1,599
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Solid lipid nanoparticles as oral delivery systems of phenolic compounds: Overcoming pharmacokinetic limitations for nutraceutical applications

, , , , , & show all

References

  • Aaby, K., Hvattum, E. and Skrede, G. (2004). Analysis of flavonoids and other phenolic compounds using high-performance liquid chromatography with coulometric array detection: Relationship to antioxidant activity. J Agric. Food Chem. 52:4595–4603.
  • Anand, P., Kunnumakkara, A. B., Newman, R. A. and Aggarwal, B. B. (2007). Bioavailability of curcumin: Problems and promises. Mol. Pharm. 4:807–818.
  • Bargoni, A., Cavalli, R., Caputo, O., Fundar∫, A., Gasco, M. R. and Zara, G. P. (1998). Solid lipid nanoparticles in lymph and plasma after duodenal administration to rats. Pharm. Res. 15:745–750.
  • Berardini, N., Fezer, R., Conrad, J., Beifuss, U., Carle, R. and Schieber, A. (2005). Screening of mango (Mangifera indica L.) cultivars for their contents of flavonol O- and xanthone C-glycosides, anthocyanins, and pectin. J. Agric. Food Chem. 53:1563–1570.
  • Borgstrom, B. (1980). Importance of phospholipids, pancreatic phospholipase A2, and fatty acid for the digestion of dietary fat: In vitro experiments with the porcine enzymes. Gastroenterology. 78:954–962.
  • Bunjes, H., Westesen, K. and Koch, M. H. J. (1996). Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int. J. Pharm. 129:159–173.
  • Campos, D. A., Madureira, A. R., Gomes, A. M., Sarmento, B. and Pintado, M. M. (2014). Optimization of the production of solid Witepsol nanoparticles loaded with rosmarinic acid. Colloids Surf. B Biointerfaces. 115:109–117.
  • Chakraborty, S., Shukla, D., Mishra, B. and Singh, S. (2009). Lipid—an emerging platform for oral delivery of drugs with poor bioavailability. Eur. J. Pharm. Biopharm. 73:1–15.
  • Das, S. and Chaudhury, A. (2010). Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS Pharm. Sci. Tech. 12:62–76.
  • Desai, M. P., Labhasetwar, V., Amidon, G. L. and Levy, R. J. (1996). Gastrointestinal uptake of biodegradable microparticles: Effect of particle size. Pharm. Res. 13:1838–1845.
  • Dimitrios, B. (2006). Sources of natural phenolic antioxidants. Trends Food Sci. Technol. 17:505–512.
  • Dube, A., Nicolazzo, J. A. and Larson, I. (2010). Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (−)-epigallocatechin gallate. Eur. J. Pharm. Sci. 41:219–225.
  • Dube, A., Nicolazzo, J. A. and Larson, I. (2011). Chitosan nanoparticles enhance the plasma exposure of (−)- epigallocatechin gallate in mice through an enhancement in intestinal stability. Eur. J. Pharm. Sci. 44:422–426.
  • Fang, J. Y., Hung, C. F., Hwang, T. L. and Huang, Y. L. (2005). Physicochemical characteristics and in vivo deposition of liposome-encapsulated tea catechins by topical and intratumor administrations. J. Drug Targeting. 13:19–27.
  • Felice, F., Zambito, Y., Belardinelli, E., D'Onofrio, C., Fabiano, A., Balbarini, A. and Di Stefano, R. (2013). Delivery of natural polyphenols by polymeric nanoparticles improves the resistance of endothelial progenitor cells to oxidative stress. Eur. J. Pharm. Sci. 50:393–399.
  • Frozza, R. L., Bernardi, A., Paese, K., Hoppe, J. B., da Silva, T., Battastini, A. M., et al. (2010). Characterization of trans-resveratrol-loaded lipid-core nanocapsules and tissue distribution studies in rats. J. Biomed. Nanotechnol. 6:694–703.
  • Gamboa, J. M. and Leong, K. W. (2013). In vitro and in vivo models for the study of oral delivery of nanoparticles. Adv. Drug Deliv. Rev. 65:800–810.
