Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 55, 2017 - Issue 9
958
Views
34
CrossRef citations to date
0
Altmetric
Articles

Variation in predicting pantograph–catenary interaction contact forces, numerical simulations and field measurements

, &
Pages 1265-1282 | Received 11 Aug 2016, Accepted 11 Mar 2017, Published online: 30 Mar 2017
 

ABSTRACT

The contact force between the pantograph and the contact wire ensures energy transfer between the two. Too small of a force leads to arching and unstable energy transfer, while too large of a force leads to unnecessary wear on both parts. Thus, obtaining the correct contact force is important for both field measurements and estimates using numerical analysis. The field contact force time series is derived from measurements performed by a self-propelled diagnostic vehicle containing overhead line recording equipment. The measurements are not sampled at the actual contact surface of the interaction but by force transducers beneath the collector strips. Methods exist for obtaining more realistic measurements by adding inertia and aerodynamic effects to the measurements. The variation in predicting the pantograph–catenary interaction contact force is studied in this paper by evaluating the effect of the force sampling location and the effects of signal processing such as filtering. A numerical model validated by field measurements is used to study these effects. First, this paper shows that the numerical model can reproduce a train passage with high accuracy. Second, this study introduces three different options for contact force predictions from numerical simulations. Third, this paper demonstrates that the standard deviation and the maximum and minimum values of the contact force are sensitive to a low-pass filter. For a specific case, an 80 Hz cut-off frequency is compared to a 20 Hz cut-off frequency, as required by EN 50317:2012; the results show an 11% increase in standard deviation, a 36% increase in the maximum value and a 19% decrease in the minimum value.

Acknowledgements

The authors are grateful to Jernbaneverket, the Norwegian National Rail Administration, for their assistance with field measurements and the funding of this research.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 648.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.