Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 56, 2018 - Issue 6
1,304
Views
53
CrossRef citations to date
0
Altmetric
Articles

A vehicle stability control strategy with adaptive neural network sliding mode theory based on system uncertainty approximation

, , , &
Pages 923-946 | Received 09 Aug 2017, Accepted 07 Oct 2017, Published online: 20 Nov 2017

References

  • Di Cairano S, Tseng HE, Bernardini D, et al. Vehicle yaw stability control by coordinated active front steering and differential braking in the tire sideslip angles domain. IEEE Trans Control Syst Technol. 2013;21(4):1236–1248. doi: 10.1109/TCST.2012.2198886
  • Goodarzi A, Naghibian M, Choodan D, et al. Vehicle dynamics control by using a three-dimensional stabilizer pendulum system. Veh Syst Dyn. 2016;54(12):1671–1687. doi: 10.1080/00423114.2016.1228987
  • Li L, Jia G, Chen J, et al. A novel vehicle dynamics stability control algorithm based on the hierarchical strategy with constrain of nonlinear tyre forces. Veh Syst Dyn. 2015;53(8):1093–1116. doi: 10.1080/00423114.2015.1025082
  • Rajamani R. Vehicle dynamics and control. New York: Springer Science & Business Media; 2011.
  • Yi K, Chung T, Kim J, et al. An investigation into differential braking strategies for vehicle stability control. Proc Inst Mech Eng D J Automob Eng. 2003;217(12):1081–1093. doi: 10.1243/09544070360729428
  • Barbarisi O, Palmieri G, Scala S, et al. LTV-MPC for yaw rate control and Side slip control with dynamically constrained differential braking. Eur J Control. 2009;15(3–4):468–479. doi: 10.3166/ejc.15.468-479
  • Zong C, Zhu T, Wang C, et al. Multi-objective stability control algorithm of heavy tractor semi-trailer based on differential braking. Chin J Mech Eng. 2012;25(1):88–97. doi: 10.3901/CJME.2012.01.088
  • Tchamna R, Youn I. Yaw rate and side-slip control considering vehicle longitudinal dynamics. Int J Automot Technol. 2013;14(1):53–60. doi: 10.1007/s12239-013-0007-1
  • Li L, Lu Y, Wang R, et al. A 3-dimentional dynamics control framework of vehicle lateral stability and rollover prevention via active braking with MPC. IEEE Trans Ind Electron. 2016;99(6):1–12. doi: 10.1109/TIE.2016.2547359
  • He X, Yang K, Ji X, et al. Research on vehicle stability control strategy based on integrated-electro-hydraulic brake system. SAE Technical Paper 2017-01-1565; 2017.
  • Van der Sande T, Zegelaar P, Besselink I, et al. A robust control analysis for a steer-by-wire vehicle with uncertainty on the tyre forces. Veh Syst Dyn. 2016;54(9):1247–1268. doi: 10.1080/00423114.2016.1197407
  • Beal CE, Gerdes JC. Model predictive control for vehicle stabilization at the limits of handling. IEEE Trans Control Syst Technol. 2013;21(4):1258–1269. doi: 10.1109/TCST.2012.2200826
  • Ji X, Wu J, Zhao Y, et al. A new robust control method for active front steering considering the intention of the driver. Proc Inst Mech En D J Automob Eng. 2015;229(4):518–531. doi: 10.1177/0954407014547240
  • Yang X, Wang Z, Peng W. Coordinated control of AFS and DYC for vehicle handling and stability based on optimal guaranteed cost theory. Veh Syst Dyn. 2009;47(1):57–79. doi: 10.1080/00423110701882264
  • Liu W, He H, Sun F, et al. Integrated chassis control for a three-axle electric bus with distributed driving motors and active rear steering system. Veh Syst Dyn. 2017;55(5):601–625. doi: 10.1080/00423114.2016.1267368
  • Zhang H, Wang J. Vehicle lateral dynamics control through AFS/DYC and robust gain-scheduling approach. IEEE Trans Veh Technol. 2016;65(1):489–494. doi: 10.1109/TVT.2015.2391184
  • Zhang H, Zhang X, Wang J. Robust gain-scheduling energy-to-peak control of vehicle lateral dynamics stabilization. Veh Syst Dyn. 2014;52(3):309–340. doi: 10.1080/00423114.2013.879190
  • Jin XJ, Yin G, Chen N. Gain-scheduled robust control for lateral stability of four-wheel-independent-drive electric vehicles via linear parameter-varying technique. Mechatronics. 2015;30:286–296. doi: 10.1016/j.mechatronics.2014.12.008
