2,692
Views
38
CrossRef citations to date
0
Altmetric
Articles

Non-destructive evaluation of maturity and quality parameters of pomegranate fruit by visible/near infrared spectroscopy

, , , &
Pages 41-52 | Received 25 Aug 2015, Accepted 28 Nov 2015, Published online: 30 Aug 2016

References

  • Jbir, R.; Hasnaoui, N.; Mars, M.; Marrakchi, M.; Trifi, M. Characterization of Tunisian Pomegranate (Punicagranatuml.) Cultivars Using Amplified Fragment Length Polymorphism Analysis. Scientia Horticulturae 2008, 115, 231–237.
  • Holland, D.; Hatib, K.; Bar-Ya’akov, I. Pomegranate: Botany, Horticulture, Breeding. Horticultural Reviews 2009, 35, 127–191.
  • Anon. Agricultural and Natural Sources Section; Bulletin of Iranian Data Center, 2010.
  • Kader, A.A. Fruit, Maturity, Ripening and Quality Relationships. Acta Horticulturae 1999, 485, 203–208.
  • Salah, A.A.; Dilshad, A. Changes in Physical and Chemical Properties During Pomegranate (Punica Granatum L.) Fruit Maturation. Food Chemistry 2002, 76, 437–441.
  • Al-Said, F.A.; Opara, L.U.; Al-Yahyai, R.A. Physico-Chemical and Textural Quality Attributes of Pomegranate Cultivars (Punica Granatum L.) Grown in the Sultanate of Oman. Journal of Food Engineering 2009, 90, 129–134.
  • Zarei, M.; Azizi, M.; Bashir-Sadr, Z. Evaluation of Physicochemical Characteristics of Pomegranate (Punica Granatum L.) Fruit During Ripening. Fruits 2011, 66, 121–129.
  • Fawole, O.A.; Opara, U.L., Changes in Physical Properties, Chemical, and Elemental Composition and Antioxidant Capacity of Pomegranate (Cv. ‘Ruby’) Fruit at five Maturity Stages. Scientia Horticulturae 2013a, 150, 37–46.
  • Fawole, O.A.; Opara, U.L. Fruit Growth Dynamics, Respiration Rate, and Physico-Textural Properties During Pomegranate Development and Ripening. Scientia Horticulturae 2013b, 157, 90–98.
  • Blasco, J.; Cubero, S.; Gomez-Sanchis, J.; Mira, P.; Molto, E. Development of a Machine for the Automatic Sorting of Pomegranate (Punica Granatum) Arils Based on Computer Vision. Journal of Food Engineering 2009, 90, 27–34.
  • Zhang, L.; McCarthy, M.J. Assessment of Pomegranate Postharvest Quality Using Nuclear Magnetic Resonance. Postharvest Biolology and Technology 2013, 77, 59–66.
  • Castro-Giraldez, M.; Fito, P.J.; Ortola, M.D.; Balaguer, N. Study of Pomegranate Ripening by Dielectric Spectroscopy. Postharvest Biolology and Technology 2013, 86, 346–353.
  • Magwaza, L.S.; Opara, U.L. Investigating Non-Destructive Quantification and Characterization of Pomegranate Fruit Internal Structure Using X-Ray Computed Tomography. Postharvest Biolology and Technology 2014, 95, 1–6.
  • Lu, R.; Guyer, D.; Beaudry, R.M. Determination of Firmness and Sugar Content of Apple Using NIR Diffuse Reflectance. Journal of Texture Studies 2000, 31, 615–630.
  • Yan-de, L.; Yi-bin, Y.; Xiaping, F.; Huishan, L. Experiments on Predicting Sugar Content in Apples by FT-NIR Technique. Journal of Food. Engineering 2007, 80, 986–989.
  • Fan, G.; Zha, J.; Du, R.; Gao, L. Determination of Soluble Solids and firmness of Apples by Vis/NIR Transmittance. Journal of Food. Engineering 2009, 93, 416–420.
  • Carlini, P.; Massantini, R.; Mencarelli, F. Vis-NIR Measurement of Soluble Solids in Cherry and Apricot by PLS Regression and Wavelength Selection. Journal of Agriculture and Food Chemistry 2000, 48, 5236–5242.
  • Clark, C.J.; McGlone, V.A.; Requejo, C.; White, A.; Woolf, A.B. Dry Matter Determination in “Hass” Avocado by NIR Spectroscopy. Postharvest Biolology and Technology 2003, 29, 300–307.
  • Tarkosova, J.; Copikova, J. Determination of Carbohydrate Content in Bananas During Ripening and Storage by Near Infrared Spectroscopy. Journal of Near Infrared Spectroscopy 2000, 8, 21–26.
  • Lu, R. Predicting Firmness and Sugar Content of Sweet Cherries Using Near-Infrared Diffuse Reflectance Spectroscopy. Transaction of the ASAE 2001, 44, 1265–1271.
  • Lee, K.; Kim, G.; Kang, S.; Son, J.; Choi, D.; Choi, K. Measurement of Sugar Content in Citrus Using Near Infrared Transmittance. Key Engineering Materials 2004, 270, 1014–1019.
  • Schulz, H.; Drews, H.H.; Quilitzsch, R.; Kruger, H. Application of Near Infrared Spectroscopy for the Quantification of Quality Parameters in Selected Vegetables and Essential Oil Plants. Journal of Near Infrared Spectroscopy 1998, 6, A125–A130.
  • Herrera, J.; Guesalaga, A.; Agosin, E. Shortwave Near Infrared Spectroscopy for Non-Destructive Determination of Maturity of Wine Grapes. Measurement Science and Technology 2003, 14, 689–697.
