2,750
Views
110
CrossRef citations to date
0
Altmetric
Hyperthermia Classic Articles

Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia

, , , , &
Pages 499-511 | Published online: 24 Oct 2009

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (9)

Paul R. Stauffer, Dario B. Rodrigues, Robert Goldstein, Thinh Nguyen, Yan Yu, Shuying Wan, Richard Woodward, Michael Gibbs, Ilya L. Vasilchenko, Alexey M. Osintsev, Voichita Bar-Ad, Dennis B. Leeper, Wenyin Shi, Kevin D. Judy & Mark D. Hurwitz. (2020) Feasibility of removable balloon implant for simultaneous magnetic nanoparticle heating and HDR brachytherapy of brain tumor resection cavities. International Journal of Hyperthermia 37:1, pages 1189-1201.
Read now
Lifei Zhu, Dao Lam, Christopher Pham Pacia, H. Michael Gach, Ari Partanen, Michael R. Talcott, Suellen C. Greco, Imran Zoberi, Dennis E. Hallahan, Hong Chen & Michael B. Altman. (2020) Characterization of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-induced large-volume hyperthermia in deep and superficial targets in a porcine model. International Journal of Hyperthermia 37:1, pages 1159-1173.
Read now
Irati Rodrigo, Idoia Castellanos-Rubio, Eneko Garaio, Oihane K. Arriortua, Maite Insausti, Iñaki Orue, José Ángel García & Fernando Plazaola. (2020) Exploring the potential of the dynamic hysteresis loops via high field, high frequency and temperature adjustable AC magnetometer for magnetic hyperthermia characterization. International Journal of Hyperthermia 37:1, pages 976-991.
Read now
Deniz Gazel & Mehmet Yılmaz. (2018) Are infectious diseases and microbiology new fields for thermal therapy research?. International Journal of Hyperthermia 34:7, pages 918-924.
Read now
Gennaro Bellizzi, Ovidio M. Bucci & Gaetano Chirico. (2016) Numerical assessment of a criterion for the optimal choice of the operative conditions in magnetic nanoparticle hyperthermia on a realistic model of the human head. International Journal of Hyperthermia 32:6, pages 688-703.
Read now
Ana Portela, Mário Vasconcelos, Maria Helena Fernandes, Mónica Garcia, António Silva, Joaquim Gabriel, Fátima Gartner, Irina Amorim & José Cavalheiro. (2013) Highly focalised thermotherapy using a ferrimagnetic cement in the treatment of a melanoma mouse model by low temperature hyperthermia. International Journal of Hyperthermia 29:2, pages 121-132.
Read now
V Grazú, AM Silber, M Moros, L Asín, TE Torres, C Marquina, MR Ibarra & GF Goya. (2012) Application of magnetically induced hyperthermia in the model protozoan Crithidia fasciculata as a potential therapy against parasitic infections. International Journal of Nanomedicine 7, pages 5351-5360.
Read now
Ari Partanen, Pavel S. Yarmolenko, Antti Viitala, Sunil Appanaboyina, Dieter Haemmerich, Ashish Ranjan, Genevieve Jacobs, David Woods, Julia Enholm, Bradford J. Wood & Matthew R. Dreher. (2012) Mild hyperthermia with magnetic resonance-guided high-intensity focused ultrasound for applications in drug delivery. International Journal of Hyperthermia 28:4, pages 320-336.
Read now
Chong-Jeh Lo, Chiung-Yu Chen, Hung-Wen Tsai, Roberto Zuchini, Gwo-Bin Lee & Xi-Zhang Lin. (2011) Partial splenectomy using an electromagnetic thermal surgery system in a porcine model. International Journal of Hyperthermia 27:2, pages 108-115.
Read now

Articles from other publishers (101)

Pengxiang Sui, Yan Su & Liyong Sun. (2024) Natural Convective Nanofluid Flows Immersed in Oscillating Magnetic Fields Simulated by a Sub-Continuous Lattice Boltzmann Model. ASME Journal of Heat and Mass Transfer 146:1.
Crossref
Hima Patel, Kinnari Parekh, Lionel Fernel Gamarra, Javier Bustamante Mamani, Arielly da Hora Alves & A.M. Figueiredo Neto. (2023) In vitro evaluation of magnetic fluid hyperthermia therapy on breast cancer cells using monodispersed Mn0.5Zn0.5Fe2O4 nanoflowers. Journal of Magnetism and Magnetic Materials 587, pages 171275.