  • Geetha, T., Kapila, M., Prakash, O., Deol, P. K., Kakkar, V. and Kaur, I. P. (2015). Sesamol-loaded solid lipid nanoparticles for treatment of skin cancer. J. Drug Target. 23:159–169.
  • Ghosh, D., Choudhury, S. T., Ghosh, S., Mandal, A. K., Sarkar, S., Ghosh, A., et al. (2012). Nanocapsulated curcumin: Oral chemopreventive formulation against diethylnitrosamine induced hepatocellular carcinoma in rat. Chemico-Biological. Interactions. 195:206–214.
  • Han, S. B., Kwon, S. S., Jeong, Y. M., Yu, E. R. and Park, S. N. (2014). Physical characterization and in vitro skin permeation of solid lipid nanoparticles for transdermal delivery of quercetin. Int. J. Cosmet. Sci. 36:588–597.
  • Harde, H., Das, M. and Jain, S. (2011). Solid lipid nanoparticles: An oral bioavailability enhancer vehicle. Expert Opin. Drug Deliv. 8:1407–1424.
  • Hu, B., Ting, Y., Yang, X., Tang, W., Zeng, X. and Huang, Q. (2012). Nanochemoprevention by encapsulation of (−)-epigallocatechin-3-gallate with bioactive peptides/chito-san nanoparticles for enhancement of its bioavailability. Chem. Commun. 48:2421–2423
  • Huang, L., Weng, X., Chen, Z., Megharaj, M. and Naidu, R. (2014). Synthesis of iron-based nanoparticles using oolong tea extract for the degradation of malachite green. Spectrochim. Acta A Mol. Biomol. Spectrosc. 117:801–804.
  • Jani, P., Halbert, G. W., Langridge, J. and Florence, A. T. (1990). Nanoparticle uptake by the rat gastrointestinal mucosa-quantitation and particle-size dependency. J Pharm Pharmacol. 42:821–826.
  • Kähkönen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S. and Heinonen, M. (1999). Antioxidant activity of plant extracts containing phenolic compounds. J. Agric. Food Chem. 47:3954–3962.
  • Kakkar, V., Singh, S., Singla, D. and Kaur, I. P. (2011). Exploring solid lipid nanoparticles to enhance the oral bioavailability of curcumin. Mol Nutr Food Res. 55:495–503.
  • Kaur, C. and Kapoor, H. C. (2001). Antioxidants in fruits and vegetables—the millennium's health. Int. J. Food Sci. Technol. 36:703–725.
  • Kaur, I. P., Kapila, M. and Agrawal, R. (2007). Role of novel delivery systems in developing topical antioxidants as therapeutics to combat photoageing. Ageing Res Rev. 6:271–288.
  • Lai, F., Wissing, S. A., Müller, R. H. and Fadda, A. M. (2006). Artemisia arborescens L essential oil-loaded solid lipid nanoparticles for potential agricultural application: Preparation and characterization. AAPS Pharm. Sci. Tech. 7: E10–E18.
  • Lesschaeve, I. and Noble, A. C. (2005). Polyphenols: Factors influencing their sensory properties and their effects on food and beverage preferences. Am. J. Clin. Nutr. 81:330S–335S.
  • Li, H., Zhao, X., Ma, Y., Zhai, G., Li, L. and Lou, H. (2009). Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J. Control Release. 133:238–244.
  • Liang, J., Li, F., Fang, Y., Yang, W., An, X. and Zhao, L., et al (2011). Synthesis, characterization and cytotoxicity studies of chitosan-coated tea polyphenols nanoparticles. Colloids Surf. B Biointerfaces. 82:297–301.
  • Liu, A., Lou, H., Zhao, L. and Fan, P. (2006). Validated LC/MS/MS assay for curcumin and tetrahydrocurcumin in rat plasma and application to pharmacokinetic study of phospholipid complex of curcumin. J. Pharm. Biomed. Anal. 40:720–727.
  • Luo, C. F., Yuan, M., Chen, M. S., Liu, S. M., Zhu, L., Huang, B. Y., et al. (2011). Pharmacokinetics, tissue distribution and relative bioavailability of puerarin solid lipid nanoparticles following oral administration. Int. J. Pharm. 410:138–144.
