2,072
Views
50
CrossRef citations to date
0
Altmetric
Original Article

Investigation of Absorption and Scattering Properties of Soot Aggregates of Different Fractal Dimension at 532 nm Using RDG and GMM

, , &
Pages 1393-1405 | Received 01 Jun 2013, Accepted 09 Sep 2013, Published online: 10 Oct 2013
 

Abstract

Radiative properties of numerically generated fractal soot aggregates of different fractal dimensions were studied using the numerically accurate generalized Mie-solution method (GMM) and the Rayleigh-Debye-Gans (RDG) approximate theory. Fractal aggregates of identical prefactor but different fractal dimensions, namely, 1.4, 1.78, and 2.1, were generated numerically using a tunable algorithm of cluster–cluster aggregation for aggregates containing up to 800 primary particles. Radiative properties of these aggregates were calculated at a wavelength of 532 nm assuming a soot refractive index of 1.6 + 0.6i. Four commonly used structure factors in the RDG approximation were used to investigate the effect of structure factor on the differential and total scattering cross-sections and the asymmetry factor. The differential and total scattering properties calculated using the RDG approximation become increasingly sensitive to the structure factor with increasing the fractal dimension. Primary particle interactions are the fundamental mechanism for the aggregate absorption enhancement for small aggregates and the shielding effect for larger aggregates. The extent of these two competing factors is dependent on the fractal dimension and aggregate size. RDG reasonably predicts the effect of fractal dimension on the scattering properties, but fails to account for the effect of aggregation or fractal morphology on the absorption property of fractal soot aggregates, though the error is in general less than 15%.

Copyright 2013 American Association for Aerosol Research

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.