1,532
Views
73
CrossRef citations to date
0
Altmetric
Review

Trial watch

DNA vaccines for cancer therapy

, , , , , , , & show all
Article: e23803 | Received 27 Jan 2013, Accepted 28 Jan 2013, Published online: 01 Apr 2013

References

  • Breman JG, Arita I. The confirmation and maintenance of smallpox eradication. N Engl J Med 1980; 303:1263 - 73; http://dx.doi.org/10.1056/NEJM198011273032204; PMID: 6252467
  • Riedel S. Edward Jenner and the history of smallpox and vaccination. Proc (Bayl Univ Med Cent) 2005; 18:21 - 5; PMID: 16200144
  • Smith KA. Edward jenner and the small pox vaccine. Front Immunol 2011; 2:21; http://dx.doi.org/10.3389/fimmu.2011.00021; PMID: 22566811
  • Waldmann TA. Immunotherapy: past, present and future. Nat Med 2003; 9:269 - 77; http://dx.doi.org/10.1038/nm0303-269; PMID: 12612576
  • Smith KA. Louis pasteur, the father of immunology?. Front Immunol 2012; 3:68; http://dx.doi.org/10.3389/fimmu.2012.00068; PMID: 22566949
  • Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial Watch: Experimental Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1:699 - 716; http://dx.doi.org/10.4161/onci.20696; PMID: 22934262
  • Vacchelli E, Galluzzi L, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. Oncoimmunology 2012; 1:894 - 907; http://dx.doi.org/10.4161/onci.20931; PMID: 23162757
  • Oblak A, Jerala R. Toll-like receptor 4 activation in cancer progression and therapy. Clin Dev Immunol 2011; 2011:609579; http://dx.doi.org/10.1155/2011/609579; PMID: 22110526
  • Ito T, Ando H, Suzuki T, Ogura T, Hotta K, Imamura Y, et al. Identification of a primary target of thalidomide teratogenicity. Science 2010; 327:1345 - 50; http://dx.doi.org/10.1126/science.1177319; PMID: 20223979
  • Finn OJ. Tumor immunology at the service of cancer immunotherapy. Curr Opin Immunol 2004; 16:127 - 9; http://dx.doi.org/10.1016/j.coi.2004.02.006; PMID: 15023402
  • Burgio GR. Commentary on the biological self: Toward a “Biological Ego”. From Garrod’s “chemical individuality” to Burnet’s “self”. Thymus 1990; 16:99 - 117; PMID: 2256127
  • Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994; 12:991 - 1045; http://dx.doi.org/10.1146/annurev.iy.12.040194.005015; PMID: 8011301
  • Galluzzi L, Senovilla L, Zitvogel L, Kroemer G. The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 2012; 11:215 - 33; http://dx.doi.org/10.1038/nrd3626; PMID: 22301798
  • Fridman WH, Pagès F, Sautès-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer 2012; 12:298 - 306; http://dx.doi.org/10.1038/nrc3245; PMID: 22419253
  • Galluzzi L, Kepp O, Kroemer G. Mitochondria: master regulators of danger signalling. Nat Rev Mol Cell Biol 2012; 13:780 - 8; http://dx.doi.org/10.1038/nrm3479; PMID: 23175281
  • van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991; 254:1643 - 7; http://dx.doi.org/10.1126/science.1840703; PMID: 1840703
  • Parmiani G. Tumor immunity as autoimmunity: tumor antigens include normal self proteins which stimulate anergic peripheral T cells. Immunol Today 1993; 14:536 - 8; http://dx.doi.org/10.1016/0167-5699(93)90183-L; PMID: 8274196
  • Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol 2007; 25:267 - 96; http://dx.doi.org/10.1146/annurev.immunol.25.022106.141609; PMID: 17134371
  • Dougan M, Dranoff G. Immune therapy for cancer. Annu Rev Immunol 2009; 27:83 - 117; http://dx.doi.org/10.1146/annurev.immunol.021908.132544; PMID: 19007331
  • Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012; 12:265 - 77; http://dx.doi.org/10.1038/nrc3258; PMID: 22437871
  • Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nat Rev Cancer 2012; 12:237 - 51; http://dx.doi.org/10.1038/nrc3237; PMID: 22437869
  • Vacchelli E, Martins I, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial watch: Peptide vaccines in cancer therapy. Oncoimmunology 2012; 1:1557 - 76; http://dx.doi.org/10.4161/onci.22428; PMID: 23264902
  • Galluzzi L, Senovilla L, Vacchelli E, Eggermont A, Fridman WH, Galon J, et al. Trial watch: Dendritic cell-based interventions for cancer therapy. Oncoimmunology 2012; 1:1111 - 34; http://dx.doi.org/10.4161/onci.21494; PMID: 23170259
  • Agosti JM, Goldie SJ. Introducing HPV vaccine in developing countries--key challenges and issues. N Engl J Med 2007; 356:1908 - 10; http://dx.doi.org/10.1056/NEJMp078053; PMID: 17494923
  • Lehtinen M, Paavonen J. Sound efficacy of prophylactic HPV vaccination: Basics and implications. Oncoimmunology 2012; 1:995 - 6; http://dx.doi.org/10.4161/onci.20011; PMID: 23162784
  • Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al, IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 2010; 363:411 - 22; http://dx.doi.org/10.1056/NEJMoa1001294; PMID: 20818862
  • Yi Y, Noh MJ, Lee KH. Current advances in retroviral gene therapy. Curr Gene Ther 2011; 11:218 - 28; http://dx.doi.org/10.2174/156652311795684740; PMID: 21453283
  • Wasil T, Buchbinder A. Gene therapy in human cancer: report of human clinical trials. Cancer Invest 2000; 18:740 - 6; http://dx.doi.org/10.3109/07357900009012206; PMID: 11107444
  • Sobol RE, Scanlon KJ. Cancer gene therapy clinical trials. Cancer Gene Ther 1995; 2:5 - 6; PMID: 7621255
  • Human gene therapy clinical trials in Europe. Hum Gene Ther 1996; 7:1258 - 9; http://dx.doi.org/10.1089/hum.1996.7.10-1258; PMID: 8793550
  • Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, Gross F, Yvon E, Nusbaum P, et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 2000; 288:669 - 72; http://dx.doi.org/10.1126/science.288.5466.669; PMID: 10784449
  • Bordignon C, Mavilio F, Ferrari G, Servida P, Ugazio AG, Notarangelo LD, et al. Transfer of the ADA gene into bone marrow cells and peripheral blood lymphocytes for the treatment of patients affected by ADA-deficient SCID. Hum Gene Ther 1993; 4:513 - 20; http://dx.doi.org/10.1089/hum.1993.4.4-513; PMID: 8399494
  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003; 302:415 - 9; http://dx.doi.org/10.1126/science.1088547; PMID: 14564000
