363
Views
7
CrossRef citations to date
0
Altmetric
Articles

Identification of novel Nrf2/Keap1 pathway mutations in pediatric acute lymphoblastic leukemia

, , &
Pages 58-75 | Received 30 Aug 2019, Accepted 15 Oct 2019, Published online: 29 Oct 2019
 

Abstract

Acute lymphoblastic leukemia (ALL) is a malignancy of lymphoid progenitor cells, characterized by a wide range of biological and clinical heterogeneity. Oxidative stress is a common problem observed in carcinogenesis and it is involved in developing treatment resistance. Nuclear Factor Erythroid-2-Like 2 (Nrf2) transcription factor is the main regulator of antioxidant responses. The levels of reactive oxygen species (ROS) are tightly controlled and regulated by Nrf2 and its suppressor protein Kelch-like ECH-associated protein 1 (Keap1). Recently, many studies have shown that most of the genes in the Nrf2/Keap1/nuclear factor kappa-B (NF-κB)/phosphotyrosine-independent ligand for the Lck SH2 domain Of 62 KDa (p62) pathway show abnormally high mutational variations in cancer. However, variations in the Nrf2/Keap1/NF-κB1/p62 pathway in pediatric ALL have not been thoroughly investigated, yet. Thirty children, who were diagnosed with pediatirc ALL were included in the study. The Nrf2/Keap1/NF-κB1/p62 pathway variants were analyzed by DNA sequencing analysis. The PolyPhen-2 program was used for identifying pathogenic mutations. Our study examined the molecular dynamics (MD) perspectives of the effect of A159T and E121K mutations on protein stability for the first time in the literature by using the GROMACS45 software package utilizing the OPSLAA force field. Of the detected 17 nucleotide changes, 6 were novel. The study predicted the potential pathological effect of two mutations p. A159T and p.E121K in the Keap1 gene. The MD perspectives revealed that the E121K mutant’s observed structural behavior accounted for the key role of His-129 and E121K, where E121K exhibited much higher drift compared to His-129. For a future perspective, it would be meaningful to study the protein–small molecule interactions of the Keap1 protein to elaborate on the drug effects in patients carrying these mutations.

Acknowledgments

We acknowledge the patients and staff who participated in our research studies.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 636.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.