363
Views
7
CrossRef citations to date
0
Altmetric
Articles

Identification of novel Nrf2/Keap1 pathway mutations in pediatric acute lymphoblastic leukemia

, , &
Pages 58-75 | Received 30 Aug 2019, Accepted 15 Oct 2019, Published online: 29 Oct 2019

References

  • Cai MC, Chen M, Ma P, et al. Clinicopathological, microenvironmental and genetic determinants of molecular subtypes in KEAP1/NRF2-mutant lung cancer. Int J Cancer. 2019;144(4):788–801. doi:10.1002/ijc.31975.
  • Leinonen HM, Kansanen E, Pölönen P, et al. Dysregulation of the Keap1-Nrf2 pathway in cancer. Biochem Soc Trans.. 2015;43(4):645–649. doi:10.1042/BST20150048.
  • Mullighan CG. The genomic landscape of acute lymphoblastic leukemia in children and young adults. Hematol Am Soc Hematol Educ Progr. 2014;1:174–180. doi:10.1182/asheducation-2014.1.174.
  • Mullighan CG, Downing JR. Genome-wide profiling of genetic alterations in acute lymphoblastic leukemia: recent insights and future directions. Leukemia. 2009;23(7):1209–1218. doi:10.1038/leu.2009.18.
  • Pui CH, Evan WE. Acute lymphoblastic leukemia. N Engl J Med. 1998;339(9):605–615. doi:10.1056/NEJM199808273390907.
  • Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017;7(6):e577. doi:10.1038/bcj.2017.53.
  • Chu XY, Li ZJ, Zheng ZW, et al. KEAP1/NRF2 signaling pathway mutations in cervical cancer. Eur Rev Med Pharmacol Sci. 2018;22(14):4458–4466. doi:10.26355/eurrev_201807_15497.
  • Abdul-Aziz A, MacEwan DJ, Bowles KM, et al. Oxidative stress responses and NRF2 in human leukaemia. Oxid Med Cell Longev. 2015;2015:454659. doi:10.1155/2015/454659.
  • Kerins MJ, Ooi A. A catalogue of somatic NRF2 gain-of-function mutations in cancer. Sci Rep. 2018;8(1):12846. doi:10.1038/s41598-018-31281-0.
  • Zhao H, Hao S, Xu H, et al. Protective role of nuclear factor erythroid 2-related factor 2 in the hemorrhagic shock-induced inflammatory response. Int J Mol Med. 2016;37(4):1014–1022. doi:10.3892/ijmm.2016.2507.
  • Ichimura Y, Komatsu M. Activation of p62/SQSTM1-Keap1-nuclear factor erythroid 2-related factor 2 pathway in cancer. Front Oncol. 2018;8:210. doi:10.3389/fonc.2018.00210.
  • Ichimura Y, Waguri S, Sou Y-S, et al. Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell. 2013;51(5):618–631. doi:10.1016/j.molcel.2013.08.003.
  • Cartwright T, Perkins ND, Wilson CL. NFKB1: a suppressor of inflammation, ageing and cancer. FEBS J. 2016;283(10):1812–1822. doi:10.1111/febs.13627.
  • Wardyn JD, Ponsford AH, Sanderson CM. Dissecting molecular cross-talk between Nrf2 and NF-kappaB response pathways. Biochem Soc Trans. 2015;43(4):621–626. doi:10.1042/BST20150014.
  • Kansanen E, Kuosmanen SM, Leinonen H, et al. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1(1):45–49. doi:10.1016/j.redox.2012.10.001.
  • Taguchi K, Yamamoto M. The KEAP1-NRF2 system in cancer. Front Oncol. 2017;7:85.doi:10.3389/fonc.2017.00085.
  • Suzuki T, Yamamoto M. Molecular basis of the Keap1-Nrf2 system. Free Radic Biol Med. 2015;88:93–100. doi:10.1016/j.freeradbiomed.2015.06.006.
  • Yoo NJ, Kim HR, Kim YR, et al. Somatic mutations of the KEAP1 gene in common solid cancers. Histopathology. 2012;60(6):943–952. doi:10.1111/j.1365-2559.2012.04178.x.