  • Lu, J. J., Cai, Y. J. and Ding, J. (2012). The short-time treatment with curcumin sufficiently decreases cell viability, induces apoptosis and copper enhances these effects in multidrug-resistant K562/A02 cells. Mol. Cell Biochem. 360:253–260.
  • Lu, X., Ji, C., Xu, H., Li, X., Ding, H., Ye, M., et al. (2009). Resveratrol-loaded polymeric micelles protect cells from Abeta-induced oxidative stress. Int. J. Pharm. 375:89–96.
  • Lu, Q., Li, D. C. and Jiang, G. H. (2011). Preparation of a tea polyphenol nanoliposome system and its physicochemical properties. J. Agric. Food Chem. 59:13004–13011
  • Lukowski, G. and Werner, U. (1998). Investigation of surface and drug release of solid lipid nanoparticles loaded with acyclovir. Inter. Symp. Control. Rel. Bioact. Mater. 25:425–428.
  • Ma, Q. H., Kuang, Y. Z., Hao, X. Z. and Gu, N. (2009). Preparation and characterization of tea polyphenols and vitamin E loaded nanoscale complex liposome. J. Nanosci. Nanotechnol. 9:1379–1383.
  • Ma, D., Tremblay, P., Mahngar, K., Collins, J., Hudlicky, T. and Pandey, S. (2011). Selective cytotoxicity against human osteosarcoma cells by a novel synthetic C-1 analogue of 7-deoxypancratistatin is potentiated by curcumin. PLoS One. 6:e28780.
  • Maiti, K., Mukherjee, K., Gantait, A., Nazeer, A. H., Saha, B. P. and Mukherjee, P. (2005). Enhanced therapeutic benefit of quercetinphospholipid complex in carbon tetrachloride-induced acute liver injury in rats: A comparative study. Iran. J. Pharmac. Ther. 4:84–90.
  • Manach, C., Scalbert, A., Morand, C., Rémésy, C. and Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 79:727–747.
  • McVean, M. and Liebler, D. C. (1997). Inhibition of UVB induced DNA photodamage in mouse epidermis by topically applied alpha-tocopherol. Carcin. 18:1617–1622.
  • Montisci, M. J., Dembri, A., Giovannuci, G., Chacun, H., Duchêne, D. and Ponchel, G. (2001). Gastrointestinal transit and mucoadhesion of colloidal suspensions of Lycopersicon esculentum L. and Lotus tetragonolobus lectin-PLA microsphere conjugates in rats. Pharma Res. 18:829–837.
  • Müller, R. H., Mäder, K. and Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur. J. Pharm. Biopharm.50:161–177.
  • Müller, R. H., Radtke, M. and Wissing, S. A. (2002). Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 54:S131–S155.
  • Munin, A. and Edwards-Lévy, F. (2011). Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics. 3:793–829.
  • Neves, A. R., Lúcio, M., Martins, S., Lima, J. L. and Reis, S. (2013). Novel resveratrol nanodelivery systems based on lipid nanoparticles to enhance its oral bioavailability. Int. J. Nanomedicine. 8:177–187.
  • Olbrich, C. and Müller, R. H. (1999). Enzymatic degradation of SLN-effect of surfactant and surfactant mixtures. Int. J. Pharm. 180:31–39.
  • Pandita, D., Kumar, S., Poonia, N. and Lather, V. (2014). Solid lipid nanoparticles enhance oral bioavailability of resveratrol, a natural polyphenol. Food Res. Intern. 62:1165–1174.
  • Parhi, R. and Suresh, P. (2010). Production of solid lipid nanoparticles-drug loading and release mechanism. J. Chem. Pharm. Res. 2:211–227.
  • Picone, P., Bondi, M. L., Montana, G., Bruno, A., Pitarresi, G., Giammona, G. and Di Carlo, M. (2009). Ferulic acid inhibits oxidative stress and cell death induced by Ab oligomers: Improved delivery by solid lipid nanoparticles. Free Radic. Res. 43:1133–1145.
  • Plianbangchang, P., Tungpradit, W. and Tiyaboonchai, W. (2007). Efficacy and safety of Curcuminoids loaded solid lipid nanoparticles facial cream as an anti-aging agent. Naresuan Univ. J. 15:73–78.
