33
Views
81
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Proteasome-Mediated Degradation of the Coactivator p300 Impairs Cardiac Transcription

, , , &
Pages 8643-8654 | Received 23 Mar 2000, Accepted 29 Aug 2000, Published online: 28 Mar 2023

REFERENCES

  • Avantaggiati, M. L., Carbone, M., Graessman, A., Nakatani, Y., Howard, B., and Levine, A. S.. 1996. The SV40 large T antigen and adenovirus E1a oncoproteins interact with distinct isoforms of the transcriptional co-activator, p300. EMBO J. 15:2236–2248
  • Avantaggiati, M. L., Ogryzko, V., Gardner, K., Giordano, A., Levine, A. S., and Kelly, K.. 1997. Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89:1175–1184
  • Bishopric, N. H., and Kedes, L.. 1991. Adrenergic regulation of the skeletal alpha-actin gene promoter during myocardial cell hypertrophy. Proc. Natl. Acad. Sci. USA 88:2132–2136
  • Ciechanover, A.. 1994. The ubiquitin-proteasome proteolytic pathway. Cell 79:13–21
  • Durocher, D., Charron, F., Warren, R., Schwartz, R. J., and Nemer, M.. 1997. The cardiac transcription factors Nkx2–5 and GATA-4 are mutual cofactors. EMBO J. 16:5687–5696
  • Durocher, D., Chen, C. Y., Ardati, A., Schwartz, R. J., and Nemer, M.. 1996. The atrial natriuretic factor promoter is a downstream target for Nkx-2.5 in the myocardium. Mol. Cell. Biol. 16:4648–4655
  • Eckner, R., Ewen, M. E., Newsome, D., Gerdes, M., DeCaprio, J. A., Lawrence, J. B., and Livingston, D. M.. 1994. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 8:869–884
  • Eckner, R., Ludlow, J. W., Lill, N. L., Oldread, E., Arany, Z., Modjtahedi, N., DeCaprio, J. A., Livingston, D. M., and Morgan, J. A.. 1996. Association of p300 and CBP with simian virus 40 large T antigen. Mol. Cell. Biol. 16:3454–3464
  • Eckner, R., Yao, T. P., Oldread, E., and Livingston, D. M.. 1996. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 10:2478–2490
  • Edmondson, D. G., Lyons, G. E., Martin, J. F., and Olson, E. N.. 1994. Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 120:1251–1263
  • Egan, C., Jelsma, T. N., Howe, J. A., Bayley, S. T., Ferguson, B., and Branton, P. E.. 1988. Mapping of cellular protein-binding sites on the products of early-region 1A of human adenovirus type 5. Mol. Cell. Biol. 8:3955–3959
  • Grossman, S. R., Perez, M., Kung, A. L., Joseph, M., Mansur, C., Xiao, Z. X., Kumar, S., Howley, P. M., and Livingston, D. M.. 1998. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol. Cell 2:405–415
  • Gustafson, T. A., and Kedes, L.. 1989. Identification of multiple proteins that interact with functional regions of the human cardiac alpha-actin promoter. Mol. Cell. Biol. 9:3269–3283
  • Hochstrasser, M.. 1995. Ubiquitin, proteasomes, and the regulation of intracellular protein degradation. Curr. Opin. Cell Biol. 7:215–223
  • Hochstrasser, M.. 1996. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30:405–439
  • Huang, J., Weintraub, H., and Kedes, L.. 1998. Intramolecular regulation of MyoD activation domain conformation and function. Mol. Cell. Biol. 18:5478–5484
  • Ito, H., Miller, S. C., Billingham, M. E., Akimoto, H., Torti, S. V., Wade, R., Gahlmann, R., Lyons, G., Kedes, L., and Torti, F. M.. 1990. Doxorubicin selectively inhibits muscle gene expression in cardiac muscle cells in vivo and in vitro. Proc. Natl. Acad. Sci. USA 87:4275–4279
  • Janknecht, R., and Hunter, T.. 1996. Transcription: a growing coactivator network. Nature 383:22–23
  • Jeyaseelan, R., Poizat, C., Baker, R. K., Abdishoo, S., Isterabadi, L. B., Lyons, G. E., and Kedes, L.. 1997. A novel cardiac-restricted target for doxorubicin: CARP, a nuclear modulator of gene expression in cardiac progenitor cells and cardiomyocytes. J. Biol. Chem. 272:22800–22808
  • Kamei, Y., Xu, L., Heinzel, T., Torchia, J., Kurokawa, R., Gloss, B., Lin, S. C., Heyman, R. A., Rose, D. W., Glass, C. K., and Rosenfeld, M. G.. 1996. A CBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85:403–414
  • Kitabayashi, I., Eckner, R., Arany, Z., Chiu, R., Gachelin, G., Livingston, D. M., and Yokoyama, K. K.. 1995. Phosphorylation of the adenovirus E1A-associated 300 kDa protein in response to retinoic acid and E1A during the differentiation of F9 cells. EMBO J. 14:3496–3509