  • Zhang DD. The Nrf2-Keap1-ARE signaling pathway: the regulation and dual function of Nrf2 in cancer. Antioxid Redox Signal. 2010;13(11):1623–1626. doi:10.1089/ars.2010.3301.
  • Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol. 2011;85(4):241–272. doi:10.1007/s00204-011-0674-5.
  • Kim J, Keum YS. NRF2, a key regulator of antioxidants with two faces towards cancer. Oxid Med Cell Longev. 2016;2016:2746457. doi:10.1155/2016/2746457.
  • Best SA, Sutherland KD. “Keaping” a lid on lung cancer: the Keap1-Nrf2 pathway. Cell Cycle. 2018;17(14):1696–1707. doi:10.1080/15384101.2018.1496756.
  • Qian Z, Zhou T, Gurguis CI, et al. Nuclear factor, erythroid 2-like 2-associated molecular signature predicts lung cancer survival. Sci Rep. 2015;5(1):16889. doi:10.1038/srep16889.
  • Yamawaki K, Kanda H, Shimazaki R. Nrf2 activator for the treatment of kidney diseases. Toxicol Appl Pharmacol. 2018;360:30–37. doi:10.1016/j.taap.2018.09.030.
  • Kaspar JW, Niture SK, Jaiswal AK. Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med. 2009;47(9):1304–1309. doi:10.1016/j.freeradbiomed.2009.07.035.
  • Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013;27(20):2179–2191. doi:10.1101/gad.225680.113.
  • Kitamura H, Motohashi H. Motohash H. NRF2 addiction in cancer cells. Cancer Sci. 2018;109(4):900–911. doi:10.1111/cas.13537.
  • Lau A, Villeneuve N, Sun Z, et al. Dual roles of Nrf2 in cancer. Pharmacol Res. 2008;58(56):262–270. doi:10.1016/j.phrs.2008.09.003.
  • Leinonen HM, Kansanen E, Pölönen P, et al. Role of the Keap1-Nrf2 pathway in cancer. Adv Cancer Res. 2014;122:281–320. doi:10.1016/B978-0-12-420117-0.00008-6.
  • Mitsuishi Y, Motohashi H, Yamamoto M. The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front Oncol. 2012;2:200. doi:10.3389/fonc.2012.00200.
  • Pandey P, Singh AK, Singh M, et al. The see-saw of Keap1-Nrf2 pathway in cancer. Crit Rev Oncol Hematol. 2017;116:89–98. doi:10.1016/j.critrevonc.2017.02.006.
  • Je EM, An CH, Yoo NJ. Mutational and expressional analyses of NRF2 and KEAP1 in sarcomas. Tumori. 2012;98:510–515. doi:10.1700/1146.12647.
  • Kantner H-P, Warsch W, Delogu A, et al. ETV6/RUNX1 induces reactive oxygen species and drives the accumulation of DNA damage in B cells. Neoplasia. 2013;15(11):1292–1300. doi:10.1593/neo.131310.
  • Slupphaug G, Kavli B, Krokan HE. The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res. 2003;531(12):231–251. doi:10.1016/j.mrfmmm.2003.06.002.
  • Ziech D, Franco R, Pappa A, et al. Reactive oxygen species (ROS)–induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res. 2011;711(12):167–173. doi:10.1016/j.mrfmmm.2011.02.015.
  • Zhang J, Lei W, Chen X. Oxidative stress response induced by chemotherapy in leukemia treatment. Mol Clin Oncol. 2018;8(3):391–399. doi:10.3892/mco.2018.1549.
  • Al-Tonbary Y, Al-Haggar M, El-Ashry R, et al. Vitamin e and N acetylcysteine as antioxidant adjuvant therapy in children with acute lymphoblastic leukemia. Adv Hematol. 2009;2009:689639. doi:10.1155/2009/689639.
  • Adzhubei I, Jordan DM, Sunyaev SR. Predicting functional effect of human missense mutations using PolyPhen-2. Curr Protoc Hum Genet. 2013;Chapter7:Unit7.20. doi:10.1002/0471142905.hg0720s76.