  • Ponchel, G., Montisci, M. J., Dembri, A., Durrer, C. and Duchêne, D. (1997). Mucoadhesion of colloidal particulate systems in the gastro-intestinal tract. Eur. J. Pharm. Biopharm. 44:25–31.
  • Porrini, M. and Riso, P. (2008). Factors influencing the bioavailability of antioxidants in foods: A critical appraisal. Nutr. Metab. Cardiovasc Dis. 18:647–650.
  • Ramachandran, S. and Rajendra, P. N. (2011). Sesamol, a phenolic phytochemical present in Sesamum indicum, inhibits photocarcinogenesis by targeting UVB-induced lipid peroxidation and antioxidation depletion in Swiss albino mice. J. Res. Biochem. 1:001–008.
  • Ramalingam, P. and Ko, Y. T. (2015). Enhanced oral delivery of curcumin from N-trimethyl chitosan surface-modified solid lipid nanoparticles: Pharmacokinetic and brain distribution evaluation. Pharm. Res.32:389–402.
  • Reddy, N. J., Vali, D. N., Rani, M. and Rani, S. R. (2014). Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit. Mater. Sci. Eng. C Mater. Biol. Appl. 34:115–122.
  • Rein, M. J., Renouf, M., Cruz-Hernandez, C., Actis-Goretta, L., Thakkar, S. K. and da Silva, M. P. (2013). Bioavailability of bioactive food compounds: A challenging journey to bioefficacy. Br. J. Clin. Pharmacol. 75:588–602.
  • Ruckenstein, E. and Shulgin, I. (2005). Solubility of drugs in aqueous solutions: Part 5. Thermodynamic consistency test for the solubility data. Intern. J. Pharma. 292:87–94.
  • Ruktanonchai, U., Bejrapha, P., Sakulkhu, U., Opanasopit, P., Bunyapraphatsara, N., Junyaprasert, V. and Puttipipatkhachorn, S. (2009). Physicochemical characteristics, cytotoxicity, and antioxidant activity of three lipid nanoparticulate formulations of alpha-lipoic acid. AAPS Pharm. Sci. Tech. 10:227–234.
  • Santos, I. S., Ponte, B. M., Boonme, P., Silva, A. M. and Souto, E. B. (2013). Nanoencapsulation of polyphenols for protective effect against colon–rectal cancer. Biotechnol. Adv. 31:514–523.
  • Scow, R. O. and Olivecrona, T. (1977). Effect of albumin on products formed from chylomicron triacylglycerol by lipoprotein lipase in vitro. Biochim. Biophys. Acta. 487:472–486.
  • Sessa, M., Balestrieri, M. L., Ferrari, G., Servillo, L., Castaldo, D., D'Onofrio, N., et al. (2014). Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems. Food Chem. 147:42–50.
  • Severino, P., Andreani, T., Macedo, A. S., Fangueiro, J. F., Santana, M. H., Silva, A. M. and Souto, E. B. (2011). Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery. J. Drug Deliv. 2012:1–10.
  • Shaikh, J., Ankola D. D., Beniwal, V., Singh, D. and Kumar, M. N. (2009). Nanoparticle encapsu-lation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur. J. Pharm. Sci. 37:223–230.
  • Srivastava, A. K., Bhatnagar, P., Singh, M., Mishra, S., Kumar, P., Shukla, Y. and Gupta, K. C. (2013). Synthesis of PLGA nanoparticles of tea polyphenols and their strong in vivo protective effect against chemically induced DNA damage. Int. J. Nanomedicine. 8:1451–1462
  • Shutava, T. G., Balkundi, S. S., Vangala, P., Steffan, J. J., Bigelow, R. L., Cardelli, J. A., et al. (2009). Layer-by-Layer-coated gelatin nanoparticles as a vehicle for delivery of natural polyphenols. ACS Nano. 3:1877–1885.
  • Souto, E. B., Wissing, S. A., Barbosa, C. M. and Müller, R. H. (2004). Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int. J. Pharm. 278:71–77.
  • Tabasco, R., Sánchez-Patán, F., Monagas, M., Bartolomé, B., Moreno-Arribas M. V., Peláez, C. and Requena, T. (2011). Effect of grape polyphenols on lactic acid bacteria and bifidobacteria growth: Resistance and metabolism. Food Microbiol. 28:1345–1352.
