1,016
Views
157
CrossRef citations to date
0
Altmetric
Original Articles

The extension of the ILDM concept to reaction–diffusion manifolds

&
Pages 839-862 | Received 05 Aug 2006, Accepted 02 Jan 2007, Published online: 23 Nov 2007

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (24)

Paola Breda, Eshan Sharma, Santanu De, Matthew J. Cleary & Michael Pfitzner. (2023) Coupling the Multiple Mapping Conditioning Mixing Model with Reaction-diffusion Databases in LES of Methane/air Flames. Combustion Science and Technology 195:2, pages 351-378.
Read now
Chunkan Yu & Ulrich Maas. (2022) Sensitivity of reaction–diffusion manifolds (REDIM) method with respect to the gradient estimate. Combustion Theory and Modelling 26:3, pages 482-512.
Read now
Paola Breda, Chunkan Yu, Ulrich Maas & Michael Pfitzner. (2022) Reaction-Diffusion Manifolds including differential diffusion applied to methane/air combustion in strong extinction regimes. Combustion Theory and Modelling 26:3, pages 451-481.
Read now
Prashant Shrotriya, Ping Wang, Linsong Jiang & Meenatchidevi Murugesan. (2022) REDIM-PFDF Sub-grid Scale Combustion Modeling for Turbulent Partially-premixed Flame: Assessment of Combustion Modes. Combustion Science and Technology 194:4, pages 745-767.
Read now
Riccardo Malpica Galassi, Pietro Paolo Ciottoli, Mauro Valorani & Hong G. Im. (2022) Local combustion regime identification using machine learning. Combustion Theory and Modelling 26:1, pages 135-151.
Read now
Yujuan Luo, Christina Strassacker, Christian Hasse & Ulrich Maas. (2021) Simulation of side-wall quenching of laminar premixed flames with manifold-based reduced kinetic models implemented in generalised coordinates. Combustion Theory and Modelling 25:4, pages 669-694.
Read now
Harshit Gupta, Omkejan J. Teerling & Jeroen A. van Oijen. (2021) Effect of progress variable definition on the mass burning rate of premixed laminar flames predicted by the Flamelet Generated Manifold method. Combustion Theory and Modelling 25:4, pages 631-645.
Read now
Giampaolo Maio, Mélody Cailler, Alberto Cuoci & Benoît Fiorina. (2020) A virtual chemical mechanism for prediction of NO emissions from flames. Combustion Theory and Modelling 24:5, pages 872-902.
Read now
Chunkan Yu, Felipe Minuzzi & Ulrich Maas. (2020) REDIM reduced chemistry for the simulation of counterflow diffusion flames with oscillating strain rates. Combustion Theory and Modelling 24:4, pages 682-704.
Read now
Philipp Golda, Andreas Blattmann, Alexander Neagos, Viatcheslav Bykov & Ulrich Maas. (2020) Implementation problems of manifolds-based model reduction and their generic solution. Combustion Theory and Modelling 24:3, pages 377-406.
Read now
Aromal Vasavan, Philip de Goey & Jeroen van Oijen. (2020) A novel method to automate FGM progress variable with application to igniting combustion systems. Combustion Theory and Modelling 24:2, pages 221-244.
Read now
A. Panchal, R. Ranjan & S. Menon. (2019) A Comparison of Finite-Rate Kinetics and Flamelet-Generated Manifold Using a Multiscale Modeling Framework for Turbulent Premixed Combustion. Combustion Science and Technology 191:5-6, pages 921-955.
Read now
Xiang Gao, Xiaolong Gou & Wenting Sun. (2019) Global Pathway Analysis: a hierarchical framework to understand complex chemical kinetics. Combustion Theory and Modelling 23:3, pages 549-571.
Read now
Christina Strassacker, Viatcheslav Bykov & Ulrich Maas. (2019) REDIM reduced modeling of flame quenching at a cold wall – The influence of detailed transport models and detailed mechanisms. Combustion Science and Technology 191:2, pages 208-222.
Read now
Denis V. Efimov, Philip de Goey & Jeroen A. van Oijen. (2018) FGM with REDx: chemically reactive dimensionality extension. Combustion Theory and Modelling 22:6, pages 1103-1133.
Read now
Arash Hosseinzadeh, Amsini Sadiki, Francesca di Mare & Johannes Janicka. (2017) Effects of subgrid scale and combustion modelling on flame structure of a turbulent premixed flame within LES and tabulated chemistry framework. Combustion Theory and Modelling 21:5, pages 838-863.
Read now
Axel Lukassen & Martin Kiehl. (2017) Reduction of round-off errors in chemical kinetics. Combustion Theory and Modelling 21:2, pages 183-204.
Read now
A. Abou-Taouk, B. Farcy, P. Domingo, L. Vervisch, S. Sadasivuni & L.-E. Eriksson. (2016) Optimized Reduced Chemistry and Molecular Transport for Large Eddy Simulation of Partially Premixed Combustion in a Gas Turbine. Combustion Science and Technology 188:1, pages 21-39.