  • Walters-Sen LC, Hashimoto S, Thrush DL, et al. Variability in pathogenicity prediction programs: impact on clinical diagnostics. Mol Genet Genomic Med. 2015;3(2):99–110. doi:10.1002/mgg3.116.
  • Hayes JD, McMahon M. NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends Biochem Sci. 2009;34(4):176–188. doi:10.1016/j.tibs.2008.12.008.
  • Rushworth SA, Zaitseva L, Murray MY, et al. The high Nrf2 expression in human acute myeloid leukemia is driven by NF-kappaB and underlies its chemo-resistance. Blood. 2012;120(26):5188–5198. doi:10.1182/blood-2012-04-422121.
  • Bauer AK, Hill T, Alexander CM. The involvement of NRF2 in lung cancer. Oxid Med Cell Longev. 2013;2013:746432. doi:10.1155/2013/746432.
  • Hartikainen JM, Tengstrom M, Winqvist R, et al. KEAP1 genetic polymorphisms associate with breast cancer risk and survival outcomes. Clin Cancer Res. 2015;21(7):1591–1601. doi:10.1158/1078-0432.CCR-14-1887.
  • Hu Y, Ju Y, Lin D, et al. Mutation of the Nrf2 gene in non-small cell lung cancer. Mol Biol Rep. 2012;39(4):4743–4747. doi:10.1007/s11033-011-1266-4.
  • Kobayashi E, Suzuki T, Yamamoto M. Roles nrf2 plays in myeloid cells and related disorders. Oxid Med Cell Longev. 2013;2013:529219. doi:10.1155/2013/529219.
  • Li QK, Singh A, Biswal S, et al. KEAP1 gene mutations and NRF2 activation are common in pulmonary papillary adenocarcinoma. J Hum Genet. 2011;56(3):230–234. doi:10.1038/jhg.2010.172.
  • Nishihara E, Hishinuma A, Kogai T, et al. Novel germline mutation of KEAP1 (R483H) associated with a non-toxic multinodular goiter. Front Endocrinol (Lausanne). 2016;7:131. doi:10.3389/fendo.2016.00131.
  • O'Connell MA, Hayes JD. The Keap1/Nrf2 pathway in health and disease: from the bench to the clinic. Biochem Soc Trans. 2015;43:687–689. doi:10.1042/BST20150069.
  • Sasaki H, Suzuki A, Shitara M, et al. Genotype analysis of the NRF2 gene mutation in lung cance. Int J Mol Med. 2013;31(5):1135–1138. doi:10.3892/ijmm.2013.1324.
  • Sasaki H, Suzuki A, Shitara M, et al. Keap1 mutations in lung cancer patients. Oncol Lett. 2013;6(3):719–721. doi:10.3892/ol.2013.1427.
  • Shibata T, Ohta T, Tong KI, et al. Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc Natl Acad Sci USA. 2008;105(36):13568–13573. doi:10.1073/pnas.0806268105.
  • Wu RP, Hayashi T, Cottam HB. Nrf2 responses and the therapeutic selectivity of electrophilic compounds in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2010;20:7479–7484. doi:10.1073/pnas.1002890107.
  • COSMIC — the Catalogue of Somatic Mutations in Cancer 90107. https://cancer.sanger.ac.uk/cosmic.
  • Horie R. Molecularly-targeted strategy and NF-κB in lymphoid malignancies. J Clin Exp Hematop. 2013;5:185–195. doi:10.3960/jslrt.53.185.
  • Rushworth SA, Macewan DJ. The role of nrf2 and cytoprotection in regulating chemotherapy resistance of human leukemia cells. Cancers (Basel). 2011;29:1605–1621. doi:10.3390/cancers3021605.
  • Saito R, Suzuki T, Hiramoto K, et al. Characterizations of three major cysteine sensors of Keap1 in stresse response. Mol Cell Biol. 2015;2:271–284. doi:10.3390/cancers3021605.
  • Dinkova-Kostova AT, Holtzclaw WD, Cole RN. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA. 2002;3:11908–11913.99 doi:10.1073/pnas.1723988.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.