Publication Cover
Synthetic Communications
An International Journal for Rapid Communication of Synthetic Organic Chemistry
Volume 39, 2009 - Issue 4
333
Views
50
CrossRef citations to date
0
Altmetric
Original Articles

Zirconium Tetrakis(dodecyl Sulfate) [Zr(DS)4] as an Efficient Lewis Acid–Surfactant Combined Catalyst for the Synthesis of Quinoxaline Derivatives in Aqueous Media

, , &
Pages 569-579 | Received 06 Aug 2008, Published online: 27 Jan 2009

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (7)

Premkumar B. Thombre, Sonali A. Korde, Sudarshan S. Dipake, Anjali S. Rajbhoj, Machhindra K. Lande & Suresh T. Gaikwad. (2023) A rapid synthesis of quinoxalines by using Al2O3–ZrO2 as heterogeneous catalyst. Synthetic Communications 53:19, pages 1623-1636.
Read now
Alireza Hasaninejad, Mohsen Shekouhy, Marzieh Miar & Somayeh Firoozi. (2016) Sulfonated Polyethylene Glycol (PEG-SO3H) as Eco-Friendly and Potent Water Soluble Solid Acid for Facile and Green Synthesis of 1,8-Dioxo-Octahydroxanthene and 1,8-Dioxo-Decahydroacridine Derivatives. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry 46:1, pages 151-157.
Read now
Frédéric Lassagne, Floris Chevallier & Florence Mongin. (2014) Saccharin as an Organocatalyst for Quinoxalines and Pyrido[2,3-b]pyrazines Syntheses. Synthetic Communications 44:1, pages 141-149.
Read now
Ghasem Rezanejade Bardajee, Farhang Mizani, Iman Rostami & Ali Mohamadi. (2013) FeCl3Mediated Simple, Green, and Efficient Method for the One-Pot Synthesis of Pyrazine-based Polycyclic Aromatic Compounds under Mild Conditions. Polycyclic Aromatic Compounds 33:5, pages 419-429.
Read now
Alireza Hasaninejad, Abdolkarim Zare, Mohammad Reza Mohammadizadeh & Mohsen Shekouhy. (2010) Lithium bromide as an efficient, green, and inexpensive catalyst for the synthesis of quinoxaline derivatives at room temperature. Green Chemistry Letters and Reviews 3:2, pages 143-148.
Read now

Articles from other publishers (43)

Irfan Ali & Rohit Bhatia. (2024) Green and Eco-friendly Synthetic Strategies for Quinoxaline Derivatives. Current Green Chemistry 11:1, pages 37-49.
Crossref
Rangappa S. Keri, Dinesh Reddy, Srinivasa Budagumpi & Vinayak Adimule. (2023) Reusable nano-catalyzed green protocols for the synthesis of quinoxalines: an overview. RSC Advances 13:29, pages 20373-20406.
Crossref
Mehdi Kalhor, Mahboubeh Shayestefar, Mehdi Khalaj & Fatemeh Janghorban. (2022) Ca(IO3)2 nanoparticles: fabrication and application as an eco-friendly and recyclable catalyst for the green synthesis of quinoxalines, pyridopyrazines, and 2,3-dicyano pyrazines. Research on Chemical Intermediates 49:3, pages 885-900.
Crossref
M. Bharathi, S. Mathivathani, S. Indira, G. Vinoth, Denzil Britto Christopher Leslee & K. Shanmuga Bharathi. (2023) Anchoring of a nickel Schiff base complex with mixed ligands on MCM-41 as a heterogeneous catalyst for the synthesis of quinoxaline derivatives by various energies. Polyhedron 229, pages 116188.
Crossref
Fabián Amaya-García & Miriam M. Unterlass. (2022) Synthesis of 2,3-Diarylquinoxaline Carboxylic Acids in High-Temperature Water. Synthesis 54:15, pages 3367-3382.
Crossref
Prasun Choudhury & Basudeb Basu. 2021. Green Synthetic Approaches for Biologically Relevant Heterocycles. Green Synthetic Approaches for Biologically Relevant Heterocycles 689 768 .