Read now
Asghar Ghorbani, Gerd Steinhilber, Detlev Markus & Ulrich Maas. (2015) A PDF projection method: A pressure algorithm for stand-alone transported PDFs. Combustion Theory and Modelling 19:2, pages 188-222.
Read now
A. Ghorbani, G. Steinhilber, D. Markus & U. Maas. (2014) Numerical Investigation of Ignition in a Transient Turbulent Jet by Means of a PDF Method. Combustion Science and Technology 186:10-11, pages 1582-1596.
Read now
A. Neagos, V. Bykov & U. Maas. (2014) Study of Extinction Limits of Diluted Hydrogen-Air Counter-Flow Diffusion Flames with the Redim Method. Combustion Science and Technology 186:10-11, pages 1502-1516.
Read now
Pedro Henrique de Almeida Konzen, Thomas Richter, Uwe Riedel & Ulrich Maas. (2011) Implementation of REDIM reduced chemistry to model an axisymmetric laminar diffusion methane–air flame. Combustion Theory and Modelling 15:3, pages 299-323.
Read now
M. Wang, A. Frisque, J. Huang & W.K. Bushe. (2008) Trajectory generated low-dimensional manifolds generated using the stochastic particle model. Combustion Theory and Modelling 12:2, pages 249-267.
Read now

Articles from other publishers (133)

Yujuan Luo, Matthias Steinhausen, Driss Kaddar, Christian Hasse & Federica Ferraro. (2023) Assessment of flamelet manifolds for turbulent flame-wall interactions in large-eddy simulations. Combustion and Flame 255, pages 112923.
Crossref
Cédric Mehl & Damien Aubagnac-Karkar. (2023) On-the-fly accuracy evaluation of artificial neural networks and hybrid method to improve the robustness of neural network accelerated chemistry solving. Physics of Fluids 35:6.
Crossref
Julian Bissantz, Jeremy Karpowski, Matthias Steinhausen, Yujuan Luo, Federica Ferraro, Arne Scholtissek, Christian Hasse & Luc Vervisch. (2023) Application of dense neural networks for manifold-based modeling of flame-wall interactions. Applications in Energy and Combustion Science 13, pages 100113.
Crossref
Chunkan Yu, Paola Breda, Michael Pfitzner & Ulrich Maas. (2023) The hierarchy of low-dimensional manifolds in the context of multiple mapping conditioning mixing model. Proceedings of the Combustion Institute 39:2, pages 2299-2308.
Crossref
Matthias Steinhausen, Thorsten Zirwes, Federica Ferraro, Arne Scholtissek, Henning Bockhorn & Christian Hasse. (2023) Flame-vortex interaction during turbulent side-wall quenching and its implications for flamelet manifolds. Proceedings of the Combustion Institute 39:2, pages 2149-2158.
Crossref
Chunkan Yu, Prashant Shrotriya, Xing Li & Ulrich Maas. (2023) Reduced modeling of the NOx formation based on the reaction-diffusion manifolds method for counterflow diffusion flames. Proceedings of the Combustion Institute 39:2, pages 1587-1596.
Crossref
Yujuan Luo, Christina Strassacker, Ulrich Maas & Christian Hasse. (2023) Model reduction on the fly: Simultaneous identification and application of reduced kinetics for the example of flame-wall interactions. Proceedings of the Combustion Institute 39:4, pages 5239-5248.
Crossref
Viatcheslav Bykov, Marcus Stein & Ulrich Maas. (2023) Study of mechanism of ammonia decomposition and oxidation: From NOx reduction to ammonia auto-ignition problem. Proceedings of the Combustion Institute 39:4, pages 4267-4275.
Crossref
Yujuan Luo, Federica Ferraro, Adrian Breicher, Hannes Böttler, Andreas Dreizler, Dirk Geyer, Christian Hasse & Arne Scholtissek. (2023) A novel flamelet manifold parametrization approach for lean CH4–H2-air flames. International Journal of Hydrogen Energy 48:1, pages 407-421.
Crossref
Cheng Chi, Xiaopeng Xu & Dominique Thévenin. (2022) Efficient premixed turbulent combustion simulations using flamelet manifold neural networks: A priori and a posteriori assessment. Combustion and Flame 245, pages 112325.
Crossref
Yujuan Luo, Christina Strassacker, Federica Ferraro, Florian Zentgraf, Andreas Dreizler, Ulrich Maas & Christian Hasse. (2022) A manifold-based reduction method for side-wall quenching considering differential diffusion effects and its application to a laminar lean dimethyl ether flame. International Journal of Heat and Fluid Flow 97, pages 109042.
Crossref
Fanfu Kong, Tao Li, Chonglv Cheng, Conghui Shan & Baopeng Xu. (2022) Modeling of spray flame in gas turbine combustors with LES and FGM. Fuel 325, pages 124756.
Crossref
Felipe C. Minuzzi. (2022) Reaction diffusion manifolds (REDIMs) applied to soot formation in ethylene counterflow non-premixed flames: an uncoupled methodology. Computational and Applied Mathematics 41:7.
Crossref
Christina Strassacker & Ulrich Maas. (2022) Extension of the Reaction-Diffusion Manifold method to systems with ionization. Combustion and Flame 243, pages 112066.