  • McGlone, V.A.; Jordan, R.B.; Seelye, R.; Martinsen, P.J. Comparing Density and NIR Methods for Measurement of Kiwifruit Dry Matter and Soluble Solids Content. Postharvest Biolology and Technology 2002, 26, 191–198.
  • Moghimi, A.; Aghkhani, M.H.; Sazgarnia, A.; Sarmad, M. Vis/NIR Spectroscopy and Chemometrics for the Prediction of Soluble Solids Content and Acidity (pH) of Kiwifruit. Biosystem Engineering 2010, 106, 295–302.
  • Walsh, K.B.; Golic, M.; Greensill, C.V. Sorting of Fruit Using Near Infrared Spectroscopy: Application to a Range of Fruit and Vegetables for Soluble Solids and Dry Matter Content. Journal of Near Infrared Spectroscopy 2004, 12, 141–148.
  • Gomez, H.A.; He, Y.; Pereira, A.G. Non-Destructive Measurement of Acidity, Soluble Solids and Firmness of Satsuma Mandarin Using Vis/NIR Spectroscopy Techniques. Journal of Food Engineering 2006, 77, 313–319.
  • Saranwong, S.; Sornsrivichai, J.; Kawano, S. Performance of a Portable Near Infrared Instrument for Brix Value Determination of Intact Mango Fruit. Journal of Near Infrared Spectroscopy 2003, 11, 175–181.
  • Guthrie, J.A.; Liebenberg, C.J.; Walsh, K.B. NIR Model Development and Robustness in Prediction of Melon Fruit Total Soluble Solids. Australian Journal of Agricultural Research 2006, 57, 1–8.
  • Jamshidi, B.; Minaei, S.; Mohajerani, E.; Ghassemian, H. Prediction of Soluble Solids in Oranges Using Visible/Near-Infrared Spectroscopy: Effect of Peel. International Journal of Food Properties 2014, 18, 1460–1468.
  • Long, R.L.; Walsh, K.B. Limitations to the Measurement of Intact Melon Total Soluble Solids Using Near Infrared Spectroscopy. Australian Journal of Agricultural Research 2006, 57, 403–410.
  • Ying, Y.B.; Liu, Y.D.; Wang, J.P.; Fu, X.P.; Li, Y.B. Fourier Transforms Near-Infrared Determination of Total Soluble Solids and Available Acid in Intact Peaches. Transaction of the ASAE 2005, 48, 229–234.
  • Schulz, H.; Baranska, M.; Schutze, W.; Losing, G. Characterization of Peppercorn, Pepper Oil, and Pepper Oleoresin by Vibrational Spectroscopy Methods. Journal of Agriculture and Food Chemistry 2005, 53, 3358–3363.
  • Lapchareonsuk, R.; Sirisomboon, P. Sensory Quality Evaluation of Rice Using Visible and Shortwave Near-Infrared Spectroscopy. International Journal of Food Properties 2015, 18, 1128–1138.
  • Golic, M.; Walsh, K.B. Robustness of Calibration Models Based on Near Infrared Spectroscopy for the in-Line Grading of Stone Fruit for Total Soluble Solids Content. Analytica Chimica Acta 2006, 555, 286–291.
  • Pedro, A.M.K.; Ferreira, M.M.C. Nondestructive Determination of Solids and Carotenoids In Tomato Products by Near-Infrared Spectroscopy and Multivariate Calibration. Analytical Chemistry 2005, 77, 2505–2511.
  • Shao, Y.; He, Y.; Gomez, A.H.; Pereir, A.G.; Qiu, Z.; Zhag, Y. Visible/Near Infrared Spectrometric Technique for Nondestructive Assessment of Tomato “Heatwave” (Lycopersicum Esculentum) Quality Characteristics. Journal of Food Engineering 2007, 81, 672–678.
  • Blanco, M.; Villarroya, I. NIR Spectroscopy: A Rapid Response Analytical Tool. Trend in Analytical Chemistry 2002, 21, 240–250.
  • Cen, H.; He, Y. Theory and Application of Near Infrared Reflectance Spectroscopy in Determination of Food Quality. Trends in Food Science & Technology 2007, 18, 72–83.
  • Naes, T.; Isaksson, T.; Fearn, T.; Davies, T. A User-Friendly Guide to Multivariate Calibration and Classification; NIR Publications: Charlton, Chichester, UK, 2004.
  • Perkin, J.H.; Tenge, B.; Honigs, D.E. Resolution Enhancement Using Anapproximate-Inverse Savitzky–Golay Smooth. Spectrochimica Acta Part B: Atomic Spectroscopy 1988, 43, 575–603.
  • Nicolai, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive Measurement of Fruit and Vegetable Quality by Means of NIR Spectroscopy: A Review. Postharvest Biology and Technology 2007, 46, 99–118.
  • Viscarra Rossel, R.A. ParLeS: Software for Chemometric Analysis of Spectroscopic Data. Chemometrics and Intelligent Laboratory Systems 2008, 90, 72–83.
  • Clark, C.J.; McGlone, V.A.; De Silva, H.N.; Manning, M.A.; Burdon, J.; Mowat, A.D. Prediction of Storage Disorders of Kiwifruit (Actinidia Chinensis) Based on Visible-NIR Spectral Characteristics at Harvest. Postharvest Biology and Technology 2004, 32, 147–158.
  • Liu, F.; Wang, L.; He, Y. Application of Effective Wavelengths for Variety Identification of Instant Milk Teas. Journal of Zhejiang University 2010, 44, 619–623.
  • Westad, F.; Bevilacqua, M.; Marini, F. Regression. In Chemometrics in Food Chemistry; Marini, F.; Ed.; Amsterdam, Netherlands: Elsevier, 2013; 127–169.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.