Crossref
Dhanapriya Devi Yengkhom, Goutam Singh Ningombam, Rameshwari Heisnam, Nanaocha Sharma, Francis A. S. Chipem & Nongmaithem Rajmuhon Singh. (2023) Folic acid-conjugated magnetic-luminescent nanocomposites from Mn0.8Fe2.2O4 and GdVO4:Dy3+ with efficient heat generation and cytocompatibility in MDA-231 cell lines. Colloid and Polymer Science.
Crossref
Qing You, Xinyue Shao, Jinping Wang & Xiaoyuan Chen. (2023) Progress on Physical Field‐Regulated Micro/Nanomotors for Cardiovascular and Cerebrovascular Disease Treatment. Small Methods 7:10.
Crossref
Yunwei Niu, Jiahe Wu, Yanxiang Kang, Pingli Sun, Zuobing Xiao & Di Zhao. (2023) Recent advances of magnetic chitosan hydrogel: Preparation, properties and applications. International Journal of Biological Macromolecules 247, pages 125722.
Crossref
I. Antonyuk, L. Hlinenko, V. Fast & B. Strykhalyuk. (2023) MODELLING OF THE INDUCTION HEATING PROCESS FOR MAGNETIC HYPERTHERMIA SYSTEMS. Information and communication technologies, electronic engineering 3:1, pages 73-88.
Crossref
O. M. Lemine, Abdulrahman Faqih, Saja Algessair, N. Madkhali, M. Hjiri, Sharif Abu Alrub, Ali Z. Alanazi, Abdulaziz Alromaeh & L. E. L. Mir. (2023) Effect of Magnesium Ion Substitution on Physical Properties and Magnetic Induction Heating of Maghemite (γ-Fe2O3) Nanoparticles. Journal of Superconductivity and Novel Magnetism 36:6, pages 1583-1593.
Crossref
O. M. Lemine, Saja Algessair, Nawal Madkhali, Basma Al-Najar & Kheireddine El-Boubbou. (2023) Assessing the Heat Generation and Self-Heating Mechanism of Superparamagnetic Fe3O4 Nanoparticles for Magnetic Hyperthermia Application: The Effects of Concentration, Frequency, and Magnetic Field. Nanomaterials 13:3, pages 453.
Crossref
SeongHoon Jo, In-Cheol Sun, Cheol-Hee Ahn, Sangmin Lee & Kwangmeyung Kim. (2022) Recent Trend of Ultrasound-Mediated Nanoparticle Delivery for Brain Imaging and Treatment. ACS Applied Materials & Interfaces 15:1, pages 120-137.
Crossref
Guadalupe Gabriel Flores-Rojas, Felipe López-Saucedo, Ricardo Vera-Graziano, Eduardo Mendizabal & Emilio Bucio. (2022) Magnetic Nanoparticles for Medical Applications: Updated Review. Macromol 2:3, pages 374-390.
Crossref
Nawal Madkhali, Saja Algessair, O. M. Lemine, Ali Z. Alanzi, N. Ihzaz & L. EL Mir. (2022) Heating Ability of γ -Fe 2 O 3 @ZnO/Al Nanocomposite for Magnetic Hyperthermia Applications . Science of Advanced Materials 14:8, pages 1394-1400.
Crossref
Anfal Aldaoud, O.M. Lemine, N. Ihzaz, L. El Mir, Sharif Abu Alrub & Kheireddine El-Boubbou. (2022) Magneto-thermal properties of Co-doped maghemite (γ-Fe2O3) nanoparticles for magnetic hyperthermia applications. Physica B: Condensed Matter 639, pages 413993.
Crossref
Dr. Lata Ramrakhiani. (2022) Therapeutic Nanoparticles: Advantages and Toxicity. Indian Journal of Environment Engineering 2:1, pages 19-37.
Crossref
Awais Ahmed, Eunhee Kim, Sungwoong Jeon, Jin‐Young Kim & Hongsoo Choi. (2022) Closed‐Loop Temperature‐Controlled Magnetic Hyperthermia Therapy with Magnetic Guidance of Superparamagnetic Iron‐Oxide Nanoparticles. Advanced Therapeutics 5:2.
Crossref
Yihan Zhang, Xiao Gao, Bin Yan, Nana Wen, Wee Siang Vincent Lee, Xing‐Jie Liang & Xiaoli Liu. (2021) Enhancement of CD8 + T‐Cell‐Mediated Tumor Immunotherapy via Magnetic Hyperthermia . ChemMedChem 17:2.
Crossref
Ala Manohar, Krishnamoorthi Chintagumpala & Ki Hyeon Kim. (2021) Mixed Zn–Ni spinel ferrites: Structure, magnetic hyperthermia and photocatalytic properties. Ceramics International 47:5, pages 7052-7061.