Crossref
Chunkan Yu, Prashant Shrotriya & Ulrich Maas. (2022) Intrinsic low-dimensional manifold (ILDM)-based concept for the coupling of turbulent mixing with manifold-based simplified chemistry for the turbulent flame simulation. Physics of Fluids 34:8.
Crossref
Samyar Farjam & Bruno Savard. (2022) Ignition and flame stabilization of n‐dodecane turbulent premixed flames under Spray A thermochemical conditions. Combustion and Flame 242, pages 112133.
Crossref
Matthias Ihme, Wai Tong Chung & Aashwin Ananda Mishra. (2022) Combustion machine learning: Principles, progress and prospects. Progress in Energy and Combustion Science 91, pages 101010.
Crossref
Louis Dressler, Hendrik Nicolai, Senda Agrebi, Florian Ries & Amsini Sadiki. (2022) Computation of Entropy Production in Stratified Flames Based on Chemistry Tabulation and an Eulerian Transported Probability Density Function Approach. Entropy 24:5, pages 615.
Crossref
M. Stein, V. Bykov, C. Kuntz, M. Börnhorst, O. Deutschmann & U. Maas. (2022) Modeling the decomposition of urea-water-solution in films and droplets under SCR conditions with chemistry in the liquid phase. International Journal of Heat and Fluid Flow 94, pages 108936.
Crossref
Adelaida O. Conza & Álvaro L. de Bortoli. (2022) Modeling and simulation of diffusion flames of $${\text {H}}_{2}$$ and methyl formate using the REDIM method. Journal of Mathematical Chemistry 60:3, pages 562-580.
Crossref
Lukas Fischer, Paola Breda, Rahand Dalshad & Michael Pfitzner. (2021) Numerical characterization of a novel test bench featuring secondary reactions of methane. Aerospace Science and Technology 119, pages 107203.
Crossref
C. Yu & U. Maas. (2021) Implementation of the Scalar Dissipation Rate in the REDIM Concept and its Validation for the Piloted Non-Premixed Turbulent Jet Flames. Eurasian Chemico-Technological Journal 23:3, pages 169.
Crossref
Senda Agrebi, Louis Dreßler, Hendrik Nicolai, Florian Ries, Kaushal Nishad & Amsini Sadiki. (2021) Analysis of Local Exergy Losses in Combustion Systems Using a Hybrid Filtered Eulerian Stochastic Field Coupled with Detailed Chemistry Tabulation: Cases of Flames D and E. Energies 14:19, pages 6315.
Crossref
Paola Breda, Chunkan Yu, Ulrich Maas & Michael Pfitzner. (2020) Validation of an Eulerian Stochastic Fields Solver Coupled with Reaction–Diffusion Manifolds on LES of Methane/Air Non-premixed Flames. Flow, Turbulence and Combustion 107:2, pages 441-477.
Crossref
Michael Pfitzner & Markus Klein. (2021) A near-exact analytic solution of progress variable and pdf for single-step Arrhenius chemistry. Combustion and Flame 226, pages 380-395.
Crossref
Chunkan Yu, Paola Breda, Felipe Minuzzi, Michael Pfitzner & Ulrich Maas. (2021) A novel model for incorporation of differential diffusion effects in PDF simulations of non-premixed turbulent flames based on reaction-diffusion manifolds (REDIM). Physics of Fluids 33:2.
Crossref
Yujuan Luo, Christina Strassacker, Xu Wen, Zhen Sun, Ulrich Maas & Christian Hasse. (2020) Strain Rate Effects on Head-on Quenching of Laminar Premixed Methane-air flames. Flow, Turbulence and Combustion 106:2, pages 631-647.
Crossref
L. Dressler, F. L. Sacomano Filho, A. Sadiki & J. Janicka. (2020) Influence of Thickening Factor Treatment on Predictions of Spray Flame Properties Using the ATF Model and Tabulated Chemistry. Flow, Turbulence and Combustion 106:2, pages 419-451.
Crossref
M. Steinhausen, Y. Luo, S. Popp, C. Strassacker, T. Zirwes, H. Kosaka, F. Zentgraf, U. Maas, A. Sadiki, A. Dreizler & C. Hasse. (2020) Numerical Investigation of Local Heat-Release Rates and Thermo-Chemical States in Side-Wall Quenching of Laminar Methane and Dimethyl Ether Flames. Flow, Turbulence and Combustion 106:2, pages 681-700.
Crossref
Louis Dressler, Fernando Luiz Sacomano Filho, Florian Ries, Hendrik Nicolai, Johannes Janicka & Amsini Sadiki. (2021) Numerical Prediction of Turbulent Spray Flame Characteristics Using the Filtered Eulerian Stochastic Field Approach Coupled to Tabulated Chemistry. Fluids 6:2, pages 50.
Crossref
Christina Strassacker, Viatcheslav Bykov & Ulrich Maas. (2021) Reduced modeling of Flame-Wall-Interactions of premixed isooctane-air systems including detailed transport and surface reactions. Proceedings of the Combustion Institute 38:1, pages 1063-1070.
