Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 56, 2018 - Issue 6
1,304
Views
53
CrossRef citations to date
0
Altmetric
Articles

A vehicle stability control strategy with adaptive neural network sliding mode theory based on system uncertainty approximation

, , , &
Pages 923-946 | Received 09 Aug 2017, Accepted 07 Oct 2017, Published online: 20 Nov 2017
 

ABSTRACT

Modelling uncertainty, parameter variation and unknown external disturbance are the major concerns in the development of an advanced controller for vehicle stability at the limits of handling. Sliding mode control (SMC) method has proved to be robust against parameter variation and unknown external disturbance with satisfactory tracking performance. But modelling uncertainty, such as errors caused in model simplification, is inevitable in model-based controller design, resulting in lowered control quality. The adaptive radial basis function network (ARBFN) can effectively improve the control performance against large system uncertainty by learning to approximate arbitrary nonlinear functions and ensure the global asymptotic stability of the closed-loop system. In this paper, a novel vehicle dynamics stability control strategy is proposed using the adaptive radial basis function network sliding mode control (ARBFN-SMC) to learn system uncertainty and eliminate its adverse effects. This strategy adopts a hierarchical control structure which consists of reference model layer, yaw moment control layer, braking torque allocation layer and executive layer. Co-simulation using MATLAB/Simulink and AMESim is conducted on a verified 15-DOF nonlinear vehicle system model with the integrated-electro-hydraulic brake system (I-EHB) actuator in a Sine With Dwell manoeuvre. The simulation results show that ARBFN-SMC scheme exhibits superior stability and tracking performance in different running conditions compared with SMC scheme.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China (grant numbers U1664263 and 51375009), the Independent Research Program of Tsinghua University (grant number 20161080033), and the Natural Science Foundation of Shandong Province (grant number ZR2016EEQ06).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 648.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.