxicol 18:1537–1544.
  • Baughman, T. M., Graham, R. A., Wells-Knecht, K., Silver, I. S., Tyler, L. O., Wells-Knecht, M., et al. (2005). Metabolic activation of pioglitazone identified from rat and human liver microsomes and freshly isolated hepatocytes. Drug Metab Dispos 33:733–738.
  • Bauman, J. N., Kelly, J. M., Tripathy, S., Zhao, S. X., Lam, W. W., Kalgutkar, A. S., et al. (2009). Can in vitro metabolism-dependent covalent binding data distinguish hepatotoxic from nonhepatotoxic drugs? An analysis using human hepatocytes and liver S-9 fraction. Chem Res Toxicol 22:332–340.
  • Benet, L. Z., Spahn-Langguth, H., Iwakawa, S., Volland, C., Mizuma, T., Mayer, S., et al. (1993). Predictability of the covalent binding of acidic drugs in man. Life Sci 53:PL141–PL146.
  • Bolton, J. L., Trush, M. A., Penning, T. M., Dryhurst, G., Monks, T. J. (2000). Role of quinones in toxicology. Chem Res Toxicol 13:135–160.
  • Brown, L. M., Ford-Hutchinson, A. W. (1982). The destruction of cytochrome P-450 by alclofenac: possible involvement of an epoxide metabolite. Biochem Pharmacol 31:195–199.
  • Bu, H. Z., Kang, P., Deese, A. J., Zhao, P., Pool, W. F. (2005). Human in vitro glutathionyl and protein adducts of carbamazepine-10,11-epoxide, a stable and pharmacologically active metabolite of carbamazepine. Drug Metab Dispos 33:1920–1924.
  • Castillo, M., Smith, P. C. (1995a). Disposition and reactivity of ibuprofen and ibufenac acyl glucuronides in vivo in the rhesus monkey and in vitro with human serum albumin. Drug Metab Dispos 23:566–572.
  • Castillo, M., Smith, P. C. (1995b). Disposition and covalent binding of ibuprofen and its acyl glucuronides in the elderly. Clin Pharmacol Ther 57:636–644.
  • Chen, Q, Ngui, JS, Doss, GA, Wang, RW, Cai, X, DiNinno, FP, et al. (2002). Cytochrome P450 3A4-mediated bioactivation of raloxifene: irreversible enzyme inhibition and thiol adduct formation. Chem Res Toxicol 15:907–914.
  • Chen, Q, Doss, GA, Tung, EC, Liu, W, Tang, YS, Braun, MP, et al. (2006). Evidence for the bioactivation of zomepirac and tolmetin by an oxidative pathway: identification of glutathione adducts in vitro in human liver microsomes and in vivo in rats. Drug Metab Dispos 34:145–151.
  • Corbett, M. D., Corbett, B. R., Hannothiaux, M. H., Quintana, S. J. (1992). The covalent binding of acetaminophen to cellular nucleic acids as the result of the respiratory burst of neutrophils derived from the HL-60 cell line. Toxicol Appl Pharmacol 113:80–86.
  • Crewe, H. K., Notley, L. M., Wunsch, R. M., Lennard, M. S., Gillam, E. M. (2002). Metabolism of tamoxifen by recombinant human cytochrome P450 enzymes: formation of the 4-hydroxy, 4′-hydroxy, and N-desmethyl metabolites and isomerization of trans-4-hydroxytamoxifen. Drug Metab Dispos 30:869–874.
  • Dahlin, D. C., Miwa, G. T., Lu, A. Y., Nelson, S. D. (1984). N-acetyl-p-benzoquinone imine: a cytochrome P-450-mediated oxidation product of acetaminophen. Proc Natl Acad Sci U S A 81:1327–1331.
  • Dalvie, D. K., Kalgutkar, A. S., Khojasteh-Bakht, S. C., Obach, R. S., O’Donnell, J. P. (2002). Biotransformation reactions of five-membered aromatic heterocyclic rings. Chem Res Toxicol 15:269–299.
  • Dansette, P. M., Bertho, G., Mansuy, D. (2005). First evidence that cytochrome P450 may catalyze both S-oxidation and epoxidation of thiophene derivatives. Biochem Biophys Res Commun 338:450–455.
  • Dearden, J.C. (2003). In silico prediction of drug toxicity. J Comput Aided Mol Des 17:119–127.