Crossref
Wei Zhao, Zhipeng Huang, Liwu Liu, Wenbo Wang, Jinsong Leng & Yanju Liu. (2021) Porous bone tissue scaffold concept based on shape memory PLA/Fe3O4. Composites Science and Technology 203, pages 108563.
Crossref
V. Vijayakanth & C. Krishnamoorthi. (2020) Effect of Zwitterionic Surfactant Ligand Monolayer on Magnetic Hyperthermia Properties of Monosize Fe3O4 Nanoparticles. Journal of Superconductivity and Novel Magnetism 34:2, pages 623-632.
Crossref
A. Manohar, C. Krishnamoorthi, C. Pavithra & Narayana Thota. (2020) Magnetic Hyperthermia and Photocatalytic Properties of MnFe2O4 Nanoparticles Synthesized by Solvothermal Reflux Method. Journal of Superconductivity and Novel Magnetism 34:1, pages 251-259.
Crossref
V. Vijayakanth, V. Vinodhini, A. Aparna, M. S. Malavika & C. Krishnamoorthi. (2021) Synthesis and magnetic hyperthermia properties of zwitterionic dopamine sulfonate ligated magnesium ferrite and zinc ferrite nanoparticles. Journal of Materials Science: Materials in Electronics 32:2, pages 2395-2408.
Crossref
Subin Balachandran. 2021. Magnetic Nanoparticles. Magnetic Nanoparticles 133 147 .
Kinnari Parekh, Harshida Parmar & Vinay Sharma. (2020) Effect of $$\hbox {Me}^{2+}/\hbox {OH}^{-}$$ ratio in the formation of $$\hbox {Mn}_{0.5}{\hbox {Zn}}_{{0.5}}{\hbox {Fe}}_{{2}}{\hbox {O}}_{{4}}$$ nanoparticles of different sizes and shapes in association with thermomagnetic property. Pramana 94:1.
Crossref
I. Garrido, S. Lagüela, J.V. Román, E.M. Martín-del Valle & D. González-Aguilera. (2020) Computation of thermophysical properties for magnetite-based hyperthermia treatment simulations using infrared thermography. International Journal of Heat and Mass Transfer 154, pages 119770.
Crossref
Bo Chen, Jing Xing, Mingyue Li, Yanlong Liu & Min Ji. (2020) DOX@Ferumoxytol-Medical Chitosan as magnetic hydrogel therapeutic system for effective magnetic hyperthermia and chemotherapy in vitro. Colloids and Surfaces B: Biointerfaces 190, pages 110896.
Crossref
Ivan V. Krylov, Roman A. Akasov, Vasilina V. Rocheva, Natalya V. Sholina, Dmitry A. Khochenkov, Andrey V. Nechaev, Nataliya V. Melnikova, Alexey A. Dmitriev, Andrey V. Ivanov, Alla N. Generalova & Evgeny V. Khaydukov. (2020) Local Overheating of Biotissue Labeled With Upconversion Nanoparticles Under Yb3+ Resonance Excitation. Frontiers in Chemistry 8.
Crossref
Anahita Kakavand & Sayed Khatiboleslam Sadrnezhaad. (2020) Magnetic hyperthermia behaviour of Co and reduced GO nanocomposites. Micro & Nano Letters 15:4, pages 239-244.
Crossref
K. C. Ugochukwu, M. M. Sadiq, E. S. Biegel, L. Meagher, M. R. Hill, K. G. Sandeman, A. Haydon & K. Suzuki. (2020) Effect of direct-current magnetic field on the specific absorption rate of metamagnetic CoMnSi: A potential approach to switchable hyperthermia therapy. AIP Advances 10:1.
Crossref
Patchimaporn Udomkun & Emmanuel Njukwe. 2020. Nanomycotoxicology. Nanomycotoxicology 385 396 .
Shehaab Savliwala, Andreina Chiu-Lam, Mythreyi Unni, Angelie Rivera-Rodriguez, Eric Fuller, Kacoli Sen, Marcus Threadcraft & Carlos Rinaldi. 2020. Nanoparticles for Biomedical Applications. Nanoparticles for Biomedical Applications 195 221 .
Iordana Astefanoaei, Radel Gimaev, Vladimir Zverev & Alexandru Stancu. (2019) Modelling of working parameters of Gd and FeRh nanoparticles for magnetic hyperthermia. Materials Research Express 6:12, pages 125089.
Crossref
Zhannat Ashikbayeva, Daniele Tosi, Damir Balmassov, Emiliano Schena, Paola Saccomandi & Vassilis Inglezakis. (2019) Application of Nanoparticles and Nanomaterials in Thermal Ablation Therapy of Cancer. Nanomaterials 9:9, pages 1195.