  • Quetglas JI, John LB, Kershaw MH, Alvarez-Vallina L, Melero I, Darcy PK, et al. Virotherapy, gene transfer and immunostimulatory monoclonal antibodies. Oncoimmunology 2012; 1:1344 - 54; http://dx.doi.org/10.4161/onci.21679; PMID: 23243597
  • Roth JA, Nguyen D, Lawrence DD, Kemp BL, Carrasco CH, Ferson DZ, et al. Retrovirus-mediated wild-type p53 gene transfer to tumors of patients with lung cancer. Nat Med 1996; 2:985 - 91; http://dx.doi.org/10.1038/nm0996-985; PMID: 8782455
  • Yoo GH, Hung MC, Lopez-Berestein G, LaFollette S, Ensley JF, Carey M, et al. Phase I trial of intratumoral liposome E1A gene therapy in patients with recurrent breast and head and neck cancer. Clin Cancer Res 2001; 7:1237 - 45; PMID: 11350889
  • Hui KM, Ang PT, Huang L, Tay SK. Phase I study of immunotherapy of cutaneous metastases of human carcinoma using allogeneic and xenogeneic MHC DNA-liposome complexes. Gene Ther 1997; 4:783 - 90; http://dx.doi.org/10.1038/sj.gt.3300455; PMID: 9338006
  • Rubin J, Galanis E, Pitot HC, Richardson RL, Burch PA, Charboneau JW, et al. Phase I study of immunotherapy of hepatic metastases of colorectal carcinoma by direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7. Gene Ther 1997; 4:419 - 25; http://dx.doi.org/10.1038/sj.gt.3300396; PMID: 9274718
  • Stopeck AT, Hersh EM, Akporiaye ET, Harris DT, Grogan T, Unger E, et al. Phase I study of direct gene transfer of an allogeneic histocompatibility antigen, HLA-B7, in patients with metastatic melanoma. J Clin Oncol 1997; 15:341 - 9; PMID: 8996161
  • Xing X, Zhang S, Chang JY, Tucker SD, Chen H, Huang L, et al. Safety study and characterization of E1A-liposome complex gene-delivery protocol in an ovarian cancer model. Gene Ther 1998; 5:1538 - 44; http://dx.doi.org/10.1038/sj.gt.3300771; PMID: 9930307
  • Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G. Autophagy regulation by p53. Curr Opin Cell Biol 2010; 22:181 - 5; http://dx.doi.org/10.1016/j.ceb.2009.12.001; PMID: 20044243
  • Galluzzi L, Morselli E, Kepp O, Tajeddine N, Kroemer G. Targeting p53 to mitochondria for cancer therapy. Cell Cycle 2008; 7:1949 - 55; http://dx.doi.org/10.4161/cc.7.13.6222; PMID: 18642442
  • INGN. INGN 201: Ad-p53, Ad5CMV-p53, adenoviral p53, p53 gene therapy--introgen, RPR/INGN 201. Drugs R D 2007; 8:176 - 87; http://dx.doi.org/10.2165/00126839-200708030-00005; PMID: 17472413
  • Chawla SP, Chua VS, Fernandez L, Quon D, Saralou A, Blackwelder WC, et al. Phase I/II and phase II studies of targeted gene delivery in vivo: intravenous Rexin-G for chemotherapy-resistant sarcoma and osteosarcoma. Mol Ther 2009; 17:1651 - 7; http://dx.doi.org/10.1038/mt.2009.126; PMID: 19532136
  • Madhusudan S, Tamir A, Bates N, Flanagan E, Gore ME, Barton DP, et al. A multicenter Phase I gene therapy clinical trial involving intraperitoneal administration of E1A-lipid complex in patients with recurrent epithelial ovarian cancer overexpressing HER-2/neu oncogene. Clin Cancer Res 2004; 10:2986 - 96; http://dx.doi.org/10.1158/1078-0432.CCR-03-0291; PMID: 15131034
  • Xing X, Liu V, Xia W, Stephens LC, Huang L, Lopez-Berestein G, et al. Safety studies of the intraperitoneal injection of E1A--liposome complex in mice. Gene Ther 1997; 4:238 - 43; http://dx.doi.org/10.1038/sj.gt.3300376; PMID: 9135737
  • Smaldone MC, Davies BJ. BC-819, a plasmid comprising the H19 gene regulatory sequences and diphtheria toxin A, for the potential targeted therapy of cancers. Curr Opin Mol Ther 2010; 12:607 - 16; PMID: 20886393
  • Hanna N, Ohana P, Konikoff FM, Leichtmann G, Hubert A, Appelbaum L, et al. Phase 1/2a, dose-escalation, safety, pharmacokinetic and preliminary efficacy study of intratumoral administration of BC-819 in patients with unresectable pancreatic cancer. Cancer Gene Ther 2012; 19:374 - 81; http://dx.doi.org/10.1038/cgt.2012.10; PMID: 22498722
  • Trask TW, Trask RP, Aguilar-Cordova E, Shine HD, Wyde PR, Goodman JC, et al. Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir administration in patients with current malignant brain tumors. Mol Ther 2000; 1:195 - 203; http://dx.doi.org/10.1006/mthe.2000.0030; PMID: 10933931
  • Singh S, Cunningham C, Buchanan A, Jolly DJ, Nemunaitis J. Toxicity assessment of intratumoral injection of the herpes simplex type I thymidine kinase gene delivered by retrovirus in patients with refractory cancer. Mol Ther 2001; 4:157 - 60; http://dx.doi.org/10.1006/mthe.2001.0430; PMID: 11482988
  • Germano IM, Fable J, Gultekin SH, Silvers A. Adenovirus/herpes simplex-thymidine kinase/ganciclovir complex: preliminary results of a phase I trial in patients with recurrent malignant gliomas. J Neurooncol 2003; 65:279 - 89; http://dx.doi.org/10.1023/B:NEON.0000003657.95085.56; PMID: 14682378
  • Voges J, Reszka R, Gossmann A, Dittmar C, Richter R, Garlip G, et al. Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma. Ann Neurol 2003; 54:479 - 87; http://dx.doi.org/10.1002/ana.10688; PMID: 14520660
  • Kubo H, Gardner TA, Wada Y, Koeneman KS, Gotoh A, Yang L, et al. Phase I dose escalation clinical trial of adenovirus vector carrying osteocalcin promoter-driven herpes simplex virus thymidine kinase in localized and metastatic hormone-refractory prostate cancer. Hum Gene Ther 2003; 14:227 - 41; http://dx.doi.org/10.1089/10430340360535788; PMID: 12639303
  • Nemunaitis J, Cunningham C, Senzer N, Kuhn J, Cramm J, Litz C, et al. Pilot trial of genetically modified, attenuated Salmonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther 2003; 10:737 - 44; http://dx.doi.org/10.1038/sj.cgt.7700634; PMID: 14502226
  • Trudel S, Trachtenberg J, Toi A, Sweet J, Li ZH, Jewett M, et al. A phase I trial of adenovector-mediated delivery of interleukin-2 (AdIL-2) in high-risk localized prostate cancer. Cancer Gene Ther 2003; 10:755 - 63; http://dx.doi.org/10.1038/sj.cgt.7700626; PMID: 14502228