  • Dieckhaus, C. M., Thompson, C. D., Roller, S. G., MacDonald, T. L. (2002). Mechanisms of idiosyncratic drug reactions: the case of felbamate. Chem Biol Interact 142:99–117.
  • Ding, A., Ojingwa, J. C., McDonagh, A. F., Burlingame, A. L., Benet, L. Z. (1993). Evidence for covalent binding of acyl glucuronides to serum albumin via an imine mechanism as revealed by tandem mass spectrometry. Proc Natl Acad Sci U S A 90:3797–3801.
  • Durand, A., Thenot, J. P., Bianchetti, G., Morselli, P. L. (1992). Comparative pharmacokinetic profile of two imidazopyridine drugs: zolpidem and alpidem. Drug Metab Rev 24:239–266.
  • Evans, D. C., Watt, A. P., Nicoll-Griffith, D. A., Baillie, T. A. (2004). Drug-protein adducts: an industry perspective on minimizing the potential for drug bioactivation in drug discovery and development. Chem Res Toxicol 17:3–16.
  • Fan, P. W., Zhang, F., Bolton, J. L. (2000). 4-Hydroxylated metabolites of the antiestrogens tamoxifen and toremifene are metabolized to unusually stable quinone methides. Chem Res Toxicol 13:45–52.
  • Fan, P. W., Bolton, J. L. (2001). Bioactivation of tamoxifen to metabolite E quinone methide: reaction with glutathione and DNA. Drug Metab Dispos 29:891–896.
  • Fourches, D, Barnes, J.C, Day, N.C, Bradley, P, Reed, J.Z, Tropsha, A (2010). Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species. Chem Res Toxicol 23:171–183.
  • Gan, J., Ruan, Q., He, B., Zhu, M., Shyu, W. C., Humphreys, W. G. (2009). In vitro screening of 50 highly prescribed drugs for thiol adduct formation—comparison of potential for drug-induced toxicity and extent of adduct formation. Chem Res Toxicol 22:690–698.
  • Gardner, I., Leeder, J. S., Chin, T., Zahid, N., Uetrecht, J. P. (1998). A comparison of the covalent binding of clozapine and olanzapine to human neutrophils in vitro and in vivo. Mol Pharmacol 53:999–1008.
  • Gorrod, J. W., Whittlesea, C. M., Lam, S. P. (1991). Trapping of reactive intermediates by incorporation of 14C-sodium cyanide during microsomal oxidation. Adv Exp Med Biol 283:657–664.
  • Greene, N, Fisk, L, Naven, R.T, Note, R.R, Patel, M.L, Pelletier, D.J (2010). Developing structure-activity relationships for the prediction of hepatotoxicity. Chem Res Toxicol 23:1215–1222.
  • Grillo, M.P, Benet, L.Z (2002)Studies on the reactivity of clofibryl-S-acyl-CoA thioester with glutathione in vitro. Drug Metab Dispos 30:55–62.
  • Grillo, M. P., Hua, F. (2003). Identification of zomepirac-S-acyl-glutathione in vitro in incubations with rat hepatocytes and in vivo in rat bile. Drug Metab Dispos 31:1429–1436.
  • Grillo, M. P., Hua, F., Knutson, C. G., Ware, J. A., Li, C. (2003a). Mechanistic studies on the bioactivation of diclofenac: identification of diclofenac-S-acyl-glutathione in vitro in incubations with rat and human hepatocytes. Chem Res Toxicol 16:1410–1417.
  • Grillo, M. P., Knutson, C. G., Sanders, P. E., Waldon, D. J., Hua, F., Ware, J. A. (2003b). Studies on the chemical reactivity of diclofenac acyl glucuronide with glutathione: identification of diclofenac-S-acyl-glutathione in rat bile. Drug Metab Dispos 31:1327–1336.
  • He, K., Talaat, R. E., Pool, W. F., Reily, M. D., Reed, J. E., Bridges, A. J., et al. (2004). Metabolic activation of troglitazone: identification of a reactive metabolite and mechanisms involved. Drug Metab Dispos 32:639–646.
  • Hetherington, S, Hughes, AR, Mosteller, M, Shortino, D, Baker, KL, Spreen, W, et al. (2002). Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 359:1121–1122.
  • Israili, Z. H., Cucinell, S. A., Vaught, J., Davis, E., Lesser, J. M., Dayton, P. G. (1973). Studies of the metabolism of dapsone in man and experimental animals: formation of N-hydroxy metabolites. J Pharmacol Exp Ther 187:138–151.
