15
Views
42
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

The Drosophila melanogaster DmRAD54 Gene Plays a Crucial Role in Double-Strand Break Repair after P-Element Excision and Acts Synergistically with Ku70 in the Repair of X-Ray Damage

, , , &
Pages 6269-6275 | Received 22 Apr 1999, Accepted 14 Jun 1999, Published online: 27 Mar 2023
 

Abstract

The RAD54 gene has an essential role in the repair of double-strand breaks (DSBs) via homologous recombination in yeast as well as in higher eukaryotes. A Drosophila melanogasterstrain deficient in the RAD54 homolog DmRAD54is characterized by increased X-ray and methyl methanesulfonate (MMS) sensitivity. In addition, DmRAD54 is involved in the repair of DNA interstrand cross-links, as is shown here. However, whereas X-ray-induced loss-of-heterozygosity (LOH) events were completely absent in DmRAD54−/− flies, treatment with cross-linking agents or MMS resulted in only a slight reduction in LOH events in comparison with those in wild-type flies. To investigate the relative contributions of recombinational repair and nonhomologous end joining in DSB repair, a DmRad54−/−/DmKu70−/−double mutant was generated. Compared with both single mutants, a strong synergistic increase in X-ray sensitivity was observed in the double mutant. No similar increase in sensitivity was seen after treatment with MMS. Apparently, the two DSB repair pathways overlap much less in the repair of MMS-induced lesions than in that of X-ray-induced lesions. Excision of P transposable elements in Drosophila involves the formation of site-specific DSBs. In the absence of the DmRAD54 gene product, no male flies could be recovered after the excision of a single P element and the survival of females was reduced to 10% compared to that of wild-type flies. P-element excision involves the formation of two DSBs which have identical 3′ overhangs of 17 nucleotides. The crucial role of homologous recombination in the repair of these DSBs may be related to the very specific nature of the breaks.

ACKNOWLEDGMENTS

The work described in this paper was supported by the Dutch Cancer Foundation (project RUL94-774) and by the J. A. Cohen Institute, Interuniversity Research Institute for Radiopathology and Radiation Protection (IRS; project 4.4.12).

We thank Niels de Wind for critical reading of the manuscript and Koos Zwinderman for statistical analysis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.