  • Kurabayashi, M., Dutta, S., Jeyaseelan, R., and Kedes, L.. 1995. Doxorubicin-induced Id2A gene transcription is targeted at an activating transcription factor/cyclic AMP response element motif through novel mechanisms involving protein kinases distinct from protein kinase C and protein kinase A. Mol. Cell. Biol. 15:6386–6397
  • Kurabayashi, M., Jeyaseelan, R., and Kedes, L.. 1993. Antineoplastic agent doxorubicin inhibits myogenic differentiation of C2 myoblasts. J. Biol. Chem. 268:5524–5529
  • Kurabayashi, M., Jeyaseelan, R., and Kedes, L.. 1994. Doxorubicin represses the function of the myogenic helix-loop-helix transcription factor MyoD: involvement of Id gene induction. J. Biol. Chem. 269:6031–6039
  • Levine, A. J.. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331
  • Lin, Q., Schwarz, J., Bucana, C., and Olson, E. N.. 1997. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407
  • Lints, T. J., Parsons, L. M., Hartley, L., Lyons, I., and Harvey, R. P.. 1993. Nkx-2.5: a novel murine homeobox gene expressed in early heart progenitor cells and their myogenic descendants. Development 119:419–431 (Erratum, 119:969.)
  • Lyons, I., Parsons, L. M., Hartley, L., Li, R., Andrews, J. E., Robb, L., and Harvey, R. P.. 1995. Myogenic and morphogenetic defects in the heart tubes of murine embryos lacking the homeo box gene Nkx2–5. Genes Dev. 9:1654–1666
  • Murakami, Y., Matsufuji, S., Kameji, T., Hayashi, S., Igarashi, K., Tamura, T., Tanaka, K., and Ichihara, A.. 1992. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360:597–599
  • Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., and Nakatani, Y.. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959
  • Orford, K., Crockett, C., Jensen, J. P., Weissman, A. M., and Byers, S. W.. 1997. Serine phosphorylation-regulated ubiquitination and degradation of β-catenin. J. Biol. Chem. 272:24735–24738
  • Petrij, F., Giles, R. H., Dauwerse, H. G., Saris, J. J., Hennekam, R. C., Masuno, M., Tommerup, N., van Ommen, G. J., Goodman, R. H., Peters, D. J. et al. 1995. Rubinstein-Taybi syndrome caused by mutations in the transcriptional co-activator CBP. Nature 376:348–351
  • Puri, P. L., Avantaggiati, M. L., Balsano, C., Sang, N., Graessmann, A., Giordano, A., and Levrero, M.. 1997. p300 is required for MyoD-dependent cell cycle arrest and muscle-specific gene transcription. EMBO J. 16:369–383
  • Puri, P. L., Sartorelli, V., Yang, X. J., Hamamori, Y., Ogryzko, V. V., Howard, B. H., Kedes, L., Wang, J. Y., Graessmann, A., Nakatani, Y., and Levrero, M.. 1997. Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol. Cell 1:35–45
  • Sartorelli, V., Huang, J., Hamamori, Y., and Kedes, L.. 1997. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol. 17:1010–1026
  • Sartorelli, V., Puri, P. L., Hamamori, Y., Ogryzko, V. V., Chung, G., Nakatani, Y., Wang, J. Y., and Kedes, L.. 1999. Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol. Cell 4:725–734
  • Sepulveda, J. L., Belaguli, N., Nigam, V., Chen, C. Y., Nemer, M., and Schwartz, R. J.. 1998. GATA-4 and Nkx-2.5 coactivate Nkx-2 DNA binding targets: role for regulating early cardiac gene expression. Mol. Cell. Biol. 18:3405–3415
  • Sheaff, R. J., Singer, J. D., Swanger, J., Smitherman, M., Roberts, J. M., and Clurman, B. E.. 2000. Proteasomal turnover of p21Cip1 does not require p21Cip1 ubiquitination. Mol. Cell 5:403–410
  • Shikama, N., Lyon, J., and La Thange, N.. 1997. The p300/CBP family:integrating signals with transcription factors and chromatin. Trends Cell Biol. 7:230–236
  • Verma, R., and Deshaies, R. J.. 2000. A proteasome howdunit: the case of the missing signal. Cell 101:341–344
  • Whyte, P., Williamson, N. M., and Harlow, E.. 1989. Cellular targets for transformation by the adenovirus E1A proteins. Cell 56:67–75
  • Yao, T. P., Ku, G., Zhou, N., Scully, R., and Livingston, D. M.. 1996. The nuclear hormone receptor coactivator SRC-1 is a specific target of p300. Proc. Natl. Acad. Sci. USA 93:10626–10631
  • Yao, T. P., Oh, S. P., Fuchs, M., Zhou, N. D., Ch'ng, L. E., Newsome, D., Bronson, R. T., Li, E., Livingston, D. M., and Eckner, R.. 1998. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93:361–372
  • Yuan, W., Condorelli, G., Caruso, M., Felsani, A., and Giordano, A.. 1996. Human p300 protein is a coactivator for the transcription factor MyoD. J. Biol. Chem. 271:9009–9013

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.