Crossref
Chunkan Yu, Paola Breda, Michael Pfitzner & Ulrich Maas. (2021) Coupling of mixing models with manifold based simplified chemistry in PDF modeling of turbulent reacting flows. Proceedings of the Combustion Institute 38:2, pages 2645-2653.
Crossref
Giampaolo Maio, Mélody Cailler, Nasser Darabiha & Benoît Fiorina. (2021) Capturing multi-regime combustion in turbulent flames with a virtual chemistry approach. Proceedings of the Combustion Institute 38:2, pages 2559-2569.
Crossref
Christina Strassacker, Viatcheslav Bykov & Ulrich Maas. (2021) Comparative analysis of Reaction-Diffusion Manifold based reduced models for Head-On- and Side-Wall-Quenching flames. Proceedings of the Combustion Institute 38:1, pages 1025-1032.
Crossref
Kaidi Wan, Camille Barnaud, Luc Vervisch & Pascale Domingo. (2021) Machine learning for detailed chemistry reduction in DNS of a syngas turbulent oxy-flame with side-wall effects. Proceedings of the Combustion Institute 38:2, pages 2825-2833.
Crossref
Marcus Stein, Viatcheslav Bykov & Ulrich Maas. (2021) Reduced simulation of the evaporation and decomposition of droplets and films of urea-water solution in exhaust gas environment. Proceedings of the Combustion Institute 38:4, pages 6687-6694.
Crossref
Chunkan Yu, Xing Li, Chunwei Wu, Alexander Neagos & Ulrich Maas. (2020) Automatic Construction of REDIM Reduced Chemistry with a Detailed Transport and Its Application to CH 4 Counterflow Flames . Energy & Fuels 34:12, pages 16572-16584.
Crossref
Ulrich Maas. (2020) Some Aspects of Time-Reversal in Chemical Kinetics. Entropy 22:12, pages 1386.
Crossref
Prashant Shrotriya, Ping Wang, Linsong Jiang & Meenatchidevi Murugesan. (2020) REDIM-PFDF modelling of turbulent partially-premixed flame with inhomogeneous inlets using top-hat function for multi-stream mixing problem. Aerospace Science and Technology 107, pages 106258.
Crossref
Kaidi Wan, Camille Barnaud, Luc Vervisch & Pascale Domingo. (2020) Chemistry reduction using machine learning trained from non-premixed micro-mixing modeling: Application to DNS of a syngas turbulent oxy-flame with side-wall effects. Combustion and Flame 220, pages 119-129.
Crossref
F.C. Minuzzi, Ch. Yu & U. Maas. (2020) Numerical Simulation of Laminar and Turbulent Methane/Air Flames Based on a DRG-Derived Skeletal Mechanism. Eurasian Chemico-Technological Journal 22:2, pages 69.
Crossref
V Bykov, Y Cherkinsky, V Gol’dshtein, N Krapivnik & U Maas. (2020) Fast–slow vector fields of reaction–diffusion systems. IMA Journal of Applied Mathematics 85:1, pages 67-86.
Crossref
OPhir Nave & Manju Sharma. (2020) Singular Perturbed Vector Field ( SPVF ) Applied to Complex ODE System with Hidden Hierarchy Application to Turbocharger Engine Model . International Journal of Nonlinear Sciences and Numerical Simulation 21:1, pages 99-113.
Crossref
Guangying Yu, Fatemeh Hadi, Ziyu Wang & Hameed Metghalchi. (2020) Review of Applications of Rate-Controlled Constrained-Equilibrium in Combustion Modeling. Journal of Non-Equilibrium Thermodynamics 45:1, pages 59-79.
Crossref
Mélody Cailler, Nasser Darabiha & Benoît Fiorina. (2020) Development of a virtual optimized chemistry method. Application to hydrocarbon/air combustion. Combustion and Flame 211, pages 281-302.
Crossref
Felipe Minuzzi, Chunkan Yu & Ulrich Maas. (2019) Simulation of methane/air non-premixed turbulent flames based on REDIM simplified chemistry. Flow, Turbulence and Combustion 103:4, pages 963-984.
Crossref
Rihab Mahmoud, Mehdi Jangi, Florian Ries, Benoit Fiorina, Johannes Janicka & Amsini Sadiki. (2019) Combustion Characteristics of a Non-Premixed Oxy-Flame Applying a Hybrid Filtered Eulerian Stochastic Field/Flamelet Progress Variable Approach. Applied Sciences 9:7, pages 1320.
Crossref
Guangying Yu, Yeqing Zhang, Ziyu Wang, Ziwei Bai & Hameed Metghalchi. (2019) The Rate-Controlled Constrained-Equilibrium combustion modeling of n-butane/oxygen/diluent mixtures. Fuel 239, pages 786-793.
Crossref
Guangying Yu, Hameed Metghalchi, Omid Askari & Ziyu Wang. (2019) Combustion Simulation of Propane/Oxygen (With Nitrogen/Argon) Mixtures Using Rate-Controlled Constrained-Equilibrium. Journal of Energy Resources Technology 141:2.
