33
Views
81
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Proteasome-Mediated Degradation of the Coactivator p300 Impairs Cardiac Transcription

, , , &
Pages 8643-8654 | Received 23 Mar 2000, Accepted 29 Aug 2000, Published online: 28 Mar 2023
 

Abstract

The transcription of tissue-specific genes is controlled by regulatory factors and cofactors and is suppressed in cardiac cells by the antineoplastic agent doxorubicin. Here we show that exposure of cultured cardiomyocytes to doxorubicin resulted in the rapid depletion of transcripts for MEF2C, dHAND, and NKX2.5, three pivotal regulators of cardiac gene expression. Delivery of exogenous p300, a coactivator of MEF2C and NKX2.5 in cardiomyocytes, restored cardiac transcription despite the presence of doxorubicin. Furthermore, p300 also restored the accumulation of transcripts for MEF2C itself. Importantly, cardiocytes exposed to doxorubicin displayed reduced levels of p300 proteins. This was not due to alterations in the level of p300 transcripts; rather, and surprisingly, doxorubicin promoted selective degradation of p300 mediated by the 26S-proteasome machinery. Doxorubicin had no effect on the general level of ubiquitinated proteins or on the levels of β-catenin, a protein known to be degraded by proteasome-mediated degradation. These results provide evidence for a new mechanism of transcriptional repression caused by doxorubicin in which the selective degradation of p300 results in reduced p300-dependent transcription, including production of MEF2C mRNA.

ACKNOWLEDGMENTS

This work was supported in part by grants from the National Institutes of Health (to L.K.) and from the American Heart Association (to R.K.). C.P. was supported by a research fellowship from the American Heart Association-Greater Los Angeles.

We thank Henry Sucov for his suggestions and criticisms and members of the Kedes lab for helpful discussions.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.