  • Tan, B. J., Liu, Y., Chang, K. L., Lim, B. K. and Chiu, G. N. (2012). Perorally active nanomicellar formulation of quercetin in the treatment of lung cancer. Int. J. Nanomedicine. 7:651–661.
  • Trombino, S., Cassano, R., Ferrarelli, T., Barone, E., Picci, E. and Mancuso, C. (2013). Trans-ferulic acid-based solid lipid nanoparticles and their antioxidant effect in rat brain microsomes. Colloids Surf. B Biointerfaces. 109:273–279.
  • Trombino, S., Cassano, R., Muzzalupo, R., Pingitore, A., Cione, E. and Picci, N. (2009). Stearyl ferulate-based solid lipid nanoparticles for the encapsulation and stabilization of β-carotene and α-tocopherol. Colloids Surf B Biointerfaces. 72:181–187.
  • Uner, M. (2006). Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Their benefits as colloidal drug carrier systems. Pharmazie. 61:375–386.
  • Vermerris, W. and Nicholson, R. (2008). Phenolic compound biochemistry. Springer. Dordrecht. The Netherlands.
  • Waghmare, A. S., Grampurohit, N. D., Gadhave, M. V., Gaikwad, D. D. and Jadhav, S. L. (2012). Solid lipid nanoparticles: A promising drug delivery system. Intern. Res. J. Pharm. 3:100–107.
  • Wang, M., Qin, L., Li, K., Zhu, R., Wang, W. and Wang, S. (2012b). The improvement of the anticancer effect of a novel compound benzoic acid, 2-hydroxy-, 2-D-ribofuranosylhydrazide (BHR) loaded in solid lipid nanoparticles. AAPS Pharm Sci Tech. 13:1348–1354.
  • Wang, G., Wang, J. J., Yang, G. Y., Du, S. M., Zeng, N., Li, D. S., et al. (2012a). Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death. Int. J. Nanomedicine. 7:271–280.
  • Wang, W., Zhu, R., Xie, Q., Li, A., Xiao, Y., Li, K., et al. (2012c). Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int. J. Nanomedicine. 7:3667–3677.
  • Weiss, J., Takhistov, P. and McClements, J. (2006). Functional materials in food nanotechnology. J. Food Sci. 71:107–116.
  • Westesen, K., Bunjes, H., Koch, M. H. J. (1997). Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential. J. Control. Release. 48:223–236.
  • Wissing, S. A., Müller, R. H. (2001). A novel sunscreen system based on tocopherol acetate incorporated into solid lipid nanoparticles. Int. J. Cosmet. Sci. 23:233–243.
  • Wojdyło, A., Oszmiański, J. and Czemerys, R. (2007). Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 105:940–949.
  • Xie, X., Tao, Q., Zou, Y., Zhang, F., Guo, M. and Wang, Y. (2011). PLGA nanoparticles improve the oral bioavailability of curcumin in rats: Characterizations and mechanisms. J. Agric. Food Chem. 59:9280–9289.
  • Yallapu, M. M., Gupta, B. K., Jaggi, M. and Chauhan, S. C. (2010). Fabrication of curcumin encapsulated PLGA nanoparticles for improved therapeutic effects in metastatic cancer cells. J. Colloid. Interface Sci. 351:19–29.
  • Yu, A., Wang, H., Wang, J., Cao, F., Gao, Y., Cui, J. and Zhai, G. (2011). Formulation optimization and bioavailability after oral and nasal administration in rabbits of puerarin-loaded microemulsion. J. Pharm. Sci. 100:933–941.
  • Yu, H. and Huang, Q. (2012). Improving the oral bioavailability of curcumin using novel organogel-based nanoemulsions. J. Agric. Food Chem. 60:5373–5379.
  • Zimmermann, E. and Müller, R. H. (2001). Electrolyte- and pH-stabilities of aqueous solid lipid nanoparticle (SLN) dispersions in artificial gastrointestinal media. Eur. J. Pharm. Biopharm. 52:203–210.
  • zurMuhlen, Z., zurMuhlen, E., Niehus, H. and Mehnert, W. (1996) Atomic force microscopy studies of solid lipid nanoparticles. Pharm. Res. 13:1411–1416.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.