  • Galanis E, Hersh EM, Stopeck AT, Gonzalez R, Burch P, Spier C, et al. Immunotherapy of advanced malignancy by direct gene transfer of an interleukin-2 DNA/DMRIE/DOPE lipid complex: phase I/II experience. J Clin Oncol 1999; 17:3313 - 23; PMID: 10506635
  • Belldegrun A, Tso CL, Zisman A, Naitoh J, Said J, Pantuck AJ, et al. Interleukin 2 gene therapy for prostate cancer: phase I clinical trial and basic biology. Hum Gene Ther 2001; 12:883 - 92; http://dx.doi.org/10.1089/104303401750195854; PMID: 11387054
  • Horton HM, Lalor PA, Rolland AP. IL-2 plasmid electroporation: from preclinical studies to phase I clinical trial. Methods Mol Biol 2008; 423:361 - 72; http://dx.doi.org/10.1007/978-1-59745-194-9_28; PMID: 18370214
  • Heinzerling L, Burg G, Dummer R, Maier T, Oberholzer PA, Schultz J, et al. Intratumoral injection of DNA encoding human interleukin 12 into patients with metastatic melanoma: clinical efficacy. Hum Gene Ther 2005; 16:35 - 48; http://dx.doi.org/10.1089/hum.2005.16.35; PMID: 15703487
  • Mahvi DM, Henry MB, Albertini MR, Weber S, Meredith K, Schalch H, et al. Intratumoral injection of IL-12 plasmid DNA--results of a phase I/IB clinical trial. Cancer Gene Ther 2007; 14:717 - 23; http://dx.doi.org/10.1038/sj.cgt.7701064; PMID: 17557109
  • Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, et al. Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 2008; 26:5896 - 903; PMID: 19029422
  • Anwer K, Barnes MN, Fewell J, Lewis DH, Alvarez RD. Phase-I clinical trial of IL-12 plasmid/lipopolymer complexes for the treatment of recurrent ovarian cancer. Gene Ther 2010; 17:360 - 9; http://dx.doi.org/10.1038/gt.2009.159; PMID: 20033066
  • Hernandez-Alcoceba R, Berraondo P. Immunochemotherapy against colon cancer by gene transfer of interleukin-12 in combination with oxaliplatin. Oncoimmunology 2012; 1:97 - 9; http://dx.doi.org/10.4161/onci.1.1.17930; PMID: 22720223
  • Khorana AA, Rosenblatt JD, Sahasrabudhe DM, Evans T, Ladrigan M, Marquis D, et al. A phase I trial of immunotherapy with intratumoral adenovirus-interferon-gamma (TG1041) in patients with malignant melanoma. Cancer Gene Ther 2003; 10:251 - 9; http://dx.doi.org/10.1038/sj.cgt.7700568; PMID: 12679797
  • Dummer R, Hassel JC, Fellenberg F, Eichmüller S, Maier T, Slos P, et al. Adenovirus-mediated intralesional interferon-gamma gene transfer induces tumor regressions in cutaneous lymphomas. Blood 2004; 104:1631 - 8; http://dx.doi.org/10.1182/blood-2004-01-0360; PMID: 15161670
  • Nemunaitis J, Fong T, Robbins JM, Edelman G, Edwards W, Paulson RS, et al. Phase I trial of interferon-gamma (IFN-gamma) retroviral vector administered intratumorally to patients with metastatic melanoma. Cancer Gene Ther 1999; 6:322 - 30; http://dx.doi.org/10.1038/sj.cgt.7700019; PMID: 10419050
  • Merrick AE, Ilett EJ, Melcher AA. JX-594, a targeted oncolytic poxvirus for the treatment of cancer. Curr Opin Investig Drugs 2009; 10:1372 - 82; PMID: 19943208
  • Malmström PU, Loskog AS, Lindqvist CA, Mangsbo SM, Fransson M, Wanders A, et al. AdCD40L immunogene therapy for bladder carcinoma--the first phase I/IIa trial. Clin Cancer Res 2010; 16:3279 - 87; http://dx.doi.org/10.1158/1078-0432.CCR-10-0385; PMID: 20448220
  • Castro JE, Melo-Cardenas J, Urquiza M, Barajas-Gamboa JS, Pakbaz RS, Kipps TJ. Gene immunotherapy of chronic lymphocytic leukemia: a phase I study of intranodally injected adenovirus expressing a chimeric CD154 molecule. Cancer Res 2012; 72:2937 - 48; http://dx.doi.org/10.1158/0008-5472.CAN-11-3368; PMID: 22505652
  • Nabel GJ, Nabel EG, Yang ZY, Fox BA, Plautz GE, Gao X, et al. Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity, and lack of toxicity in humans. Proc Natl Acad Sci U S A 1993; 90:11307 - 11; http://dx.doi.org/10.1073/pnas.90.23.11307; PMID: 8248244
  • Nabel GJ, Gordon D, Bishop DK, Nickoloff BJ, Yang ZY, Aruga A, et al. Immune response in human melanoma after transfer of an allogeneic class I major histocompatibility complex gene with DNA-liposome complexes. Proc Natl Acad Sci U S A 1996; 93:15388 - 93; http://dx.doi.org/10.1073/pnas.93.26.15388; PMID: 8986821
  • Gleich LL, Gluckman JL, Armstrong S, Biddinger PW, Miller MA, Balakrishnan K, et al. Alloantigen gene therapy for squamous cell carcinoma of the head and neck: results of a phase-1 trial. Arch Otolaryngol Head Neck Surg 1998; 124:1097 - 104; PMID: 9776187
  • Rini BI, Selk LM, Vogelzang NJ. Phase I study of direct intralesional gene transfer of HLA-B7 into metastatic renal carcinoma lesions. Clin Cancer Res 1999; 5:2766 - 72; PMID: 10537340
  • Stopeck AT, Jones A, Hersh EM, Thompson JA, Finucane DM, Gutheil JC, et al. Phase II study of direct intralesional gene transfer of allovectin-7, an HLA-B7/beta2-microglobulin DNA-liposome complex, in patients with metastatic melanoma. Clin Cancer Res 2001; 7:2285 - 91; PMID: 11489803
  • Gonzalez R, Hutchins L, Nemunaitis J, Atkins M, Schwarzenberger PO. Phase 2 trial of Allovectin-7 in advanced metastatic melanoma. Melanoma Res 2006; 16:521 - 6; http://dx.doi.org/10.1097/01.cmr.0000232299.44902.41; PMID: 17119453
  • Bedikian AY, Richards J, Kharkevitch D, Atkins MB, Whitman E, Gonzalez R. A phase 2 study of high-dose Allovectin-7 in patients with advanced metastatic melanoma. Melanoma Res 2010; 20:218 - 26; PMID: 20354459
  • Wilson JM. Gendicine: the first commercial gene therapy product. Hum Gene Ther 2005; 16:1014 - 5; http://dx.doi.org/10.1089/hum.2005.16.1014; PMID: 16149899
  • Peng Z. Current status of gendicine in China: recombinant human Ad-p53 agent for treatment of cancers. Hum Gene Ther 2005; 16:1016 - 27; http://dx.doi.org/10.1089/hum.2005.16.1016; PMID: 16149900
  • Stevenson FK, Ottensmeier CH, Rice J. DNA vaccines against cancer come of age. Curr Opin Immunol 2010; 22:264 - 70; http://dx.doi.org/10.1016/j.coi.2010.01.019; PMID: 20172703
  • Liu MA. DNA vaccines: an historical perspective and view to the future. Immunol Rev 2011; 239:62 - 84; http://dx.doi.org/10.1111/j.1600-065X.2010.00980.x; PMID: 21198665