Crossref
A. Manohar, C. Krishnamoorthi, K. Chandra Babu Naidu & C. Pavithra. (2019) Dielectric, magnetic hyperthermia, and photocatalytic properties of ZnFe2O4 nanoparticles synthesized by solvothermal reflux method. Applied Physics A 125:7.
Crossref
A Makridis, S Curto, G C van Rhoon, T Samaras & M Angelakeris. (2019) A standardisation protocol for accurate evaluation of specific loss power in magnetic hyperthermia. Journal of Physics D: Applied Physics 52:25, pages 255001.
Crossref
Ryan Hufschmid, Joachim Landers, Carolyn Shasha, Soma Salamon, Heiko Wende & Kannan M. Krishnan. (2018) Nanoscale Physical and Chemical Structure of Iron Oxide Nanoparticles for Magnetic Particle Imaging. physica status solidi (a) 216:2.
Crossref
Zhou Chen, Cao Wu, Zhenfeng Zhang, Wangping Wu, Xuefeng Wang & Zhiqiang Yu. (2018) Synthesis, functionalization, and nanomedical applications of functional magnetic nanoparticles. Chinese Chemical Letters 29:11, pages 1601-1608.
Crossref
Alexander LeBrun & Liang Zhu*. 2018. Theory and Applications of Heat Transfer in Humans. Theory and Applications of Heat Transfer in Humans 631 667 .
Yu. I. Golovin, N. L. Klyachko, A. G. Majouga, S. L. Gribanovskii, D. Yu. Golovin, A. O. Zhigachev, A. V. Shuklinov, M. V. Efremova, M. M. Veselov, K. Yu. Vlasova, A. D. Usvaliev, I. M. Le-Deygen & A. V. Kabanov. (2018) New Approaches to Nanotheranostics: Polyfunctional Magnetic Nanoparticles Activated by Non-Heating Low-Frequency Magnetic Field Control Biochemical System with Molecular Locality and Selectivity. Nanotechnologies in Russia 13:5-6, pages 215-239.
Crossref
Zhi Wei Tay, Prashant Chandrasekharan, Andreina Chiu-Lam, Daniel W. Hensley, Rohan Dhavalikar, Xinyi Y. Zhou, Elaine Y. Yu, Patrick W. Goodwill, Bo Zheng, Carlos Rinaldi & Steven M. Conolly. (2018) Magnetic Particle Imaging-Guided Heating in Vivo Using Gradient Fields for Arbitrary Localization of Magnetic Hyperthermia Therapy . ACS Nano 12:4, pages 3699-3713.
Crossref
B. Pimentel, R.J. Caraballo-Vivas, N.R. Checca, V.I. Zverev, R.T. Salakhova, L.A. Makarova, A.P. Pyatakov, N.S. Perov, A.M. Tishin, A.A. Shtil, A.L. Rossi & M.S. Reis. (2018) Threshold heating temperature for magnetic hyperthermia: Controlling the heat exchange with the blocking temperature of magnetic nanoparticles. Journal of Solid State Chemistry 260, pages 34-38.
Crossref
Goeun Choi, Tae-Hyun Kim, Jae-Min Oh & Jin-Ho Choy. (2018) Emerging nanomaterials with advanced drug delivery functions; focused on methotrexate delivery. Coordination Chemistry Reviews 359, pages 32-51.
Crossref
Suriyanto, E. Y. K. Ng & S. D. Kumar. (2017) Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review. BioMedical Engineering OnLine 16:1.
Crossref
A. Manohar & C. Krishnamoorthi. (2017) Synthesis and magnetic hyperthermia studies on high susceptible Fe1−xMgxFe2O4 superparamagnetic nanospheres. Journal of Magnetism and Magnetic Materials 443, pages 267-274.
Crossref
Jalal Mosayebi, Mehdi Kiyasatfar & Sophie Laurent. (2017) Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Advanced Healthcare Materials 6:23, pages 1700306.
Crossref
Hans-Dieter Lang & Costas D. Sarris. (2017) Optimal design of implants for magnetically mediated hyperthermia: A wireless power transfer approach. Journal of Applied Physics 122:12.
Crossref
Daishun Ling & Taeghwan Hyeon. 2017. Magnetic Nanomaterials - Fundamentals, Synthesis and Applications. Magnetic Nanomaterials - Fundamentals, Synthesis and Applications 393 438 .
T Knopp, N Gdaniec & M Möddel. (2017) Magnetic particle imaging: from proof of principle to preclinical applications. Physics in Medicine & Biology 62:14, pages R124-R178.