  • Iverson, S. L., Uetrecht, J. P. (2001). Identification of a reactive metabolite of terbinafine: insights into terbinafine-induced hepatotoxicity. Chem Res Toxicol 14:175–181.
  • Johnson, C. H., Wilson, I. D., Harding, J. R., Stachulski, A. V., Iddon, L., Nicholson, J. K., et al. (2007). NMR spectroscopic studies on the in vitro acyl glucuronide migration kinetics of ibuprofen ((+/-)-(R,S)-2-(4-isobutylphenyl) propanoic acid), its metabolites, and analogues. Anal Chem 79:8720–8727.
  • Ju, C., Uetrecht, J. P. (1998). Oxidation of a metabolite of indomethacin (desmethyldeschloro-benzoylindomethacin) to reactive intermediates by activated neutrophils, hypochlorous acid, and the myeloperoxidase system. Drug Metab Dispos 26:676–680.
  • Ju, C., Uetrecht, J. P. (1999). Detection of 2-hydroxyiminostilbene in the urine of patients taking carbamazepine and its oxidation to a reactive iminoquinone intermediate. J Pharmacol Exp Ther 288:51–56.
  • Kalgutkar, A. S., Soglia, J. R. (2005). Minimising the potential for metabolic activation in drug discovery. Expert Opin Drug Metab Toxicol 1:91–142.
  • Kalgutkar, A. S., Vaz, A. D., Lame, M. E., Henne, K. R., Soglia, J., Zhao, S. X., et al. (2005a). Bioactivation of the nontricyclic antidepressant nefazodone to a reactive quinone-imine species in human liver microsomes and recombinant cytochrome P450 3A4. Drug Metab Dispos 33:243–253.
  • Kalgutkar, AS, Gardner, I, Obach, RS, Shaffer, CL, Callegari, E, Henne, KR, et al. (2005b). A comprehensive listing of bioactivation pathways of organic functional groups. Curr Drug Metab 6:161–225.
  • Kalgutkar, A. S., Dalvie, D. K., Castagnoli, N., Jr., Taylor, T. J. (2001). Interactions of nitrogen-containing xenobiotics with monoamine oxidase (MAO) isozymes A and B: SAR studies on MAO substrates and inhibitors. Chem Res Toxicol 14:1139–1162.
  • Kang, P., Dalvie, D., Smith, E., Renner, M. (2009). Bioactivation of lumiracoxib by peroxidases and human liver microsomes: identification of multiple quinone imine intermediates and GSH adducts. Chem Res Toxicol 22:106–117.
  • Kassahun, K., Pearson, P. G., Tang, W., McIntosh, I., Leung, K., Elmore, C., et al. (2001). Studies on the metabolism of troglitazone to reactive intermediates in vitro and in vivo. Evidence for novel biotransformation pathways involving quinone methide formation and thiazolidinedione ring scission. Chem Res Toxicol 14:62–70.
  • Kassahun, K., Skordos, K., McIntosh, I., Slaughter, D., Doss, G. A., Baillie, T. A., et al. (2005). Zafirlukast metabolism by cytochrome P450 3A4 produces an electrophilic alpha,beta-unsaturated iminium species that results in the selective mechanism-based inactivation of the enzyme. Chem Res Toxicol 18:1427–1437.
  • Kemp, D. C., Fan, P. W., Stevens, J. C. (2002). Characterization of raloxifene glucuronidation in vitro: contribution of intestinal metabolism to presystemic clearance. Drug Metab Dispos 30:694–700.
  • Kennedy, E. L., Tchao, R., Harvison, P. J. (2003). Nephrotoxic and hepatotoxic potential of imidazolidinedione-, oxazolidinedione-, and thiazolidinedione-containing analogues of N-(3,5-dichlorophenyl)succinimide (NDPS) in Fischer 344 rats. Toxicology 186:79–91.
  • Knights, K. M., Sykes, M. J., Miners, J. O. (2007). Amino acid conjugation: contribution to the metabolism and toxicity of xenobiotic carboxylic acids. Expert Opin Drug Metab Toxicol 3:159–168.