  • Rice J, Ottensmeier CH, Stevenson FK. DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 2008; 8:108 - 20; http://dx.doi.org/10.1038/nrc2326; PMID: 18219306
  • Shirota H, Petrenko L, Hong C, Klinman DM. Potential of transfected muscle cells to contribute to DNA vaccine immunogenicity. J Immunol 2007; 179:329 - 36; PMID: 17579053
  • Heath WR, Belz GT, Behrens GM, Smith CM, Forehan SP, Parish IA, et al. Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev 2004; 199:9 - 26; http://dx.doi.org/10.1111/j.0105-2896.2004.00142.x; PMID: 15233723
  • Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature 1998; 392:86 - 9; http://dx.doi.org/10.1038/32183; PMID: 9510252
  • Stoitzner P, Tripp CH, Eberhart A, Price KM, Jung JY, Bursch L, et al. Langerhans cells cross-present antigen derived from skin. Proc Natl Acad Sci U S A 2006; 103:7783 - 8; http://dx.doi.org/10.1073/pnas.0509307103; PMID: 16672373
  • Fioretti D, Iurescia S, Fazio VM, Rinaldi M. DNA vaccines: developing new strategies against cancer. J Biomed Biotechnol 2010; 2010:174378; http://dx.doi.org/10.1155/2010/174378; PMID: 20368780
  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408:740 - 5; http://dx.doi.org/10.1038/35047123; PMID: 11130078
  • King CA, Spellerberg MB, Zhu D, Rice J, Sahota SS, Thompsett AR, et al. DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma. Nat Med 1998; 4:1281 - 6; http://dx.doi.org/10.1038/3266; PMID: 9809552
  • Hung CF, Cheng WF, Hsu KF, Chai CY, He L, Ling M, et al. Cancer immunotherapy using a DNA vaccine encoding the translocation domain of a bacterial toxin linked to a tumor antigen. Cancer Res 2001; 61:3698 - 703; PMID: 11325841
  • Savelyeva N, Munday R, Spellerberg MB, Lomonossoff GP, Stevenson FK. Plant viral genes in DNA idiotypic vaccines activate linked CD4+ T-cell mediated immunity against B-cell malignancies. Nat Biotechnol 2001; 19:760 - 4; http://dx.doi.org/10.1038/90816; PMID: 11479570
  • Wolkers MC, Toebes M, Okabe M, Haanen JB, Schumacher TN. Optimizing the efficacy of epitope-directed DNA vaccination. J Immunol 2002; 168:4998 - 5004; PMID: 11994451
  • Trimble CL, Peng S, Kos F, Gravitt P, Viscidi R, Sugar E, et al. A phase I trial of a human papillomavirus DNA vaccine for HPV16+ cervical intraepithelial neoplasia 2/3. Clin Cancer Res 2009; 15:361 - 7; http://dx.doi.org/10.1158/1078-0432.CCR-08-1725; PMID: 19118066
  • Chen CH, Wang TL, Hung CF, Yang Y, Young RA, Pardoll DM, et al. Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res 2000; 60:1035 - 42; PMID: 10706121
  • Perales MA, Yuan J, Powel S, Gallardo HF, Rasalan TS, Gonzalez C, et al. Phase I/II study of GM-CSF DNA as an adjuvant for a multipeptide cancer vaccine in patients with advanced melanoma. Mol Ther 2008; 16:2022 - 9; http://dx.doi.org/10.1038/mt.2008.196; PMID: 18797450
  • Biragyn A, Tani K, Grimm MC, Weeks S, Kwak LW. Genetic fusion of chemokines to a self tumor antigen induces protective, T-cell dependent antitumor immunity. Nat Biotechnol 1999; 17:253 - 8; http://dx.doi.org/10.1038/6995; PMID: 10096292
  • Boyle JS, Koniaras C, Lew AM. Influence of cellular location of expressed antigen on the efficacy of DNA vaccination: cytotoxic T lymphocyte and antibody responses are suboptimal when antigen is cytoplasmic after intramuscular DNA immunization. Int Immunol 1997; 9:1897 - 906; http://dx.doi.org/10.1093/intimm/9.12.1897; PMID: 9466317
  • Rice J, King CA, Spellerberg MB, Fairweather N, Stevenson FK. Manipulation of pathogen-derived genes to influence antigen presentation via DNA vaccines. Vaccine 1999; 17:3030 - 8; http://dx.doi.org/10.1016/S0264-410X(99)00171-1; PMID: 10462238
  • Larocca C, Schlom J. Viral vector-based therapeutic cancer vaccines. Cancer J 2011; 17:359 - 71; http://dx.doi.org/10.1097/PPO.0b013e3182325e63; PMID: 21952287
  • Cawood R, Hills T, Wong SL, Alamoudi AA, Beadle S, Fisher KD, et al. Recombinant viral vaccines for cancer. Trends Mol Med 2012; 18:564 - 74; http://dx.doi.org/10.1016/j.molmed.2012.07.007; PMID: 22917663
  • Zhang T, Sun L, Xin Y, Ma L, Zhang Y, Wang X, et al. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin. BMC Biotechnol 2012; 12:97; http://dx.doi.org/10.1186/1472-6750-12-97; PMID: 23253888
  • Shin SJ, Bae JL, Cho YW, Lee DY, Kim DH, Yang MS, et al. Induction of antigen-specific immune responses by oral vaccination with Saccharomyces cerevisiae expressing Actinobacillus pleuropneumoniae ApxIIA. FEMS Immunol Med Microbiol 2005; 43:155 - 64; http://dx.doi.org/10.1016/j.femsim.2004.07.004; PMID: 15681145
  • Ruitenberg KM, Gilkerson JR, Wellington JE, Love DN, Whalley JM. Equine herpesvirus 1 glycoprotein D expressed in Pichia pastoris is hyperglycosylated and elicits a protective immune response in the mouse model of EHV-1 disease. Virus Res 2001; 79:125 - 35; http://dx.doi.org/10.1016/S0168-1702(01)00337-9; PMID: 11551653
  • Xiang R, Silletti S, Lode HN, Dolman CS, Ruehlmann JM, Niethammer AG, et al. Protective immunity against human carcinoembryonic antigen (CEA) induced by an oral DNA vaccine in CEA-transgenic mice. Clin Cancer Res 2001; 7:Suppl 856s - 64s; PMID: 11300483
  • Paglia P, Medina E, Arioli I, Guzman CA, Colombo MP. Gene transfer in dendritic cells, induced by oral DNA vaccination with Salmonella typhimurium, results in protective immunity against a murine fibrosarcoma. Blood 1998; 92:3172 - 6; PMID: 9787153
  • Kiflmariam MG, Yang H, Zhang Z. Gene delivery to dendritic cells by orally administered recombinant Saccharomyces cerevisiae in mice. Vaccine 2012; In press http://dx.doi.org/10.1016/j.vaccine.2012.11.048; PMID: 23200937
  • Napolitani G, Rinaldi A, Bertoni F, Sallusto F, Lanzavecchia A. Selected Toll-like receptor agonist combinations synergistically trigger a T helper type 1-polarizing program in dendritic cells. Nat Immunol 2005; 6:769 - 76; http://dx.doi.org/10.1038/ni1223; PMID: 15995707