Crossref
Daniel Hensley, Zhi Wei Tay, Rohan Dhavalikar, Bo Zheng, Patrick Goodwill, Carlos Rinaldi & Steven Conolly. (2017) Combining magnetic particle imaging and magnetic fluid hyperthermia in a theranostic platform. Physics in Medicine and Biology 62:9, pages 3483-3500.
Crossref
P. Pawlik, M. Pruba, K. Pawlik & K. Kotynia. (2017) Phase Structure and Heat Generation in the Co-Precipitated Magnetite Nanoparticles. Acta Physica Polonica A 131:5, pages 1217-1221.
Crossref
Ayesha Sohail, Zaki Ahmad, O. Anwar Bég, Sarmad Arshad & Lubna Sherin. (2017) A review on hyperthermia via nanoparticle-mediated therapy. Bulletin du Cancer 104:5, pages 452-461.
Crossref
Paolo Di Barba, Fabrizio Dughiero, Michele Forzan & Elisabetta Sieni. (2017) Self-adaptive NGSA algorithm and optimal design of inductors for magneto-fluid hyperthermia. COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 36:2, pages 535-545.
Crossref
Hans-Dieter Lang, Gengyu Xu & Costas D. Sarris. (2017) A wireless power transfer route to magnetically mediated hyperthermia. A wireless power transfer route to magnetically mediated hyperthermia.
Neha Wadehra, Ruby Gupta, Bhanu Prakash, Deepika Sharma & S Chakraverty. (2017) Biocompatible ferrite nanoparticles for hyperthermia: effect of polydispersity, anisotropy energy and inter-particle interaction. Materials Research Express 4:2, pages 025037.
Crossref
Daniel HensleyZhi Wei TayRohan DhavalikarPatrick GoodwillBo ZhengCarlos RinaldiSteven Conolly. A theranostic platform for localized magnetic fluid hyperthermia and magnetic particle imaging. A theranostic platform for localized magnetic fluid hyperthermia and magnetic particle imaging.
Yuri I. Golovin, Natalia L. Klyachko, Alexander G. Majouga, Marina Sokolsky & Alexander V. Kabanov. (2017) Theranostic multimodal potential of magnetic nanoparticles actuated by non-heating low frequency magnetic field in the new-generation nanomedicine. Journal of Nanoparticle Research 19:2.
Crossref
K. Wiemer, K. Dörmbach, I. Slabu, G. Agrawal, F. Schrader, T. Caumanns, S. D. M. Bourone, J. Mayer, J. Steitz, U. Simon & A. Pich. (2017) Hydrophobic superparamagnetic FePt nanoparticles in hydrophilic poly(N-vinylcaprolactam) microgels: a new multifunctional hybrid system. Journal of Materials Chemistry B 5:6, pages 1284-1292.
Crossref
Amedea B. Seabra, Milena T. Pelegrino & Paula S. Haddad. 2017. Nanostructures for Antimicrobial Therapy. Nanostructures for Antimicrobial Therapy 531 550 .
Sara Correia CarreiraSara Correia Carreira. 2017. Rapid Cell Magnetisation Using Cationised Magnetoferritin. Rapid Cell Magnetisation Using Cationised Magnetoferritin 1 44 .
Yasir Javed, Khuram Ali & Yasir Jamil. 2017. Complex Magnetic Nanostructures. Complex Magnetic Nanostructures 393 424 .
P. Stephen Patrick, Quentin A. Pankhurst, Christopher Payne, Tammy L. Kalber & Mark F. Lythgoe. 2017. Design and Applications of Nanoparticles in Biomedical Imaging. Design and Applications of Nanoparticles in Biomedical Imaging 123 152 .
Sai Geng, Haitao Yang, Xiao Ren, Yihao Liu, Shuli He, Jun Zhou, Na Su, Yongfeng Li, Chunming Xu, Xiangqun Zhang & Zhaohua Cheng. (2016) Anisotropic Magnetite Nanorods for Enhanced Magnetic Hyperthermia. Chemistry – An Asian Journal 11:21, pages 2996-3000.
Crossref
Beriache M'hamed, Nor Azwadi Che Sidik, Mohammad Noor Afiq Witri Muhammad Yazid, Rizalman Mamat, G. Najafi & G.H.R. Kefayati. (2016) A review on why researchers apply external magnetic field on nanofluids. International Communications in Heat and Mass Transfer 78, pages 60-67.
Crossref
Pin-Chieh Huang, Paritosh Pande, Adeel Ahmad, Marina Marjanovic, Darold R. Spillman, Boris Odintsov & Stephen A. Boppart. (2016) Magnetomotive Optical Coherence Elastography for Magnetic Hyperthermia Dosimetry Based on Dynamic Tissue Biomechanics. IEEE Journal of Selected Topics in Quantum Electronics 22:4, pages 104-119.