Karim Dânoun, Younes Essamlali, Othmane Amadine, Hassan Mahi & Mohamed Zahouily. (2020) Eco-friendly approach to access of quinoxaline derivatives using nanostructured pyrophosphate Na2PdP2O7 as a new, efficient and reusable heterogeneous catalyst. BMC Chemistry 14:1.
Crossref
Ruby Singh, Diksha Bhardwaj, Shakeel Ahmad Ganaie & Aakash Singh. (2020) Lewis Acid Surfactant Combined (LASC) Catalyst as a Versatile Heterogeneous Catalyst in Various Organic Transformations. Mini-Reviews in Organic Chemistry 17:2, pages 124-140.
Crossref
Bubun Banerjee. 2020. Green Sustainable Process for Chemical and Environmental Engineering and Science. Green Sustainable Process for Chemical and Environmental Engineering and Science 153 190 .
Afsaneh Rashidizadeh, Hossein Ghafuri, Hamid Reza Esmaili Zand & Nahal Goodarzi. (2019) Graphitic Carbon Nitride Nanosheets Covalently Functionalized with Biocompatible Vitamin B 1 : Synthesis, Characterization, and Its Superior Performance for Synthesis of Quinoxalines . ACS Omega 4:7, pages 12544-12554.
Crossref
Sourav De, Bidisha Sarkar, Gajanan Raosaheb Jadhav, Selva Kumar Ramasamy, Subhasis Banerjee, Anbalagan Moorthy, Priyankar Paira & Ashok Kumar S K. (2018) Experimental and Theoretical Study on the Biomolecular Interaction of Novel Acenaphtho Quinoxaline and Dipyridophenazine Analogues. ChemistrySelect 3:38, pages 10593-10602.
Crossref
KRISHNA S INDALKAR, CHETAN K KHATRI & GANESH U CHATURBHUJ. (2017) Rapid, efficient and eco-friendly procedure for the synthesis of quinoxalines under solvent-free conditions using sulfated polyborate as a recyclable catalyst. Journal of Chemical Sciences 129:2, pages 141-148.
Crossref
Maasoumeh Jafarpour & Abdolreza Rezaeifard. (2015) A zirconium Schiff base complex immobilized on starch-coated maghemite nanoparticles catalyzes heterogeneous condensation of 1,2-diamines with 1,2-dicarbonyl compounds. Transition Metal Chemistry 41:2, pages 205-211.
Crossref
Vakhid A. MamedovVakhid A. Mamedov. 2016. Quinoxalines. Quinoxalines 5 133 .
Seyed Meysam Baghbanian. (2015) Propylsulfonic acid functionalized nanozeolite clinoptilolite as heterogeneous catalyst for the synthesis of quinoxaline derivatives. Chinese Chemical Letters 26:9, pages 1113-1116.
Crossref
Marzieh Mohammadi, Ghasem Rezanejade Bardajee & Nader Noroozi Pesyan. (2015) Efficient solvent-free synthesis of pyridopyrazine and quinoxaline derivatives using copper-DiAmSar complex anchored on SBA-15 as a reusable catalyst. Chinese Journal of Catalysis 36:8, pages 1379-1386.
Crossref
Yansheng Dong, Li Huang & Fengping Yi. (2015) Iodine-Mediated Efficient Synthesis of 2,3-Dihydro-Pyrazines. Journal of Chemical Research 39:7, pages 430-432.
Crossref
Mohsen Shekouhy & Ali Khalafi-Nezhad. (2015) Polyethylene glycol-bonded 1,8-diazabicyclo[5.4.0]undec-7-ene (PEG–DBU) as a surfactant-combined base catalyst for the application of nucleosides as reagents in multi-component syntheses of 8-substituted pyrido[2,3-d]pyrimidine-6-carbonitriles in water. Green Chemistry 17:10, pages 4815-4829.
Crossref
Basudeb Basu & Bablee Mandal. 2015. Green Synthetic Approaches for Biologically Relevant Heterocycles. Green Synthetic Approaches for Biologically Relevant Heterocycles 209 256 .