Crossref
Guangying Yu, Fatemeh Hadi & Hameed Metghalchi. (2019) Rate-Controlled Constrained-Equilibrium Application in Shock Tube Ignition Delay Time Simulation. Journal of Energy Resources Technology 141:2.
Crossref
Viatcheslav Bykov, Chunkan Yu, Vladimir Gol’dshtein & Ulrich Maas. (2019) Model reduction and mechanism comparison of hydrogen/oxygen auto-ignition. Proceedings of the Combustion Institute 37:1, pages 781-787.
Crossref
Christina Strassacker, Viatcheslav Bykov & Ulrich Maas. (2019) Parametrization and projection strategies for manifold based reduced kinetic models. Proceedings of the Combustion Institute 37:1, pages 763-770.
Crossref
A. Scholtissek, P. Domingo, L. Vervisch & C. Hasse. (2019) A self-contained progress variable space solution method for thermochemical variables and flame speed in freely-propagating premixed flamelets. Proceedings of the Combustion Institute 37:2, pages 1529-1536.
Crossref
Giampaolo Maio, Mélody Cailler, Renaud Mercier & Benoît Fiorina. (2019) Virtual chemistry for temperature and CO prediction in LES of non-adiabatic turbulent flames. Proceedings of the Combustion Institute 37:2, pages 2591-2599.
Crossref
Chunkan Yu, Viatcheslav Bykov & Ulrich Maas. (2019) Coupling of simplified chemistry with mixing processes in PDF simulations of turbulent flames. Proceedings of the Combustion Institute 37:2, pages 2183-2190.
Crossref
OPhir Nave. (2017) Singularly Perturbed Vector Field Method (SPVF) Applied to Combustion of Monodisperse Fuel Spray. Differential Equations and Dynamical Systems 27:1-3, pages 57-74.
Crossref
Shilong Guo, Jinhua Wang, Xutao Wei, Senbin Yu, Meng Zhang & Zuohua Huang. (2018) Numerical simulation of premixed combustion using the modified dynamic thickened flame model coupled with multi-step reaction mechanism. Fuel 233, pages 346-353.
Crossref
Xu Wen, Xue-Song Bai, Kun Luo, Haiou Wang, Yujuan Luo & Jianren Fan. (2018) A generalized flamelet tabulation method for partially premixed combustion. Combustion and Flame 198, pages 54-68.
Crossref
AN Gorban. (2018) Model reduction in chemical dynamics: slow invariant manifolds, singular perturbations, thermodynamic estimates, and analysis of reaction graph. Current Opinion in Chemical Engineering 21, pages 48-59.
Crossref
OPhir Nave & Shlomo Hareli. (2018) Singular perturbed vector field method applied to combustion in diesel engine: Continuous case with thermal runaway. Applied Mathematical Modelling 61, pages 604-617.
Crossref
Aimad Er-raiy, Zakaria Bouali, Julien Réveillon & Arnaud Mura. (2018) Optimized single-step (OSS) chemistry models for the simulation of turbulent premixed flame propagation. Combustion and Flame 192, pages 130-148.
Crossref
Sebastian Ganter, Christina Straßacker, Guido Kuenne, Thorsten Meier, Arne Heinrich, Ulrich Maas & Johannes Janicka. (2018) Laminar near-wall combustion: Analysis of tabulated chemistry simulations by means of detailed kinetics. International Journal of Heat and Fluid Flow 70, pages 259-270.
Crossref
M. Stein, V. Bykov, A. Bertótiné Abai, C. Janzer, U. Maas, O. Deutschmann & M. Olzmann. (2018) A reduced model for the evaporation and decomposition of urea–water solution droplets. International Journal of Heat and Fluid Flow 70, pages 216-225.
Crossref
Chunkan Yu, Felipe Minuzzi & Ulrich Maas. (2018) Numerical Simulation of Turbulent Flames based on a Hybrid RANS/Transported-PDF Method and REDIM Method. Eurasian Chemico-Technological Journal 20:1, pages 23.
Crossref
V Bykov, Y Cherkinsky, V Gol’dshtein, N Krapivnik & U Maas. (2018) Singularly perturbed profiles. IMA Journal of Applied Mathematics 83:2, pages 323-346.
Crossref
Carlo Locci, Luc Vervisch, Benjamin Farcy, Pascale Domingo & Nicolas Perret. (2017) Selective Non-catalytic Reduction (SNCR) of Nitrogen Oxide Emissions: A Perspective from Numerical Modeling. Flow, Turbulence and Combustion 100:2, pages 301-340.
Crossref
C. Strassacker, V. Bykov & U. Maas. (2018) REDIM reduced modeling of quenching at a cold wall including heterogeneous wall reactions. International Journal of Heat and Fluid Flow 69, pages 185-193.
Crossref
Chunkan Yu, Viatcheslav Bykov & Ulrich Maas. (2018) Global quasi-linearization (GQL) versus QSSA for a hydrogen–air auto-ignition problem . Physical Chemistry Chemical Physics 20:16, pages 10770-10779.
