1,598
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Solid lipid nanoparticles as oral delivery systems of phenolic compounds: Overcoming pharmacokinetic limitations for nutraceutical applications

, , , , , & show all
 

ABSTRACT

Drug delivery systems, accompanied by nanoparticle technology, have recently emerged as prominent solutions to improve the pharmacokinetic properties, namely bioavailability, of therapeutic and nutraceutical agents. Solid lipid nanoparticles (SLNs) have received much attention from researchers due to their potential to protect or improve drug properties. SLNs have been reported to be an alternative system to traditional carriers, such as emulsions, liposomes, and polymeric nanoparticles. Phenolic compounds are widespread in plant-derived foodstuffs and therefore abundant in our diet. Over the last decades, phenolic compounds have received considerable attention due to several health promoting properties, mostly related to their antioxidant activity, which can have important implications for health. However, most of these compounds have been associated with poor bioavailability being poorly absorbed, rapidly metabolized and eliminated, which compromises its biological and pharmacological benefits. This paper provides a systematic review of the use of SLNs as oral delivery systems of phenolic compounds, in order to overcome pharmacokinetic limitations of these compounds and improved nutraceutical potential. In vitro studies, as well as works describing topical and oral treatments will be revisited and discussed. The classification, synthesis, and clinical application of these nanomaterials will be also considered in this review article.

Funding

Partial funding for this research work was provided via project NANODAIRY (PTDC/AGR-ALI/117808/2010) and project PEst-OE/EQB/LA0016/2013, financed by FCT (Fundação para a Ciência e Tecnologia, Portugal). Authors also thank FCT for funding SFRH/BPD/71391/2010 (Ana Raquel Madureira post-doctoral scholarship), SFRH/BD/109017/2015 (Sara Nunes PhD scholarship) and UID/NEU/04539/2013 (CNC.IBILI Consortium), as well as FEDER-COMPETE (FCOMP-01-0124-FEDER-028417 and POCI-01-0145-FEDER-007440).

Conflict of interest statement

The authors have declared no conflict of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.