Swati Samanta, Arpita Das Gupta & Asok K. Mallik. (2014) An expedient “on-water” synthesis of quinoxalines. Monatshefte für Chemie - Chemical Monthly 145:10, pages 1669-1673.
Crossref
Hamid Reza Safaei, Mohsen Shekouhy, Shima Khademi, Vahid Rahmanian & Maryam Safaei. (2014) Diversity-oriented synthesis of quinazoline derivatives using zirconium tetrakis(dodecylsulfate) [Zr(DS)4] as a reusable Lewis acid-surfactant-combined catalyst in tap water. Journal of Industrial and Engineering Chemistry 20:5, pages 3019-3024.
Crossref
Lijiu Gao, Rui Liu, Chenxia Yu, Changsheng Yao, Tuanjie Li & Zhaoxin Xiao. (2013) NHC-initiated cascade, metal-free synthesis of quinoxaline derivatives under solvent-free conditions. Research on Chemical Intermediates 40:5, pages 2131-2138.
Crossref
Naushad Edayadulla & Yong Rok Lee. (2014) Cerium oxide nanoparticle-catalyzed three-component protocol for the synthesis of highly substituted novel quinoxalin-2-amine derivatives and 3,4-dihydroquinoxalin-2-amines in water. RSC Advances 4:22, pages 11459.
Crossref
Maasoumeh Jafarpour, Elham Rezapour, Mahboobe Ghahramaninezhad & Abdolreza Rezaeifard. (2014) A novel protocol for selective synthesis of monoclinic zirconia nanoparticles as a heterogeneous catalyst for condensation of 1,2-diamines with 1,2-dicarbonyl compounds. New J. Chem. 38:2, pages 676-682.
Crossref
Pradeep S. Jadhavar, Dinesh Kumar, Priyank Purohit, Bhavin V. Pipaliya, Asim Kumar, Srikant Bhagat & Asit K. Chakraborti. 2014. Green Chemistry: Synthesis of Bioactive Heterocycles. Green Chemistry: Synthesis of Bioactive Heterocycles 37 67 .
Alireza Hasaninejad & Somayeh Firoozi. (2013) Catalyst-free, one-pot, three-component synthesis of 5-amino-1,3-aryl-1 $$H$$ -pyrazole-4-carbonitriles in green media. Molecular Diversity 17:3, pages 459-469.
Crossref
Reihaneh Malakooti, Ghasem Rezanejade Bardajee, Hesamaldin Mahmoudi & Nahale Kakavand. (2013) Zirconium Schiff-Base Complex Modified Mesoporous Silica as an Efficient Catalyst for the Synthesis of Nitrogen Containing Pyrazine Based Heterocycles. Catalysis Letters 143:8, pages 853-861.
Crossref
Alireza Hasaninejad, Nooshin Golzar & Abdolkarim Zare. (2013) One-Pot, Four-Component Synthesis of Novel Spiro[indeno[2,1- b ]quinoxaline-11,4′-pyran]-2′-amines . Journal of Heterocyclic Chemistry 50:3, pages 608-614.
Crossref
Tie‐Qiang Huang, Wen‐Yan Qu, Jin‐Chang Ding, Miao‐Chang Liu, Hua‐Yue Wu & Jiu‐Xi Chen. (2013) Catalyst‐Free Protocol for the Synthesis of Quinoxalines and Pyrazines in PEG. Journal of Heterocyclic Chemistry 50:2, pages 293-297.
Crossref
Hari K. Kadam, Salman Khan, Rupesh A. Kunkalkar & Santosh G. Tilve. (2013) Graphite catalyzed green synthesis of quinoxalines. Tetrahedron Letters 54:8, pages 1003-1007.
Crossref
Maasoumeh Jafarpour, Abdolreza Rezaeifard, Reza Haddad & Somayeh Gazkar. (2012) A reusable zirconium(IV) Schiff base complex catalyzes highly efficient synthesis of quinoxalines under mild conditions. Transition Metal Chemistry 38:1, pages 31-36.