Crossref
Acacio Rincón, Mauro Marangoni, Suna Cetin & Enrico Bernardo. (2016) Recycling of inorganic waste in monolithic and cellular glass‐based materials for structural and functional applications. Journal of Chemical Technology & Biotechnology 91:7, pages 1946-1961.
Crossref
C Gräfe, I Slabu, F Wiekhorst, C Bergemann, F von Eggeling, A Hochhaus, L Trahms & J H Clement. (2016) Magnetic particle spectroscopy allows precise quantification of nanoparticles after passage through human brain microvascular endothelial cells. Physics in Medicine and Biology 61:11, pages 3986-4000.
Crossref
C. A. Monnier, M. Lattuada, D. Burnand, F. Crippa, J. C. Martinez-Garcia, A. M. Hirt, B. Rothen-Rutishauser, M. Bonmarin & A. Petri-Fink. (2016) A lock-in-based method to examine the thermal signatures of magnetic nanoparticles in the liquid, solid and aggregated states. Nanoscale 8:27, pages 13321-13332.
Crossref
Mahdi Karimi, Amir Ghasemi, Parham Sahandi Zangabad, Reza Rahighi, S. Masoud Moosavi Basri, H. Mirshekari, M. Amiri, Z. Shafaei Pishabad, A. Aslani, M. Bozorgomid, D. Ghosh, A. Beyzavi, A. Vaseghi, A. R. Aref, L. Haghani, S. Bahrami & Michael R. Hamblin. (2016) Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chemical Society Reviews 45:5, pages 1457-1501.
Crossref
Jun Xie, Ning Gu & Yu Zhang. 2016. Advances in Nanotheranostics II. Advances in Nanotheranostics II 39 73 .
Majid Hosseini, Fatemeh Farjadian & Abdel Salam Hamdy Makhlouf. 2016. Industrial Applications for Intelligent Polymers and Coatings. Industrial Applications for Intelligent Polymers and Coatings 1 26 .
Xiaoli Liu, Huan Zhang, Le Chang, Baozhi Yu, Qiuying Liu, Jianpeng Wu, Yuqing Miao, Pei Ma, Daidi Fan & Haiming Fan. (2015) Human-like collagen protein-coated magnetic nanoparticles with high magnetic hyperthermia performance and improved biocompatibility. Nanoscale Research Letters 10:1.
Crossref
Ilona S. Smolkova, Natalia E. Kazantseva, Harshida Parmar, Vladimir Babayan, Petr Smolka & Petr Saha. (2015) Correlation between coprecipitation reaction course and magneto-structural properties of iron oxide nanoparticles. Materials Chemistry and Physics 155, pages 178-190.
Crossref
Ilona S. Smolkova, Natalia E. Kazantseva, Kira N. Makoveckaya, Petr Smolka, Petr Saha & Anatoly M. Granov. (2015) Maghemite based silicone composite for arterial embolization hyperthermia. Materials Science and Engineering: C 48, pages 632-641.
Crossref
Ming Ma, Yu Zhang, Xuli Shen, Jun Xie, Yan Li & Ning Gu. (2015) Targeted inductive heating of nanomagnets by a combination of alternating current (AC) and static magnetic fields. Nano Research 8:2, pages 600-610.
Crossref
Harshida Parmar, Ilona S. Smolkova, Natalia E. Kazantseva, Vladimir Babayan, Petr Smolka, Robert Moučka, Jarmila Vilcakova & Petr Saha. (2015) Size Dependent Heating Efficiency of Iron Oxide Single Domain Nanoparticles. Procedia Engineering 102, pages 527-533.
Crossref
Ilona S. Smolkova, Natalia E. Kazantseva, Vladimir Babayan, Petr Smolka, Harshida Parmar, Jarmila Vilcakova, Oldrich Schneeweiss & Nadezda Pizurova. (2015) Alternating magnetic field energy absorption in the dispersion of iron oxide nanoparticles in a viscous medium. Journal of Magnetism and Magnetic Materials 374, pages 508-515.
Crossref
R R Wildeboer, P Southern & Q A Pankhurst. (2014) On the reliable measurement of specific absorption rates and intrinsic loss parameters in magnetic hyperthermia materials. Journal of Physics D: Applied Physics 47:49, pages 495003.
Crossref
Susanne Kossatz, Robert Ludwig, Heidi Dähring, Volker Ettelt, Gabriella Rimkus, Marzia Marciello, Gorka Salas, Vijay Patel, Francisco J. Teran & Ingrid Hilger. (2014) High Therapeutic Efficiency of Magnetic Hyperthermia in Xenograft Models Achieved with Moderate Temperature Dosages in the Tumor Area. Pharmaceutical Research 31:12, pages 3274-3288.