  • Aripin MK, Ghazali R, Sam YM, et al. Uncertainty modelling and high performance robust controller for active front steering control. Paper presented at the 10th Asian Control Conference (ASCC); Kota Kinabalu, Malaysia; 2015. p. 1–6.
  • He Z, Ji X. Nonlinear robust control of integrated vehicle dynamics. Veh Syst Dyn. 2012;50(2):247–280. doi: 10.1080/00423114.2011.578217
  • Li B, Rakheja S, Feng Y. Enhancement of vehicle stability through integration of direct yaw moment and active rear steering. Proc Inst Mech Eng D JAutomob Eng. 2016;230(6):830–840. doi: 10.1177/0954407015596255
  • Gibson TE, Crespo LG, Annaswamy AM. Adaptive control of hypersonic vehicles in the presence of modeling uncertainties. 2009 American Control Conference; St. Louis, MO, USA; 2009. p. 3178–3183.
  • Yao J, Jiao Z, Ma D, et al. High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties. IEEE/ASME Trans Mechatron. 2014;19(2):633–641. doi: 10.1109/TMECH.2013.2252360
  • Rashidi B, Esmaeilpour M, Homaeinezhad MR. Precise angular speed control of permanent magnet DC motors in presence of high modeling uncertainties via sliding mode observer-based model reference adaptive algorithm. Mechatronics. 2015;28:79–95. doi: 10.1016/j.mechatronics.2015.04.009
  • Utkin V, Guldner J, Shi J. Sliding mode control in electro-mechanical systems. Boca Raton: CRC Press; 2009.
  • Azar AT. Advances and applications in sliding mode control systems. Berlin: Springer; 2015.
  • Sun T, Pei H, Pan Y, et al. Neural network-based sliding mode adaptive control for robot manipulators. Neurocomputing. 2011;74(14/15):2377–2384. doi: 10.1016/j.neucom.2011.03.015
  • Hsu CF. Adaptive neural complementary sliding-mode control via functional-linked wavelet neural network. Eng Appl Artif Intell. 2013;26(4):1221–1229. doi: 10.1016/j.engappai.2012.11.012
  • Liu YH, Li T, Yang YY, et al. Estimation of tire-road friction coefficient based on combined APF-IEKF and iteration algorithm. Mech Syst Signal Process. 2017;88:25–35. doi: 10.1016/j.ymssp.2016.07.024
  • Hashemi E, Khosravani S, Khajepour A, et al. Longitudinal vehicle state estimation using nonlinear and parameter-varying observers. Mechatronics. 2017;43:28–39. doi: 10.1016/j.mechatronics.2017.02.004
  • Chen Y, Ji Y, Guo K. A reduced-order nonlinear sliding mode observer for vehicle slip angle and tyre forces. Veh Syst Dyn. 2014;52(12):1716–1728. doi: 10.1080/00423114.2014.960430
  • Ma B, Liu Y, Gao Y, et al. Estimation of vehicle sideslip angle based on steering torque. Int J Adv Manuf Technol. 2016:1–9.
  • Pacejka HB, Bakker E. The magic formula tyre model. Veh Syst Dyn. 1992;21(S1):1–18. doi: 10.1080/00423119208969994
  • Doumiati M, Victorino A, Lechner D, et al. Observers for vehicle tyre/road forces estimation: experimental validation. Veh Syst Dyn. 2010;48(11):1345–1378. doi: 10.1080/00423111003615204
  • Fei J, Ding H. Adaptive sliding mode control of dynamic system using RBF neural network. Nonlinear Dyn. 2012;70(2):1563–1573. doi: 10.1007/s11071-012-0556-2
  • Liu J. Radial basis function (RBF) neural network control for mechanical systems: design, analysis and MATLAB simulation. Beijing: Springer-Verlag Berlin Heidelberg; 2013.
  • Zhang J, Lv C, Gou J, et al. Cooperative control of regenerative braking and hydraulic braking of an electrified passenger car. Proc Inst Mec Eng D J Automob Eng. 2012;226(10):1289–1302. doi: 10.1177/0954407012441884
  • Lv C, Zhang J, Li Y. Extended-Kalman-filter-based regenerative and friction blended braking control for electric vehicle equipped with axle motor considering damping and elastic properties of electric powertrain. Veh Syst Dyn. 2014;52(11):1372–1388. doi: 10.1080/00423114.2014.938663
  • Lv C, Zhang J, Li Y, et al. Directional-stability-aware brake blending control synthesis for over-actuated electric vehicles during straight-line deceleration. Mechatronics. 2016;38:121–131. doi: 10.1016/j.mechatronics.2015.12.010
  • Yuan L, Zhao H, Chen H, et al. Nonlinear MPC-based slip control for electric vehicles with vehicle safety constraints. Mechatronics. 2016;38:1–15. doi: 10.1016/j.mechatronics.2016.05.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.