  • Koenigs, L. L., Peter, R. M., Hunter, A. P., Haining, R. L., Rettie, A. E., Friedberg, T., et al. (1999). Electrospray ionization mass spectrometric analysis of intact cytochrome P450: identification of tienilic acid adducts to P450 2C9. Biochemistry 38:2312–2319.
  • Lai, W. G., Zahid, N., Uetrecht, J. P. (1999). Metabolism of trimethoprim to a reactive iminoquinone methide by activated human neutrophils and hepatic microsomes. J Pharmacol Exp Ther 291:292–299.
  • Li, F., Chordia, M. D., Huang, T., MacDonald, T. L. (2009). In vitro nimesulide studies toward understanding idiosyncratic hepatotoxicity: diiminoquinone formation and conjugation. Chem Res Toxicol 22:72–80.
  • Lu, W., Uetrecht, J. P. (2008). Peroxidase-mediated bioactivation of hydroxylated metabolites of carbamazepine and phenytoin. Drug Metab Dispos 36:1624–1636.
  • Maggs, J. L., Pirmohamed, M., Kitteringham, N. R., Park, B. K. (1997). Characterization of the metabolites of carbamazepine in patient urine by liquid chromatography/mass spectrometry. Drug Metab Dispos 25:275–280.
  • Maggs, J. L., Tingle, M. D., Kitteringham, N. R., Park, B. K. (1988). Drug-protein conjugates—XIV. Mechanisms of formation of protein-arylating intermediates from amodiaquine, a myelotoxin and hepatotoxin in man. Biochem Pharmacol 37:303–311.
  • Mallal, S, Phillips, E, Carosi, G, Molina, JM, Workman, C, Tomazic, J, et al. (2008). HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 358:568–579.
  • Mercier, M., Poncelet, F., de Meester, C., McGregor, D. B., Willins, M. J., Léonard, A., et al. (1983). In vitro and in vivo studies on the potential mutagenicity of alclofenac, dihydroxyalclofenac, and alclofenac epoxide. J Appl Toxicol 3:230–236.
  • Miyamoto, G., Zahid, N., Uetrecht, J. P. (1997). Oxidation of diclofenac to reactive intermediates by neutrophils, myeloperoxidase, and hypochlorous acid. Chem Res Toxicol 10:414–419.
  • Mizutani, T., Yoshida, K., Kawazoe, S. (1994). Formation of toxic metabolites from thiabendazole and other thiazoles in mice. Identification of thioamides as ring cleavage products. Drug Metab Dispos 22:750–755.
  • Mizutani, T., Suzuki, K., Murakami, M., Yoshida, K., Nakanishi, K. (1996). Nephrotoxicity of thioformamide, a proximate toxicant of nephrotoxic thiazoles, in mice depleted of glutathione. Res Commun Mol Pathol Pharmacol 94:89–101.
  • Monks, T. J., Jones, D. C. (2002). The metabolism and toxicity of quinones, quinonimines, quinone methides, and quinone-thioethers. Curr Drug Metab 3:425–438.
  • Nakayama, S., Atsumi, R., Takakusa, H., Kobayashi, Y., Kurihara, A., Nagai, Y., et al. (2009). A zone classification system for risk assessment of idiosyncratic drug toxicity using daily dose and covalent binding. Drug Metab Dispos 37:1970–1977.
  • Nocerini, M. R., Yost, G. S., Carlson, J. R., Liberato, D. J., Breeze, R. G. (1985). Structure of the glutathione adduct of activated 3-methylindole indicates that an imine methide is the electrophilic intermediate. Drug Metab Dispos 13(6):690–694.
  • Njoko, D., Laster, M. J., Gong, D. H., Eger, E. I., II, Reed, G. F., Martin, J. L. (1997). Biotransformation of halothane, enflurane, isoflurane, and desflurane to trifluoroacetylated liver proteins: association between protein acylation and hepatic injury. Anesth Analg 84:173–178.
  • Obach, R. S., Kalgutkar, A. S., Ryder, T. F., Walker, G. S. (2008a). In vitro metabolism and covalent binding of enol-carboxamide derivatives and anti-inflammatory agents sudoxicam and meloxicam: insights into the hepatotoxicity of sudoxicam. Chem Res Toxicol 21:1890–1899.
  • Obach, R. S., Kalgutkar, A. S., Soglia, J. R., Zhao, S. X. (2008b). Can in vitro metabolism-dependent covalent binding data in liver microsomes distinguish hepatotoxic from nonhepatotoxic drugs? An analysis of 18 drugs with consideration of intrinsic clearance and daily dose. Chem Res Toxicol 21:1814–1822.
