2,331
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

Physicochemical, Rheological, and Thermal Properties of Six Types of Honey from Various Floral Origins in Tunisia

, , , , , & show all
Pages 2624-2637 | Received 30 Sep 2014, Accepted 16 Dec 2014, Published online: 31 Jul 2015
 

Abstract

The present study was undertaken to determine the physicochemical, rheological, and thermal properties of six types of Tunisian honey samples from various floral origins (eucalyptus, orange, thyme, mint, rosemary, and horehound). All the honey samples exhibited non-Newtonian behavior at a shear rate ranging between 0.01 and 500 s–1, with the highest levels of viscosity (µ) being observed for thyme, followed by eucalyptus, rosemary, mint, orange, and horehound honeys, respectively. The effect of temperature on the dynamic viscosity of the samples followed an Arrhenius-like pattern, with activation energy values ranging from 21.23 to 34.91 kJ/mol. The results from oscillatory rheology analysis also revealed that the loss modulus predominated over the storage one in the whole frequency range. As determined by differential scanning calorimetry, the glass transition (Tg) and melting temperatures of the Tunisian honey samples varied between –41.55 and –47.06 °C and between 197.9 and 221.1°C depending on their sugar compositions, respectively.

Additional information

Funding

The authors would like to thank the Tunisian Ministry of Higher Education, Scientific Research, and Technology for the financial support of the present study.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.