  • Greenland JR, Letvin NL. Chemical adjuvants for plasmid DNA vaccines. Vaccine 2007; 25:3731 - 41; http://dx.doi.org/10.1016/j.vaccine.2007.01.120; PMID: 17350735
  • Fuller DH, Loudon P, Schmaljohn C. Preclinical and clinical progress of particle-mediated DNA vaccines for infectious diseases. Methods 2006; 40:86 - 97; http://dx.doi.org/10.1016/j.ymeth.2006.05.022; PMID: 16997717
  • Lu S, Wang S, Grimes-Serrano JM. Current progress of DNA vaccine studies in humans. Expert Rev Vaccines 2008; 7:175 - 91; http://dx.doi.org/10.1586/14760584.7.2.175; PMID: 18324888
  • Nardelli-Haefliger D, Romero P, Jichlinski P. What is the influence of vaccination’s routes on the regression of tumors located at mucosal sites?. Oncoimmunology 2012; 1:242 - 3; http://dx.doi.org/10.4161/onci.1.2.18204; PMID: 22720257
  • Dupuis M, Denis-Mize K, Woo C, Goldbeck C, Selby MJ, Chen M, et al. Distribution of DNA vaccines determines their immunogenicity after intramuscular injection in mice. J Immunol 2000; 165:2850 - 8; PMID: 10946318
  • Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol 2012; In press PMID: 23157435
  • Vacchelli E, Galluzzi L, Rousseau V, Rigoni A, Tesniere A, Delahaye N, et al. Loss-of-function alleles of P2RX7 and TLR4 fail to affect the response to chemotherapy in non-small cell lung cancer. Oncoimmunology 2012; 1:271 - 8; http://dx.doi.org/10.4161/onci.18684; PMID: 22737602
  • Cirone M, Di Renzo L, Lotti LV, Conte V, Trivedi P, Santarelli R, et al. Activation of dendritic cells by tumor cell death. Oncoimmunology 2012; 1:1218 - 9; http://dx.doi.org/10.4161/onci.20428; PMID: 23170286
  • Pinto A, Rega A, Crother TR, Sorrentino R. Plasmacytoid dendritic cells and their therapeutic activity in cancer. Oncoimmunology 2012; 1:726 - 34; http://dx.doi.org/10.4161/onci.20171; PMID: 22934264
  • Best SR, Peng S, Juang CM, Hung CF, Hannaman D, Saunders JR, et al. Administration of HPV DNA vaccine via electroporation elicits the strongest CD8+ T cell immune responses compared to intramuscular injection and intradermal gene gun delivery. Vaccine 2009; 27:5450 - 9; http://dx.doi.org/10.1016/j.vaccine.2009.07.005; PMID: 19622402
  • Hallermalm K, Johansson S, Bråve A, Ek M, Engström G, Boberg A, et al. Pre-clinical evaluation of a CEA DNA prime/protein boost vaccination strategy against colorectal cancer. Scand J Immunol 2007; 66:43 - 51; http://dx.doi.org/10.1111/j.1365-3083.2007.01945.x; PMID: 17587345
  • Nguyen-Hoai T, Kobelt D, Hohn O, Vu MD, Schlag PM, Dörken B, et al. HER2/neu DNA vaccination by intradermal gene delivery in a mouse tumor model: Gene gun is superior to jet injector in inducing CTL responses and protective immunity. Oncoimmunology 2012; 1:1537 - 45; http://dx.doi.org/10.4161/onci.22563; PMID: 23264900
  • van den Berg JH, Nujien B, Beijnen JH, Vincent A, van Tinteren H, Kluge J, et al. Optimization of intradermal vaccination by DNA tattooing in human skin. Hum Gene Ther 2009; 20:181 - 9; http://dx.doi.org/10.1089/hum.2008.073; PMID: 19301471
  • Fest S, Huebener N, Bleeke M, Durmus T, Stermann A, Woehler A, et al. Survivin minigene DNA vaccination is effective against neuroblastoma. Int J Cancer 2009; 125:104 - 14; http://dx.doi.org/10.1002/ijc.24291; PMID: 19291796
  • Niethammer AG, Lubenau H, Mikus G, Knebel P, Hohmann N, Leowardi C, et al. Double-blind, placebo-controlled first in human study to investigate an oral vaccine aimed to elicit an immune reaction against the VEGF-Receptor 2 in patients with stage IV and locally advanced pancreatic cancer. BMC Cancer 2012; 12:361; http://dx.doi.org/10.1186/1471-2407-12-361; PMID: 22906006
  • Meng JZ, Dong YJ, Huang H, Li S, Zhong Y, Liu SL, et al. Oral vaccination with attenuated Salmonella enterica strains encoding T-cell epitopes from tumor antigen NY-ESO-1 induces specific cytotoxic T-lymphocyte responses. Clin Vaccine Immunol 2010; 17:889 - 94; http://dx.doi.org/10.1128/CVI.00044-10; PMID: 20375244
  • Liu J, Kjeken R, Mathiesen I, Barouch DH. Recruitment of antigen-presenting cells to the site of inoculation and augmentation of human immunodeficiency virus type 1 DNA vaccine immunogenicity by in vivo electroporation. J Virol 2008; 82:5643 - 9; http://dx.doi.org/10.1128/JVI.02564-07; PMID: 18353952
  • Ahlén G, Söderholm J, Tjelle T, Kjeken R, Frelin L, Höglund U, et al. In vivo electroporation enhances the immunogenicity of hepatitis C virus nonstructural 3/4A DNA by increased local DNA uptake, protein expression, inflammation, and infiltration of CD3+ T cells. J Immunol 2007; 179:4741 - 53; PMID: 17878373
  • Buchan S, Grønevik E, Mathiesen I, King CA, Stevenson FK, Rice J. Electroporation as a “prime/boost” strategy for naked DNA vaccination against a tumor antigen. J Immunol 2005; 174:6292 - 8; PMID: 15879128
  • Murakami T, Sunada Y. Plasmid DNA gene therapy by electroporation: principles and recent advances. Curr Gene Ther 2011; 11:447 - 56; http://dx.doi.org/10.2174/156652311798192860; PMID: 22023474
  • Aihara H, Miyazaki J. Gene transfer into muscle by electroporation in vivo. Nat Biotechnol 1998; 16:867 - 70; http://dx.doi.org/10.1038/nbt0998-867; PMID: 9743122
  • Mathiesen I. Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Ther 1999; 6:508 - 14; http://dx.doi.org/10.1038/sj.gt.3300847; PMID: 10476210
  • Mir LM, Bureau MF, Gehl J, Rangara R, Rouy D, Caillaud JM, et al. High-efficiency gene transfer into skeletal muscle mediated by electric pulses. Proc Natl Acad Sci U S A 1999; 96:4262 - 7; http://dx.doi.org/10.1073/pnas.96.8.4262; PMID: 10200250
  • Babiuk S, Baca-Estrada ME, Foldvari M, Storms M, Rabussay D, Widera G, et al. Electroporation improves the efficacy of DNA vaccines in large animals. Vaccine 2002; 20:3399 - 408; http://dx.doi.org/10.1016/S0264-410X(02)00269-4; PMID: 12213410
  • Tollefsen S, Tjelle T, Schneider J, Harboe M, Wiker H, Hewinson G, et al. Improved cellular and humoral immune responses against Mycobacterium tuberculosis antigens after intramuscular DNA immunisation combined with muscle electroporation. Vaccine 2002; 20:3370 - 8; http://dx.doi.org/10.1016/S0264-410X(02)00289-X; PMID: 12213407