  • O’Donnell, J. P., Dalvie, D. K., Kalgutkar, A. S., Obach, R. S. (2003). Mechanism-based inactivation of human recombinant P450 2C9 by the nonsteroidal anti-inflammatory drug suprofen. Drug Metab Dispos 31:1369–1377.
  • Olsen, J., Bjørnsdottir, I., Tjørnelund, J., Honoré Hansen S, (2002). Chemical reactivity of the naproxen acyl glucuronide and the naproxen coenzyme A thioester towards bionucleophiles. J Pharm Biomed Anal 29:7–15.
  • Olsen, J., Bjørnsdottir, I., Honorè Hansen S, (2003). Identification of coenzyme A-related tolmetin metabolites in rats: relationship with reactive drug metabolites. Xenobiotica 33:561–570.
  • Olsen, R., Molander, P., Øvrebø, S., Ellingsen, D. G., Thorud, S., Thomassen, Y., et al. (2005a). Reaction of glyoxal with 2′-deoxyguanosine, 2′-deoxyadenosine, 2′-deoxycytidine, cytidine, thymidine, and calf thymus DNA: identification of DNA adducts. Chem Res Toxicol 18:730–739.
  • Olsen, J., Li, C., Bjørnsdottir, I., Sidenius, U., Hansen, S. H., Benet, L. Z. (2005b). In vitro and in vivo studies on acyl-coenzyme A-dependent bioactivation of zomepirac in rats. Chem Res Toxicol 18:1729–1736.
  • Olsen, J., Li, C., Skonberg, C., Bjørnsdottir, I., Sidenius, U., Benet, L. Z., et al. (2007). Studies on the metabolism of tolmetin to the chemically reactive acyl-coenzyme A thioester intermediate in rats. Drug Metab Dispos 35:758–764.
  • Osbild, S., Bour, J., Maunit, B., Guillaume, C., Asensio, C., Muller, J. F., et al. (2008). Interaction of the electrophilic ketoprofenyl-glucuronide and ketoprofenyl-coenzyme A conjugates with cytosolic glutathione S-transferases. Drug Metab Dispos 36(2) 260–267.
  • Parker, R. J., Hartman, N. R., Roecklein, B. A., Mortko, H., Kupferberg, H. J., Stables, J., et al. (2005). Stability and comparative metabolism of selected felbamate metabolites and postulated fluorofelbamate metabolites by postmitochondrial suspensions. Chem Res Toxicol 18:1842–1848.
  • Pearce, R. E., Lu, W., Wang, Y., Uetrecht, J. P., Correia, M. A., Leeder, J. S. (2008). Pathways of carbamazepine bioactivation in vitro. III. The role of human cytochrome P450 enzymes in the formation of 2,3-dihydroxycarbamazepine. Drug Metab Dispos 36:1637–1649.
  • Potter, D. W., Hinson, J. A. (1987). The 1- and 2-electron oxidation of acetaminophen catalyzed by prostaglandin H synthase. J Biol Chem 262:974–980.
  • Rieder, M. J., Uetrecht, J., Shear, N. H., Spielberg, S. P. (1988). Synthesis and in vitro toxicity of hydroxylamine metabolites of sulfonamides. J Pharmacol Exp Ther 244:724–728.
  • Regal, K. A., Laws, G. M., Yuan, C., Yost, G. S., Skiles, G. L. (2001). Detection and characterization of DNA adducts of 3-methylindole. Chem Res Toxicol 14:1014–1024.
  • Regan, S. L., Magg, J. L., Hammond, T. G., Lambert, C., Williams, D. P., Park, B. K. (2010). Acyl glucuronides: the good, the bad, and the ugly. Biopharm Drug Dispos 31:367–395.
  • Sahali-Sahly, Y., Balani, S. K., Lin, J. H., Baillie, T. A. (1996). In vitro studies on the metabolic activation of the furanopyridine L-754,394, a highly potent and selective mechanism-based inhibitor of cytochrome P450 3A4. Chem Res Toxicol 9:1007–1012.
  • Sallustio, B. C., Nunthasomboon, S., Drogemuller, C. J., Knights, K. M. (2000). In vitro covalent binding of nafenopin-CoA to human liver proteins. Toxicol Appl Pharmacol 163:176–182.
