2,700
Views
38
CrossRef citations to date
0
Altmetric
Articles

Non-destructive evaluation of maturity and quality parameters of pomegranate fruit by visible/near infrared spectroscopy

, , , &
Pages 41-52 | Received 25 Aug 2015, Accepted 28 Nov 2015, Published online: 30 Aug 2016
 

ABSTRACT

In this study, the potential of visible and near infrared spectroscopy was investigated to classify the maturity stage and to predict the quality attributes of pomegranate variety “Ashraf” such as total soluble solids content, pH, and titratable acidity during four distinct maturity stages between 88 and 143 days after full bloom. Principal component analysis was used to distinguish among different maturities. The prediction models of internal quality attributes of the pomegranate were developed by partial least squares regression. The transmission spectra of pomegranate were obtained in the wavelength range from 400 to 1100 nm. In this research several preprocessing methods were utilized including centering, smoothing (Savitzky–Golay algorithm, median filter), normalization (multiplicative scatter correction and standard normal variate) and differentiation (first derivative and second derivative). It concluded that different preprocessing techniques had effects on the classification performance of the model using the principal component analysis method. In general, standard normal variate and multiplicative scatter correction gave better results than the other pretreatments. The correlation coefficients (r), root mean square error of calibration and ratio performance deviation for the calibration models were calculated: r = 0.93, root mean square error of calibration = 0.22 °Brix and ratio performance deviation = 6.4 °Brix for total soluble solids; r = 0.84, root mean square error of calibration = 0.064 and ratio performance deviation = 4.95 for pH; r = 0.94, root mean square error of calibration = 0.25 and ratio performance deviation = 5.35 for titratable acidity.

Acknowledgment

The authors would like to thank Ferdowsi University of Mashhad for providing the laboratory facilities.

Funding

The authors are grateful for the Ferdowsi University of Mashhad for providing the financial support through the project No. of 28580.

Additional information

Funding

The authors are grateful for the Ferdowsi University of Mashhad for providing the financial support through the project No. of 28580.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.