Crossref
Esra Yildar, Guido Kuenne, Chao He, Robert Schiessl, Marc-Sebastian Benzinger, Marius Neurohr, Francesca di Mare, Amsinsi Sadiki & Johannes Janicka. (2017) Understanding the Influences of Thermal and Mixture Inhomogeneities on the Auto-Ignition Process in a Controlled Auto-Ignition (CAI) Engine Using LES. Oil & Gas Sciences and Technology – Revue d’IFP Energies nouvelles 72:6, pages 33.
Crossref
Simon Fischer, Detlev Markus, Asghar Ghorbani & Ulrich Maas. (2017) PDF Simulations of the Ignition of Hydrogen/Air, Ethylene/Air and Propane/Air Mixtures by Hot Transient Jets. Zeitschrift für Physikalische Chemie 231:10, pages 1773-1796.
Crossref
Xiaoxuan Wu & Tasso J. Kaper. (2017) Analysis of the approximate slow invariant manifold method for reactive flow equations. Journal of Mathematical Chemistry 55:9, pages 1725-1754.
Crossref
S. Fischer, D. Markus & U. Maas. (2017) Numerical investigation of the ignition of diethyl ether/air and propane/air mixtures by hot jets. Journal of Loss Prevention in the Process Industries 49, pages 832-838.
Crossref
Gerd Steinhilber, Viatcheslav Bykov & Ulrich Maas. (2017) REDIM reduced modeling of flame-wall-interactions: Quenching of a premixed methane/air flame at a cold inert wall. Proceedings of the Combustion Institute 36:1, pages 655-661.
Crossref
A. Neagos, V. Bykov & U. Maas. (2017) Adaptive hierarchical construction of Reaction–Diffusion Manifolds for simplified chemical kinetics. Proceedings of the Combustion Institute 36:1, pages 663-672.
Crossref
R. Schießl, V. Bykov, U. Maas, A. Abdelsamie & D. Thévenin. (2017) Implementing multi-directional molecular diffusion terms into Reaction Diffusion Manifolds (REDIMs). Proceedings of the Combustion Institute 36:1, pages 673-679.
Crossref
Marc-Sebastian Benzinger, Robert Schießl & Ulrich Maas. (2017) A versatile coupled progress variable/REDIM model for auto-ignition and combustion. Proceedings of the Combustion Institute 36:3, pages 3613-3621.
Crossref
Nicolas Jaouen, Luc Vervisch, Pascale Domingo & Guillaume Ribert. (2017) Automatic reduction and optimisation of chemistry for turbulent combustion modelling: Impact of the canonical problem. Combustion and Flame 175, pages 60-79.
Crossref
J.A. van Oijen, A. Donini, R.J.M. Bastiaans, J.H.M. ten Thije Boonkkamp & L.P.H. de Goey. (2016) State-of-the-art in premixed combustion modeling using flamelet generated manifolds. Progress in Energy and Combustion Science 57, pages 30-74.
Crossref
T. Turányi. 2016. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering.
Juergen GeiserJuergen Geiser. 2016. Multicomponent and Multiscale Systems. Multicomponent and Multiscale Systems 1 31 .
Hao Wu, Yee Chee See, Qing Wang & Matthias Ihme. (2015) A Pareto-efficient combustion framework with submodel assignment for predicting complex flame configurations. Combustion and Flame 162:11, pages 4208-4230.
Crossref
Youwen Liang, Stephen B. Pope & Perrine Pepiot. (2015) A pre-partitioned adaptive chemistry methodology for the efficient implementation of combustion chemistry in particle PDF methods. Combustion and Flame 162:9, pages 3236-3253.
Crossref
A. Ghorbani, D. Markus, G. Steinhilber & U. Maas. (2015) A numerical approach to investigate the maximum permissible nozzle diameter in explosion by hot turbulent jets. Journal of Loss Prevention in the Process Industries 36, pages 539-543.
Crossref
Maulik Mehta, Rodney O. Fox & Perrine Pepiot. (2015) Reduced Chemical Kinetics for the Modeling of TiO 2 Nanoparticle Synthesis in Flame Reactors . Industrial & Engineering Chemistry Research 54:20, pages 5407-5415.
Crossref
Bertrand Naud, Ricardo Novella, José Manuel Pastor & Johannes F. Winklinger. (2015) RANS modelling of a lifted H2/N2 flame using an unsteady flamelet progress variable approach with presumed PDF. Combustion and Flame 162:4, pages 893-906.
Crossref
Benoît Fiorina, Denis Veynante & Sébastien Candel. (2014) Modeling Combustion Chemistry in Large Eddy Simulation of Turbulent Flames. Flow, Turbulence and Combustion 94:1, pages 3-42.
Crossref
Christian KuehnChristian Kuehn. 2015. Multiple Time Scale Dynamics. Multiple Time Scale Dynamics 327 357 .
F.A. Vaz & A.L. De Bortoli. (2014) A new reduced kinetic mechanism for turbulent jet diffusion flames of bioethanol. Applied Mathematics and Computation 247, pages 918-929.