  • Sidenius, U., Skonberg, C., Olsen, J., Hansen, S. H. (2004). In vitro reactivity of carboxylic acid-CoA thioesters with glutathione. Chem Res Toxicol 17:75–81.
  • Slack, J. A., Ford-Hutchinson, A. W., Richold, M., Choi, B. C. (1980). Determination of a urinary epoxide metabolite of alclofenac in man. Drug Metab Dispos 8:84–86.
  • Slack, J. A., Ford-Hutchinson, A. W., Richold, M., Choi, B. C. (1981). Some biochemical and pharmacological properties of an epoxide metabolite of alclofenac. Chem Biol Interact 34:95–107.
  • Skonberg, C., Olsen, J., Madsen, K. G., Hansen, S. H., Grillo, M. P. (2008). Metabolic activation of carboxylic acids. Expert Opin Drug Metab Toxicol 4:425–438.
  • Spielberg, S. P., Gordon, G. B., Blake, D. A., Mellits, E. D., Bross, D. S. (1981). Anticonvulsant toxicity in vitro: possible role of arene oxides. J Pharmacol Exp Ther 217:386–389.
  • Tang, W., Stearns, R. A., Bandiera, S. M., Zhang, Y., Raab, C., Braun, M. P., et al. (1999). Studies on cytochrome P-450-mediated bioactivation of diclofenac in rats and in human hepatocytes: identification of glutathione conjugated metabolites. Drug Metab Dispos 27:365–372.
  • Thompson, D. C., Thompson, J. A., Sugumaran, M., Moldéus, P. (1993). Biological and toxicological consequences of quinone methide formation. Chem Biol Interact 86:129–162.
  • Timbrell, J. A., Mitchell, J. R., Snodgrass, W. R., Nelson, S. D. (1980). Isoniazid hepatoxicity: the relationship between covalent binding and metabolism in vivo. J Pharmacol Exp Ther 213:364–369.
  • Valadon, P., Dansette, P. M., Girault, J. P., Amar, C., Mansuy, D. (1996). Thiophene sulfoxides as reactive metabolites: formation upon microsomal oxidation of a 3-aroylthiophene and fate in the presence of nucleophiles in vitro and in vivo. Chem Res Toxicol 9:1403–1413.
  • Uetrecht, J. P. (1985). Reactivity and possible significance of hydroxylamine and nitroso metabolites of procainamide. J Pharmacol Exp Ther 232:420–425.
  • Uetrecht, J. P. (2000). Is it possible to more accurately predict which drug candidates will cause idiosyncratic drug reactions? Curr Drug Metab 1:133–141.
  • Walker, G. S., Atherton, J., Bauman, J., Kohl, C., Lam, W., Reily, M., et al. (2007). Determination of degradation pathways and kinetics of acyl glucuronides by NMR spectroscopy. Chem Res Toxicol 20:876–886.
  • Wang, J., Davis, M., Li, F., Azam, F., Scatina, J., Talaat, R. (2004). A novel approach for predicting acyl glucuronide reactivity via Schiff base formation: development of rapidly formed peptide adducts for LC/MS/MS measurements. Chem Res Toxicol 17:1206–1216.
  • Wen, B., Coe, K. J., Rademacher, P., Fitch, W. L., Monshouwer, M., Nelson, S. D. (2008). Comparison of in vitro bioactivation of flutamide and its cyano analogue: evidence for reductive activation by human NADPH:cytochrome P450 reductase. Chem Res Toxicol 21:2393–2406.
  • Yan, Z., Easterwood, L. M., Maher, N., Torres, R., Huebert, N., Yost, G. S. (2007). Metabolism and bioactivation of 3-methylindole by human liver microsomes. Chem Res Toxicol 20:140–148.
  • Zhao, Z., Baldo, B. A., Rimmer, J. (2002). beta-Lactam allergenic determinants: fine structural recognition of a cross-reacting determinant on benzylpenicillin and cephalothin. Clin Exp Allergy 32:1644–1650.
  • Zhao, S. X., Dalvie, D. K., Kelly, J. M., Soglia, J. R., Frederick, K. S., Smith, E. B., et al. (2007). NADPH-dependent covalent binding of [3H]paroxetine to human liver microsomes and S-9 fractions: identification of an electrophilic quinone metabolite of paroxetine. Chem Res Toxicol 20:1649–1657.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.