  • Widera G, Austin M, Rabussay D, Goldbeck C, Barnett SW, Chen M, et al. Increased DNA vaccine delivery and immunogenicity by electroporation in vivo. J Immunol 2000; 164:4635 - 40; PMID: 10779767
  • Wang Z, Troilo PJ, Wang X, Griffiths TG, Pacchione SJ, Barnum AB, et al. Detection of integration of plasmid DNA into host genomic DNA following intramuscular injection and electroporation. Gene Ther 2004; 11:711 - 21; http://dx.doi.org/10.1038/sj.gt.3302213; PMID: 14724672
  • Qian BJ, Yan F, Li N, Liu QL, Lin YH, Liu CM, et al. MTDH/AEG-1-based DNA vaccine suppresses lung metastasis and enhances chemosensitivity to doxorubicin in breast cancer. Cancer Immunol Immunother 2011; 60:883 - 93; http://dx.doi.org/10.1007/s00262-011-0997-3; PMID: 21400023
  • Galluzzi L, Vacchelli E, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, et al. Trial Watch: Monoclonal antibodies in cancer therapy. Oncoimmunology 2012; 1:28 - 37; http://dx.doi.org/10.4161/onci.1.1.17938; PMID: 22720209
  • Vacchelli E, Galluzzi L, Fridman WH, Galon J, Sautès-Fridman C, Tartour E, et al. Trial watch: Chemotherapy with immunogenic cell death inducers. Oncoimmunology 2012; 1:179 - 88; http://dx.doi.org/10.4161/onci.1.2.19026; PMID: 22720239
  • Galluzzi L, Vacchelli E, Eggermont A, Fridman WH, Galon J, Sautès-Fridman C, et al. Trial Watch: Adoptive cell transfer immunotherapy. Oncoimmunology 2012; 1:306 - 15; http://dx.doi.org/10.4161/onci.19549; PMID: 22737606
  • Vacchelli E, Galluzzi L, Eggermont A, Galon J, Tartour E, Zitvogel L, et al. Trial Watch: Immunostimulatory cytokines. Oncoimmunology 2012; 1:493 - 506; http://dx.doi.org/10.4161/onci.20459; PMID: 22754768
  • Senovilla L, Vacchelli E, Galon J, Adjemian S, Eggermont A, Fridman WH, et al. Trial watch: Prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology 2012; 1:1323 - 43; http://dx.doi.org/10.4161/onci.22009; PMID: 23243596
  • Menger L, Vacchelli E, Kepp O, Eggermont A, Tartour E, Zitvogel L, et al. Trial watch: cardiac glycosides and cancer therapy. Oncoimmunology 2013; 2 In press
  • Vacchelli E, Galluzzi L, Fridman WH, Galon J, Sautes-Fridman C, Tartour E, et al. Trial watch: monoclonal antibodies in cancer therapy. Oncoimmunology 2013; 2; In press http://dx.doi.org/10.4161/onci.22789
  • Vacchelli E, Senovilla L, Eggermont A, Fridman WH, Galon J, Zitvogel L, et al. Trial watch: chemotherapy with immunogenic cell death inducers. Oncoimmunology 2012; 1:179 - 88; PMID: 22720239
  • Davis BS, Chang GJ, Cropp B, Roehrig JT, Martin DA, Mitchell CJ, et al. West Nile virus recombinant DNA vaccine protects mouse and horse from virus challenge and expresses in vitro a noninfectious recombinant antigen that can be used in enzyme-linked immunosorbent assays. J Virol 2001; 75:4040 - 7; http://dx.doi.org/10.1128/JVI.75.9.4040-4047.2001; PMID: 11287553
  • Anderson ED, Mourich DV, Leong JA. Gene expression in rainbow trout (Oncorhynchus mykiss) following intramuscular injection of DNA. Mol Mar Biol Biotechnol 1996; 5:105 - 13; PMID: 8680523
  • Anderson ED, Mourich DV, Fahrenkrug SC, LaPatra S, Shepherd J, Leong JA. Genetic immunization of rainbow trout (Oncorhynchus mykiss) against infectious hematopoietic necrosis virus. Mol Mar Biol Biotechnol 1996; 5:114 - 22; PMID: 8680524
  • Bergman PJ, McKnight J, Novosad A, Charney S, Farrelly J, Craft D, et al. Long-term survival of dogs with advanced malignant melanoma after DNA vaccination with xenogeneic human tyrosinase: a phase I trial. Clin Cancer Res 2003; 9:1284 - 90; PMID: 12684396
  • Liao JC, Gregor P, Wolchok JD, Orlandi F, Craft D, Leung C, et al. Vaccination with human tyrosinase DNA induces antibody responses in dogs with advanced melanoma. Cancer Immun 2006; 6:8; PMID: 16626110
  • Timmerman JM, Singh G, Hermanson G, Hobart P, Czerwinski DK, Taidi B, et al. Immunogenicity of a plasmid DNA vaccine encoding chimeric idiotype in patients with B-cell lymphoma. Cancer Res 2002; 62:5845 - 52; PMID: 12384547
  • Victora GD, Socorro-Silva A, Volsi EC, Abdallah K, Lima FD, Smith RB, et al. Immune response to vaccination with DNA-Hsp65 in a phase I clinical trial with head and neck cancer patients. Cancer Gene Ther 2009; 16:598 - 608; http://dx.doi.org/10.1038/cgt.2009.9; PMID: 19197326
  • Dangoor A, Lorigan P, Keilholz U, Schadendorf D, Harris A, Ottensmeier C, et al. Clinical and immunological responses in metastatic melanoma patients vaccinated with a high-dose poly-epitope vaccine. Cancer Immunol Immunother 2010; 59:863 - 73; http://dx.doi.org/10.1007/s00262-009-0811-7; PMID: 20043222
  • Rosenberg SA, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, et al. Inability to immunize patients with metastatic melanoma using plasmid DNA encoding the gp100 melanoma-melanocyte antigen. Hum Gene Ther 2003; 14:709 - 14; http://dx.doi.org/10.1089/104303403765255110; PMID: 12804135
  • Tagawa ST, Lee P, Snively J, Boswell W, Ounpraseuth S, Lee S, et al. Phase I study of intranodal delivery of a plasmid DNA vaccine for patients with Stage IV melanoma. Cancer 2003; 98:144 - 54; http://dx.doi.org/10.1002/cncr.11462; PMID: 12833467
  • Triozzi PL, Aldrich W, Allen KO, Carlisle RR, LoBuglio AF, Conry RM. Phase I study of a plasmid DNA vaccine encoding MART-1 in patients with resected melanoma at risk for relapse. J Immunother 2005; 28:382 - 8; http://dx.doi.org/10.1097/01.cji.0000162779.88687.4c; PMID: 16000957
  • Weber J, Boswell W, Smith J, Hersh E, Snively J, Diaz M, et al. Phase 1 trial of intranodal injection of a Melan-A/MART-1 DNA plasmid vaccine in patients with stage IV melanoma. J Immunother 2008; 31:215 - 23; http://dx.doi.org/10.1097/CJI.0b013e3181611420; PMID: 18481391
  • Wolchok JD, Yuan J, Houghton AN, Gallardo HF, Rasalan TS, Wang J, et al. Safety and immunogenicity of tyrosinase DNA vaccines in patients with melanoma. Mol Ther 2007; 15:2044 - 50; http://dx.doi.org/10.1038/sj.mt.6300290; PMID: 17726460