Crossref
Kai Yue, Chao Yu, Qingchun Lei, Yunhui Luo & Xinxin Zhang. (2014) Numerical simulation of effect of vessel bifurcation on heat transfer in the magnetic fluid hyperthermia. Applied Thermal Engineering 69:1-2, pages 11-18.
Crossref
Inès Ponsot, Yiannis Pontikes, Giovanni Baldi, Rama Chinnam, Rainer Detsch, Aldo Boccaccini & Enrico Bernardo. (2014) Magnetic Glass Ceramics by Sintering of Borosilicate Glass and Inorganic Waste. Materials 7:8, pages 5565-5580.
Crossref
Xiaowen Wang, Jieying Zhang, Xin Yang, Zhenghai Tang, Yanwen Hu, Benke Chen & Jintian Tang. (2014) In vivo assessment of hepatotoxicity, nephrotoxicity and biodistribution using 3-aminopropyltriethoxysilane-coated magnetic nanoparticles (APTS-MNPs) in ICR mice. Chinese Science Bulletin 59:16, pages 1800-1808.
Crossref
S. Y. Yang, J. F. Chang, T. C. Chen, C. C. Yang & C. S. Ho. (2014) Study of the temperature dependent immuno-reaction kinetics for the bio-functionalized magnetic nanoparticle assay of bio-markers of colorectal cancer. Applied Physics Letters 104:1.
Crossref
Yasuhiro Fujita, Ahamad Isnikurniawan, Sachio Tanimoto, Kanta Moriyama & Tatsuo Sawada. (2014) Characteristics of ultrasonic propagation in a magnetic functional fluid under AC magnetic fields交流磁場下における磁気機能性流体中の超音波伝播特性. Journal of the Japan Society of Applied Electromagnetics and Mechanics 22:2, pages 280-285.
Crossref
Georgios A. Sotiriou, Michelle A. Visbal-Onufrak, Alexandra Teleki, Eduardo J. Juan, Ann M. Hirt, Sotiris E. Pratsinis & Carlos Rinaldi. (2013) Thermal Energy Dissipation by SiO 2 -Coated Plasmonic-Superparamagnetic Nanoparticles in Alternating Magnetic Fields . Chemistry of Materials 25:22, pages 4603-4612.
Crossref
Avnesh S. Thakor & Sanjiv S. Gambhir. (2013) Nanooncology: The future of cancer diagnosis and therapy. CA: A Cancer Journal for Clinicians 63:6, pages 395-418.
Crossref
Hugo Oliveira, Encarnación Pérez-Andrés, Julie Thevenot, Olivier Sandre, Edurne Berra & Sébastien Lecommandoux. (2013) Magnetic field triggered drug release from polymersomes for cancer therapeutics. Journal of Controlled Release 169:3, pages 165-170.
Crossref
Mohammad Hedayati, Owen Thomas, Budri Abubaker-Sharif, Haoming Zhou, Christine Cornejo, Yonggang Zhang, Michele Wabler, Jana Mihalic, Cordula Gruettner, Fritz Westphal, Alison Geyh, Theodore l Deweese & Robert Ivkov. (2013) The effect of cell cluster size on intracellular nanoparticle-mediated hyperthermia: is it possible to treat microscopic tumors?. Nanomedicine 8:1, pages 29-41.
Crossref
Amanda K. Andriola Silva, Riccardo Di Corato, Teresa Pellegrino, Sophie Chat, Giammarino Pugliese, Nathalie Luciani, Florence Gazeau & Claire Wilhelm. (2013) Cell-derived vesicles as a bioplatform for the encapsulation of theranostic nanomaterials. Nanoscale 5:23, pages 11374.
Crossref
M. L. Etheridge & J. C. Bischof. (2012) Optimizing Magnetic Nanoparticle Based Thermal Therapies Within the Physical Limits of Heating. Annals of Biomedical Engineering 41:1, pages 78-88.
Crossref
Ari Partanen, Matti Tillander, Pavel S. Yarmolenko, Bradford J. Wood, Matthew R. Dreher & Max O. Köhler. (2012) Reduction of peak acoustic pressure and shaping of heated region by use of multifoci sonications in MR-guided high-intensity focused ultrasound mediated mild hyperthermia. Medical Physics 40:1, pages 013301.
Crossref
W Minkowycz, E Sparrow & J AbrahamMichael Etheridge, Navid Manuchehrabadi, Rhonda Franklin & John Bischof. 2012. Nanoparticle Heat Transfer and Fluid Flow. Nanoparticle Heat Transfer and Fluid Flow 97 122 .