Crossref
ZhuYin Ren, Zhen Lu, LingYun Hou & LiuYan Lu. (2014) Numerical simulation of turbulent combustion: Scientific challenges. Science China Physics, Mechanics & Astronomy 57:8, pages 1495-1503.
Crossref
P. Wang, N.A. Platova, J. Fröhlich & U. Maas. (2014) Large Eddy Simulation of the PRECCINSTA burner. International Journal of Heat and Mass Transfer 70, pages 486-495.
Crossref
G. Ribert, L. Vervisch, P. Domingo & Y.-S. Niu. (2013) Hybrid Transported-Tabulated Strategy to Downsize Detailed Chemistry for Numerical Simulation of Premixed Flames. Flow, Turbulence and Combustion 92:1-2, pages 175-200.
Crossref
Tamás Turányi & Alison S. TomlinTamás Turányi & Alison S. Tomlin. 2014. Analysis of Kinetic Reaction Mechanisms. Analysis of Kinetic Reaction Mechanisms 183 312 .
Tamás Turányi & Alison S. TomlinTamás Turányi & Alison S. Tomlin. 2014. Analysis of Kinetic Reaction Mechanisms. Analysis of Kinetic Reaction Mechanisms 145 182 .
Yue Yang, Stephen B. Pope & Jacqueline H. Chen. (2013) Empirical low-dimensional manifolds in composition space. Combustion and Flame 160:10, pages 1967-1980.
Crossref
Yi-Shuai Niu, Luc Vervisch & Pham Dinh Tao. (2013) An optimization-based approach to detailed chemistry tabulation: Automated progress variable definition. Combustion and Flame 160:4, pages 776-785.
Crossref
Guillaume RibertPascale DomingoLuc Vervisch. (2013) An hybrid transported-tabulated strategy to downsize detailed chemistry for Direct Numerical Simulation. An hybrid transported-tabulated strategy to downsize detailed chemistry for Direct Numerical Simulation.
J. D. Mengers & J. M. Powers. (2013) One-Dimensional Slow Invariant Manifolds for Fully Coupled Reaction and Micro-scale Diffusion. SIAM Journal on Applied Dynamical Systems 12:2, pages 560-595.
Crossref
Stephen B. Pope. (2013) Small scales, many species and the manifold challenges of turbulent combustion. Proceedings of the Combustion Institute 34:1, pages 1-31.
Crossref
Gerd Steinhilber & Ulrich Maas. (2013) Reaction-diffusion manifolds for unconfined, lean premixed, piloted, turbulent methane/air systems. Proceedings of the Combustion Institute 34:1, pages 217-224.
Crossref
P. Wang, F. Zieker, R. Schießl, N. Platova, J. Fröhlich & U. Maas. (2013) Large Eddy Simulations and experimental studies of turbulent premixed combustion near extinction. Proceedings of the Combustion Institute 34:1, pages 1269-1280.
Crossref
V. Bykov, A. Neagos & U. Maas. (2013) On transient behavior of non-premixed counter-flow diffusion flames within the REDIM based model reduction concept. Proceedings of the Combustion Institute 34:1, pages 197-203.
Crossref
B. Franzelli, B. Fiorina & N. Darabiha. (2013) A tabulated chemistry method for spray combustion. Proceedings of the Combustion Institute 34:1, pages 1659-1666.
Crossref
Benjamin T. Zoller, Mathias L. Hack & Patrick Jenny. (2013) A PDF combustion model for turbulent premixed flames. Proceedings of the Combustion Institute 34:1, pages 1421-1428.
Crossref
Ulrich Maas & Alison S. Tomlin. 2013. Cleaner Combustion. Cleaner Combustion 467 484 .
Reni De Meester, Bertrand Naud & Bart Merci. (2012) A priori investigation of PDF-modeling assumptions for a turbulent swirling bluff body flame (‘SM1’). Combustion and Flame 159:11, pages 3353-3357.
Crossref
R. De Meester, B. Naud, U. Maas & B. Merci. (2012) Transported scalar PDF calculations of a swirling bluff body flame (‘SM1’) with a reaction diffusion manifold. Combustion and Flame 159:7, pages 2415-2429.
Crossref
Eliodoro Chiavazzo. (2012) Approximation of slow and fast dynamics in multiscale dynamical systems by the linearized Relaxation Redistribution Method. Journal of Computational Physics 231:4, pages 1751-1765.
Crossref
Joshua Mengers & Joseph Powers. (2012) Model Reduction for Reaction-Diffusion Systems: Bifurcations in Slow Invariant Manifolds. Model Reduction for Reaction-Diffusion Systems: Bifurcations in Slow Invariant Manifolds.
N. Enjalbert, P. Domingo & L. Vervisch. (2012) Mixing time-history effects in Large Eddy Simulation of non-premixed turbulent flames: Flow-Controlled Chemistry Tabulation. Combustion and Flame 159:1, pages 336-352.
Crossref
M. J. Cleary & A. Y. Klimenko. (2011) A detailed quantitative analysis of sparse-Lagrangian filtered density function simulations in constant and variable density reacting jet flows. Physics of Fluids 23:11, pages 115102.