  • Yuan J, Ku GY, Gallardo HF, Orlandi F, Manukian G, Rasalan TS, et al. Safety and immunogenicity of a human and mouse gp100 DNA vaccine in a phase I trial of patients with melanoma. Cancer Immun 2009; 9:5; PMID: 19496531
  • Conry RM, Curiel DT, Strong TV, Moore SE, Allen KO, Barlow DL, et al. Safety and immunogenicity of a DNA vaccine encoding carcinoembryonic antigen and hepatitis B surface antigen in colorectal carcinoma patients. Clin Cancer Res 2002; 8:2782 - 7; PMID: 12231517
  • Pavlenko M, Roos AK, Lundqvist A, Palmborg A, Miller AM, Ozenci V, et al. A phase I trial of DNA vaccination with a plasmid expressing prostate-specific antigen in patients with hormone-refractory prostate cancer. Br J Cancer 2004; 91:688 - 94; PMID: 15280930
  • Miller AM, Ozenci V, Kiessling R, Pisa P. Immune monitoring in a phase 1 trial of a PSA DNA vaccine in patients with hormone-refractory prostate cancer. J Immunother 2005; 28:389 - 95; http://dx.doi.org/10.1097/01.cji.0000165353.19171.41; PMID: 16000958
  • Marur S, D’Souza G, Westra WH, Forastiere AA. HPV-associated head and neck cancer: a virus-related cancer epidemic. Lancet Oncol 2010; 11:781 - 9; http://dx.doi.org/10.1016/S1470-2045(10)70017-6; PMID: 20451455
  • Senovilla L, Vitale I, Martins I, Tailler M, Pailleret C, Michaud M, et al. An immunosurveillance mechanism controls cancer cell ploidy. Science 2012; 337:1678 - 84; http://dx.doi.org/10.1126/science.1224922; PMID: 23019653
  • Michaud M, Martins I, Sukkurwala AQ, Adjemian S, Ma Y, Pellegatti P, et al. Autophagy-dependent anticancer immune responses induced by chemotherapeutic agents in mice. Science 2011; 334:1573 - 7; http://dx.doi.org/10.1126/science.1208347; PMID: 22174255
  • Garg AD, Krysko DV, Vandenabeele P, Agostinis P. Hypericin-based photodynamic therapy induces surface exposure of damage-associated molecular patterns like HSP70 and calreticulin. Cancer Immunol Immunother 2012; 61:215 - 21; http://dx.doi.org/10.1007/s00262-011-1184-2; PMID: 22193987
  • Holcmann M, Drobits B, Sibilia M. How imiquimod licenses plasmacytoid dendritic cells to kill tumors. Oncoimmunology 2012; 1:1661 - 3; http://dx.doi.org/10.4161/onci.22033; PMID: 23264929
  • Gerritsen WR. The evolving role of immunotherapy in prostate cancer. Ann Oncol 2012; 23:Suppl 8 viii22-7; http://dx.doi.org/10.1093/annonc/mds259; PMID: 22918924
  • Cunha AC, Weigle B, Kiessling A, Bachmann M, Rieber EP. Tissue-specificity of prostate specific antigens: comparative analysis of transcript levels in prostate and non-prostatic tissues. Cancer Lett 2006; 236:229 - 38; http://dx.doi.org/10.1016/j.canlet.2005.05.021; PMID: 16046056
  • Watson MA, Fleming TP. Mammaglobin, a mammary-specific member of the uteroglobin gene family, is overexpressed in human breast cancer. Cancer Res 1996; 56:860 - 5; PMID: 8631025
  • Hammarström S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 1999; 9:67 - 81; http://dx.doi.org/10.1006/scbi.1998.0119; PMID: 10202129
  • Tiernan JP, Perry SL, Verghese ET, West NP, Yeluri S, Jayne DG, et al. Carcinoembryonic antigen is the preferred biomarker for in vivo colorectal cancer targeting. Br J Cancer 2013; In press http://dx.doi.org/10.1038/bjc.2012.605; PMID: 23322207
  • Zhao L, Mou DC, Leng XS, Peng JR, Wang WX, Huang L, et al. Expression of cancer-testis antigens in hepatocellular carcinoma. World J Gastroenterol 2004; 10:2034 - 8; PMID: 15237429
  • Bendandi M. Idiotype vaccines for lymphoma: proof-of-principles and clinical trial failures. Nat Rev Cancer 2009; 9:675 - 81; http://dx.doi.org/10.1038/nrc2717; PMID: 19701243
  • Prins RM, Odesa SK, Liau LM. Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res 2003; 63:8487 - 91; PMID: 14679014
  • Sarantou T, Chi DD, Garrison DA, Conrad AJ, Schmid P, Morton DL, et al. Melanoma-associated antigens as messenger RNA detection markers for melanoma. Cancer Res 1997; 57:1371 - 6; PMID: 9102226
  • Visintin I, Feng Z, Longton G, Ward DC, Alvero AB, Lai Y, et al. Diagnostic markers for early detection of ovarian cancer. Clin Cancer Res 2008; 14:1065 - 72; http://dx.doi.org/10.1158/1078-0432.CCR-07-1569; PMID: 18258665
  • Kanety H, Kattan M, Goldberg I, Kopolovic J, Ravia J, Menczer J, et al. Increased insulin-like growth factor binding protein-2 (IGFBP-2) gene expression and protein production lead to high IGFBP-2 content in malignant ovarian cyst fluid. Br J Cancer 1996; 73:1069 - 73; http://dx.doi.org/10.1038/bjc.1996.206; PMID: 8624265
  • Lundberg K, Roos AK, Pavlenko M, Leder C, Wehrum D, Guevara-Patiño J, et al. A modified epitope identified for generation and monitoring of PSA-specific T cells in patients on early phases of PSA-based immunotherapeutic protocols. Vaccine 2009; 27:1557 - 65; http://dx.doi.org/10.1016/j.vaccine.2009.01.011; PMID: 19171173
  • Mubiru JN, Hubbard GB, Dick EJ Jr., Furman J, Troyer DA, Rogers J. Nonhuman primates as models for studies of prostate specific antigen and prostatic diseases. Prostate 2008; 68:1546 - 54; http://dx.doi.org/10.1002/pros.20814; PMID: 18668524
  • Dale W. Prostate cancer: PSA testing in older men--are we following the guidelines?. Nat Rev Urol 2012; 9:357 - 8; http://dx.doi.org/10.1038/nrurol.2012.115; PMID: 22641163
  • Smith NR, Baker D, James NH, Ratcliffe K, Jenkins M, Ashton SE, et al. Vascular endothelial growth factor receptors VEGFR-2 and VEGFR-3 are localized primarily to the vasculature in human primary solid cancers. Clin Cancer Res 2010; 16:3548 - 61; http://dx.doi.org/10.1158/1078-0432.CCR-09-2797; PMID: 20606037
  • Nemunaitis J, Meyers T, Senzer N, Cunningham C, West H, Vallieres E, et al. Phase I Trial of sequential administration of recombinant DNA and adenovirus expressing L523S protein in early stage non-small-cell lung cancer. Mol Ther 2006; 13:1185 - 91; http://dx.doi.org/10.1016/j.ymthe.2006.01.013; PMID: 16581300