Crossref
Dinesh Kumar, Kapileswar Seth, Damodara N. Kommi, Srikant Bhagat & Asit K. Chakraborti. (2013) Surfactant micelles as microreactors for the synthesis of quinoxalines in water: scope and limitations of surfactant catalysis. RSC Advances 3:35, pages 15157.
Crossref
Alireza Hasaninejad, Mohsen Shekouhy & Abdolkarim Zare. (2012) Silicananoparticles efficiently catalyzed synthesis of quinolines and quinoxalines. Catal. Sci. Technol. 2:1, pages 201-214.
Crossref
Vakhid A. Mamedov & Nataliya A. Zhukova. 2012. 55 88 .
Alireza Hasaninejad, Nooshin Golzar, Mohsen Shekouhy & Abdolkarim Zare. (2011) Diversity‐Oriented Synthesis of Novel 2′‐Aminospiro[11 H ‐indeno[1,2‐ b ]quinoxaline‐11,4′‐[4 H ]pyran] Derivatives via a One‐Pot Four‐Component Reaction . Helvetica Chimica Acta 94:12, pages 2289-2294.
Crossref
Alireza Hasaninejad, Mohsen Shekouhy, Nooshin Golzar, Abdolkarim Zare & Mohammad Mahdi Doroodmand. (2011) Silica bonded n-propyl-4-aza-1-azoniabicyclo[2.2.2]octane chloride (SB-DABCO): A highly efficient, reusable and new heterogeneous catalyst for the synthesis of 4H-benzo[b]pyran derivatives. Applied Catalysis A: General 402:1-2, pages 11-22.
Crossref
Chandrasekhar Navuluri. 2001. Encyclopedia of Reagents for Organic Synthesis. Encyclopedia of Reagents for Organic Synthesis.
Jun Li, Dan‐Na Jiang, Jiu‐Xi Chen, Miao‐Chang Liu, Jin‐Chang Ding & Hua‐Yue Wu. (2011) Eco‐friendly synthesis of quinoxaline derivatives by grinding under solvent‐free conditions. Journal of Heterocyclic Chemistry 48:2, pages 403-406.
Crossref
Jun‐Tao Hou, Yong‐Hui Liu & Zhan‐Hui Zhang. (2010) NbCl 5 as an efficient catalyst for rapid synthesis of quinoxaline derivatives . Journal of Heterocyclic Chemistry 47:3, pages 703-706.
Crossref
Kioumars Aghapoor, Hossein Reza Darabi, Farshid Mohsenzadeh, Yadollah Balavar & Hesam Daneshyar. (2009) Zirconium(IV) chloride as versatile catalyst for the expeditious synthesis of quinoxalines and pyrido[2,3-b]pyrazines under ambient conditions. Transition Metal Chemistry 35:1, pages 49-53.
Crossref
Abdolkarim Zare, Alireza Hasaninejad, Abolfath Parhami, Ahmad Moosavi-ZareRezaReza, Fatemeh Khedri, Zahra Parsaee, Maasoomeh Abdolalipoor-Saretoli, Maasoomeh Khedri, Mehrnoosh Roshankar & Hanafieh Deisi. (2010) Ionic liquid 1-butyl-3-methylimidazolium bromide ([bmim]Br): A green and neutral reaction media for the efficient, catalyst-free synthesis of quinoxaline derivatives. Journal of the Serbian Chemical Society 75:10, pages 1315-1324.
Crossref
Hong-Yan Lü, Shu-Hong Yang, Jia Deng & Zhan-Hui Zhang. (2010) Magnetic Fe3O4 Nanoparticles as New, Efficient, and Reusable Catalysts for the Synthesis of Quinoxalines in Water. Australian Journal of Chemistry 63:8, pages 1290.
Crossref
Alireza Hasaninejad, Abdolkarim Zare, Mohammad Ali Zolfigol & Mohsen Shekouhy. (2009) ChemInform Abstract: Zirconium Tetrakis(dodecyl Sulfate) [Zr(DS) 4 ] as an Efficient Lewis Acid—Surfactant Combined Catalyst for the Synthesis of Quinoxaline Derivatives in Aqueous Media. . ChemInform 40:32.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.