Mustafa Raoof, Stuart J. Corr, Warna D. Kaluarachchi, Katheryn L. Massey, Katrina Briggs, Cihui Zhu, Matthew A. Cheney, Lon J. Wilson & Steven A. Curley. (2012) Stability of antibody-conjugated gold nanoparticles in the endolysosomal nanoenvironment: implications for noninvasive radiofrequency-based cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine 8:7, pages 1096-1105.
Crossref
Carlos Martinez-Boubeta, Konstantinos Simeonidis, David Serantes, Iván Conde-Leborán, Ioannis Kazakis, George Stefanou, Luis Peña, Regina Galceran, Lluis Balcells, Claude Monty, Daniel Baldomir, Manassis Mitrakas & Makis Angelakeris. (2012) Adjustable Hyperthermia Response of Self-Assembled Ferromagnetic Fe-MgO Core-Shell Nanoparticles by Tuning Dipole-Dipole Interactions. Advanced Functional Materials 22:17, pages 3737-3744.
Crossref
Dhivya Ketharnath, Rohit Pande, Leiming Xie, Srimeenakshi Srinivasan, Biana Godin & Jarek Wosik. (2012) A method to measure specific absorption rate of nanoparticles in colloidal suspension using different configurations of radio-frequency fields. Applied Physics Letters 101:8, pages 083118.
Crossref
Hongwang Wang, Tej B Shrestha, Matthew T Basel, Raj Kumar Dani, Gwi-Moon Seo, Sivasai Balivada, Marla M Pyle, Heidy Prock, Olga B Koper, Prem S Thapa, David Moore, Ping Li, Viktor Chikan, Deryl L Troyer & Stefan H Bossmann. (2012) Magnetic-Fe/Fe 3 O 4 -nanoparticle-bound SN38 as carboxylesterase-cleavable prodrug for the delivery to tumors within monocytes/macrophages . Beilstein Journal of Nanotechnology 3, pages 444-455.
Crossref
Sarah A. StanleyJennifer E. GagnerShadi DamanpourMitsukuni YoshidaJonathan S. DordickJeffrey M. Friedman. (2012) Radio-Wave Heating of Iron Oxide Nanoparticles Can Regulate Plasma Glucose in Mice. Science 336:6081, pages 604-608.
Crossref
Stéphanie Louguet, Bérengère Rousseau, Romain Epherre, Nicolas Guidolin, Graziella Goglio, Stéphane Mornet, Etienne Duguet, Sébastien Lecommandoux & Christophe Schatz. (2012) Thermoresponsive polymer brush-functionalized magnetic manganite nanoparticles for remotely triggered drug release. Polymer Chemistry 3:6, pages 1408.
Crossref
Magdalena Radović, Sanja Vranješ-Đurić, Nadežda Nikolić, Drina Janković, Gerardo F. Goya, Teobaldo E. Torres, M. Pilar Calatayud, Ignacio J. Bruvera, M. Ricardo Ibarra, Vojislav Spasojević, Boštjan Jančar & Bratislav Antić. (2012) Development and evaluation of 90Y-labeled albumin microspheres loaded with magnetite nanoparticles for possible applications in cancer therapy. Journal of Materials Chemistry 22:45, pages 24017.
Crossref
Roland Stone, Thomas WilliYitzhak Rosen, Olin Thompson Mefford & Frank Alexis. (2011) Targeted magnetic hyperthermia. Therapeutic Delivery 2:6, pages 815-838.
Crossref
Martin R. Lohe, Kristina Gedrich, Thomas Freudenberg, Emanuel Kockrick, Til Dellmann & Stefan Kaskel. (2011) Heating and separation using nanomagnet-functionalized metal–organic frameworks. Chemical Communications 47:11, pages 3075.
Crossref
Faruq Mohammad, Gopalan Balaji, Andrew Weber, Rao M. Uppu & Challa S. S. R. Kumar. (2010) Influence of Gold Nanoshell on Hyperthermia of Superparamagnetic Iron Oxide Nanoparticles. The Journal of Physical Chemistry C 114:45, pages 19194-19201.
Crossref
Taekhoon Kim, Yong-Min Huh, Seungjoo Haam & Kwangyeol Lee. (2010) Activatable nanomaterials at the forefront of biomedical sciences. Journal of Materials Chemistry 20:38, pages 8194.
Crossref
Pádraig Cantillon‐Murphy, Lawrence L. Wald, Markus Zahn & Elfar Adalsteinsson. (2010) Proposing magnetic nanoparticle hyperthermia in low‐field MRI. Concepts in Magnetic Resonance Part A 36A:1, pages 36-47.
Crossref

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.