  • Smith CL, Dunbar PR, Mirza F, Palmowski MJ, Shepherd D, Gilbert SC, et al. Recombinant modified vaccinia Ankara primes functionally activated CTL specific for a melanoma tumor antigen epitope in melanoma patients with a high risk of disease recurrence. Int J Cancer 2005; 113:259 - 66; http://dx.doi.org/10.1002/ijc.20569; PMID: 15386406
  • Todorova K, Ignatova I, Tchakarov S, Altankova I, Zoubak S, Kyurkchiev S, et al. Humoral immune response in prostate cancer patients after immunization with gene-based vaccines that encode for a protein that is proteasomally degraded. Cancer Immun 2005; 5:1; PMID: 15641767
  • Mincheff M, Tchakarov S, Zoubak S, Loukinov D, Botev C, Altankova I, et al. Naked DNA and adenoviral immunizations for immunotherapy of prostate cancer: a phase I/II clinical trial. Eur Urol 2000; 38:208 - 17; http://dx.doi.org/10.1159/000020281; PMID: 10895014
  • Klencke B, Matijevic M, Urban RG, Lathey JL, Hedley ML, Berry M, et al. Encapsulated plasmid DNA treatment for human papillomavirus 16-associated anal dysplasia: a Phase I study of ZYC101. Clin Cancer Res 2002; 8:1028 - 37; PMID: 12006515
  • Garcia F, Petry KU, Muderspach L, Gold MA, Braly P, Crum CP, et al. ZYC101a for treatment of high-grade cervical intraepithelial neoplasia: a randomized controlled trial. Obstet Gynecol 2004; 103:317 - 26; http://dx.doi.org/10.1097/01.AOG.0000110246.93627.17; PMID: 14754702
  • Gribben JG, Ryan DP, Boyajian R, Urban RG, Hedley ML, Beach K, et al. Unexpected association between induction of immunity to the universal tumor antigen CYP1B1 and response to next therapy. Clin Cancer Res 2005; 11:4430 - 6; http://dx.doi.org/10.1158/1078-0432.CCR-04-2111; PMID: 15958627
  • Guirnalda PD, Paterson Y. Vaccination with immunotherapeutic Listeria monocytogenes induces IL-17(+) γδ T cells in a murine model for HPV associated cancer. Oncoimmunology 2012; 1:822 - 8; http://dx.doi.org/10.4161/onci.20491; PMID: 23162749
  • Du JW, Xu KY, Fang LY, Qi XL. Clinical significance of Mena and Her-2 expression in breast cancer. Eur J Gynaecol Oncol 2012; 33:455 - 8; PMID: 23185786
  • Dawood S, Broglio K, Gong Y, Yang WT, Cristofanilli M, Kau SW, et al, Inflammatory Breast Cancer Research Group. Prognostic significance of HER-2 status in women with inflammatory breast cancer. Cancer 2008; 112:1905 - 11; http://dx.doi.org/10.1002/cncr.23350; PMID: 18300243
  • Foy KC, Miller MJ, Moldovan N, Bozanovic T, Carson Iii WE, Kaumaya PT. Immunotherapy with HER-2 and VEGF peptide mimics plus metronomic paclitaxel causes superior antineoplastic effects in transplantable and transgenic mouse models of human breast cancer. Oncoimmunology 2012; 1:1004 - 16; http://dx.doi.org/10.4161/onci.21057; PMID: 23170249
  • Foy KC, Miller MJ, Moldovan N, Carson Iii WE, Kaumaya PT. Combined vaccination with HER-2 peptide followed by therapy with VEGF peptide mimics exerts effective anti-tumor and anti-angiogenic effects in vitro and in vivo. Oncoimmunology 2012; 1:1048 - 60; http://dx.doi.org/10.4161/onci.20708; PMID: 23170253
  • Chu EA, Wu JM, Tunkel DE, Ishman SL. Nasopharyngeal carcinoma: the role of the Epstein-Barr virus. Medscape J Med 2008; 10:165; PMID: 18769688
  • Smith C, Khanna R. A new approach for cellular immunotherapy of nasopharyngeal carcinoma. Oncoimmunology 2012; 1:1440 - 2; http://dx.doi.org/10.4161/onci.21286; PMID: 23243622
  • Li H, Lakshmikanth T, Carbone E, Selivanova G. A novel facet of tumor suppression by p53: Induction of tumor immunogenicity. Oncoimmunology 2012; 1:541 - 3; http://dx.doi.org/10.4161/onci.19409; PMID: 22754780
  • Vojtĕsek B, Lane DP. Regulation of p53 protein expression in human breast cancer cell lines. J Cell Sci 1993; 105:607 - 12; PMID: 8408290
  • Yaginuma Y, Westphal H. Abnormal structure and expression of the p53 gene in human ovarian carcinoma cell lines. Cancer Res 1992; 52:4196 - 9; PMID: 1638534
  • Bodner SM, Minna JD, Jensen SM, D’Amico D, Carbone D, Mitsudomi T, et al. Expression of mutant p53 proteins in lung cancer correlates with the class of p53 gene mutation. Oncogene 1992; 7:743 - 9; PMID: 1565469
  • Soussi T. p53 alterations in human cancer: more questions than answers. Oncogene 2007; 26:2145 - 56; http://dx.doi.org/10.1038/sj.onc.1210280; PMID: 17401423
  • Soussi T, Lozano G. p53 mutation heterogeneity in cancer. Biochem Biophys Res Commun 2005; 331:834 - 42; http://dx.doi.org/10.1016/j.bbrc.2005.03.190; PMID: 15865939
  • Kufe DW. Mucins in cancer: function, prognosis and therapy. Nat Rev Cancer 2009; 9:874 - 85; http://dx.doi.org/10.1038/nrc2761; PMID: 19935676
  • Limacher JM, Quoix E. TG4010: A therapeutic vaccine against MUC1 expressing tumors. Oncoimmunology 2012; 1:791 - 2; http://dx.doi.org/10.4161/onci.19863; PMID: 22934285
  • Madan RA, Bilusic M, Heery C, Schlom J, Gulley JL. Clinical evaluation of TRICOM vector therapeutic cancer vaccines. Semin Oncol 2012; 39:296 - 304; http://dx.doi.org/10.1053/j.seminoncol.2012.02.010; PMID: 22595052
  • Hodge JW, Sabzevari H, Yafal AG, Gritz L, Lorenz MG, Schlom J. A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res 1999; 59:5800 - 7; PMID: 10582702
  • Zhao D, Chen P, Yang H, Wu Y, Zeng X, Zhao Y, et al. Live attenuated measles virus vaccine induces apoptosis and promotes tumor regression in lung cancer. Oncol Rep 2013; 29:199 - 204; PMID: 23129111
  • Sion-Vardy N, Lasarov I, Delgado B, Gopas J, Benharroch D, Ariad S. Measles virus: evidence for association with lung cancer. Exp Lung Res 2009; 35:701 - 12; http://dx.doi.org/10.3109/01902140902853176; PMID: 19895323
  • Diehl L, den Boer AT, Schoenberger SP, van der Voort EI, Schumacher TN, Melief CJ, et al. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat Med 1999; 5:774 - 9; http://dx.doi.org/10.1038/10495; PMID: 10395322
  • Bennett SR, Carbone FR, Karamalis F, Flavell RA, Miller JF, Heath WR. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 1998; 393:478 - 80; http://dx.doi.org/10.1038/30996; PMID: 9624004