Crossref
G. Lodier, L. Vervisch, V. Moureau & P. Domingo. (2011) Composition-space premixed flamelet solution with differential diffusion for in situ flamelet-generated manifolds. Combustion and Flame 158:10, pages 2009-2016.
Crossref
Joshua Mengers & Joseph Powers. (2011) Application of the Slow Invariant Manifold Correction for Diffusion. Application of the Slow Invariant Manifold Correction for Diffusion.
U. Maas & V. Bykov. (2011) The extension of the reaction/diffusion manifold concept to systems with detailed transport models. Proceedings of the Combustion Institute 33:1, pages 1253-1259.
Crossref
R. Vicquelin, B. Fiorina, S. Payet, N. Darabiha & O. Gicquel. (2011) Coupling tabulated chemistry with compressible CFD solvers. Proceedings of the Combustion Institute 33:1, pages 1481-1488.
Crossref
M. J. Cleary & A. Y. Klimenko. 2011. Turbulent Combustion Modeling. Turbulent Combustion Modeling 143 173 .
Eliodoro Chiavazzo, Iliya V. Karlin, Alexander N. Gorban & Konstantinos Boulouchos. (2010) Coupling of the model reduction technique with the lattice Boltzmann method for combustion simulations. Combustion and Flame 157:10, pages 1833-1849.
Crossref
Bart Merci, Epaminondas Mastorakos & Arnaud Mura. 2010. Handbook of Combustion. Handbook of Combustion.
Hannes Kröger, Egon Hassel, Nikolai Kornev & Detlef Wendig. (2010) LES of Premixed Flame Propagation in a Free Straight Vortex. Flow, Turbulence and Combustion 84:3, pages 513-541.
Crossref
Phuc-Danh Nguyen, Luc Vervisch, Vallinayagam Subramanian & Pascale Domingo. (2010) Multidimensional flamelet-generated manifolds for partially premixed combustion. Combustion and Flame 157:1, pages 43-61.
Crossref
Tarek Echekki. (2009) Multiscale methods in turbulent combustion: strategies and computational challenges. Computational Science & Discovery 2:1, pages 013001.
Crossref
Terese L?v?s. (2009) Automatic generation of skeletal mechanisms for ignition combustion based on level of importance analysis. Combustion and Flame 156:7, pages 1348-1358.
Crossref
Karin König, Viatcheslav Bykov & Ulrich Maas. (2008) Investigation of the Dynamical Response of Methane/Air Counterflow Flames to Inflow Mixture Composition and Flow Field Perturbations. Flow, Turbulence and Combustion 83:1, pages 105-129.
Crossref
Stephen B. Pope & Zhuyin Ren. (2008) Efficient Implementation of Chemistry in Computational Combustion. Flow, Turbulence and Combustion 82:4, pages 437-453.
Crossref
B. Merci, B. Naud, D. Roekaerts & U. Maas. (2008) Joint Scalar versus Joint Velocity-Scalar PDF Simulations of Bluff-Body Stabilized Flames with REDIM. Flow, Turbulence and Combustion 82:2, pages 185-209.
Crossref
Michael J. Pilling. (2009) From elementary reactions to evaluated chemical mechanisms for combustion models. Proceedings of the Combustion Institute 32:1, pages 27-44.
Crossref
V. Bykov & U. Maas. (2009) Problem adapted reduced models based on Reaction–Diffusion Manifolds (REDIMs). Proceedings of the Combustion Institute 32:1, pages 561-568.
Crossref
Guillaume Godel, Pascale Domingo & Luc Vervisch. (2009) Tabulation of NOx chemistry for Large-Eddy Simulation of non-premixed turbulent flames. Proceedings of the Combustion Institute 32:1, pages 1555-1561.
Crossref
S. Delhaye, L.M.T. Somers, J.A. van Oijen & L.P.H. de Goey. (2009) Incorporating unsteady flow-effects beyond the extinction limit in flamelet-generated manifolds. Proceedings of the Combustion Institute 32:1, pages 1051-1058.
Crossref
Robert Schießl, Sebastian Kaiser, Marshall Long & Ulrich Maas. (2009) Application of reduced state spaces to laser-based measurements in combustion. Proceedings of the Combustion Institute 32:1, pages 887-894.
Crossref
Karin König & Ulrich Maas. (2009) On-demand generation of reduced mechanisms based on hierarchically extended intrinsic low-dimensional manifolds in generalized coordinates. Proceedings of the Combustion Institute 32:1, pages 553-560.
Crossref
Ulrich Maas, Viatcheslav Bykov, Andriy Rybakov & Rainer Stauch. 2009. High Performance Computing on Vector Systems 2008. High Performance Computing on Vector Systems 2008 111 127 .
Michael J. Davis & Alison S. Tomlin. (2008) Spatial Dynamics of Steady Flames 1. Phase Space Structure and the Dynamics of Individual Trajectories. The Journal of Physical Chemistry A 112:34, pages 7768-7783.
Crossref
Ulrich Maas & Viatcheslav Bykov. (2008) Manifold-Based Reduction of Large Kinetic Mechanisms. Manifold-Based Reduction of Large Kinetic Mechanisms.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.