Publication Cover
Vehicle System Dynamics
International Journal of Vehicle Mechanics and Mobility
Volume 55, 2017 - Issue 9
958
Views
34
CrossRef citations to date
0
Altmetric
Articles

Variation in predicting pantograph–catenary interaction contact forces, numerical simulations and field measurements

, &
Pages 1265-1282 | Received 11 Aug 2016, Accepted 11 Mar 2017, Published online: 30 Mar 2017

References

  • Poetsch G, Evans J, Meisinger R, et al. Pantograph/catenary dynamics and control. Veh Syst Dyn. 1997;28:159–195. doi: 10.1080/00423119708969353
  • Kiessling F, Puschmann R, Schmieder A, et al. Contact lines for electric railways: planning, design, implementation, maintenance. 2nd ed. Erlangen: Publicis Publishing; 2012.
  • Wu TX, Brennan MJ. Dynamic stiffness of a railway overhead wire system and its effect on pantograph–catenary system dynamics. J Sound Vib. 1999;219:483–502. doi: 10.1006/jsvi.1998.1869
  • Alberto A, Benet J, Arias E, et al. A high performance tool for the simulation of the dynamic pantograph–catenary interaction. Math Comput Simul. 2008;79:652–667. doi: 10.1016/j.matcom.2008.04.016
  • Mei G, Zhang W, Zhao H, et al. A hybrid method to simulate the interaction of pantograph and catenary on overlap span. Veh Syst Dyn. 2006;44:571–580. doi: 10.1080/00423110600875559
  • Lee JH, Park TW, Oh HK, et al. Analysis of dynamic interaction between catenary and pantograph with experimental verification and performance evaluation in new high-speed line. Veh Syst Dyn. 2015;53:1117–1134. doi: 10.1080/00423114.2015.1025797
  • Gerstmayr J, Shabana AA. Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlin Dyn. 2006;45:109–130. doi: 10.1007/s11071-006-1856-1
  • Sanchez-Rebollo C, Jimenez-Octavio JR, Carnicero A. Active control strategy on a catenary–pantograph validated model. Veh Syst Dyn. 2013;51:554–569. doi: 10.1080/00423114.2013.764455
  • Pappalardo CM, Patel MD, Tinsley B, et al. Contact force control in multibody pantograph/catenary systems. Proc Inst Mech Eng E J Multi-Body Dyn. 2016;230:307–328. doi: 10.1177/1464419315604756
  • Ikeda M, Nagasaka S, Usuda T. A precise contact force measuring method for overhead catenary system. Paper presented at: Proceedings of world Congress on railway research; Köln: UIC; 2001. Available from: http://www.railway-research.org/IMG/pdf/015.pdf
  • Usuda T. The pantograph contact force measurement method in overhead catenary system. Paper presented at: Proceedings of the 8th world Congress on railway research. Seoul, South Korea: UIC; 2008. Available from: http://www.railway-research.org/IMG/pdf/s.1.4.3.4.pdf.
  • Zhang W, Shen Z, Zeng J. Study on dynamics of coupled systems in high-speed trains. Veh Syst Dyn. 2013;51(7):966–1016. doi: 10.1080/00423114.2013.798421
  • Bucca G, Collina A. Electromechanical interaction between carbon-based pantograph strip and copper contact wire: a heuristic wear model. Tribol Int. 2015;92:47–56. doi: 10.1016/j.triboint.2015.05.019
  • NEK. NEK EN 50317:2012 Railway applications – Current collection systems – requirements for and validation of measurements of the dynamic interaction between pantograph and overhead contact line. 2012.
  • Ambrósio J, Pombo J, Rauter F, et al. A memory based communication in the co-simulation of multibody and finite element codes for pantograph-catenary interaction simulation multibody dynamics. In: Bottasso CL, editor. Multibody dynamics computational methods and applications. Netherlands: Springer Verlag; 2009. p. 231–252.
  • Collina A, Bruni S. Numerical simulation of pantograph-overhead equipment interaction. Veh Syst Dyn. 2002;38:261–291. doi: 10.1076/vesd.38.4.261.8286
  • Nåvik P, Rønnquist A, Stichel S. The use of dynamic response to evaluate and improve the optimization of existing soft railway catenary systems for higher speeds. Proc Inst Mech Eng Part F J Rail Rapid Transit. 2016;230:1388–1396. doi: 10.1177/0954409715605140
  • Rønnquist A, Nåvik P. Dynamic assessment of existing soft catenary systems using modal analysis to explore higher train velocities: a case study of a Norwegian contact line system. Veh Syst Dyn. 2015;53:756–774. doi: 10.1080/00423114.2015.1013040
  • Bruni S, Ambrosio J, Carnicero A, et al. The results of the pantograph–catenary interaction benchmark. Veh Syst Dyn. 2015;53:412–435. doi: 10.1080/00423114.2014.953183
  • Nåvik P, Rønnquist A, Stichel S. A wireless railway catenary structural monitoring system: full-scale case study. Case Stud Struct Eng. 2016;6:22–30. doi: 10.1016/j.csse.2016.05.003
  • Frøseth GT, Nåvik P, Rønnquist A. Close range photogrammetry for measuring the response of a railway catenary system. In: Pombo J, editor. Proceedings of the third international conference on railway technology: research, development and maintenance. Stirlingshire (UK): Civil-Comp Press; 2016. Paper 102. doi: 10.4203/ccp.110.102
  • Rønnquist A, Nåvik P. Exploring dynamic behaviour of soft catenaries subject to regular loading using full scale measurements. In: Pombo J, editor. Proceedings of the third international conference on railway technology: research, development and maintenance. Stirlingshire: Civil-Comp Press; 2016. Paper 101. doi: 10.4203/ccp.110.101
  • Nåvik P, Rønnquist A, Stichel S. Identification of system damping in railway catenary wire systems from full-scale measurements. Eng Struct. 2016;113:71–78. doi: 10.1016/j.engstruct.2016.01.031
  • Mekanisk systembeskrivelse av kontaktledningsanlegg [Internet]. The Norwegian National Rail Administration; [cited 2013 Oct 2]. Available from: http://www.jernbanekompetanse.no/wiki/Mekanisk_systembeskrivelse_av_kontaktledningsanlegg
  • NEK. NEK EN 50318:2002 Railway applications – current collection systems – Validation of simulation of the dynamic interaction between pantograph and overhead contact line; 2002.
  • Carnevale M, Facchinetti A, Maggiori L, et al. Computational fluid dynamics as a means of assessing the influence of aerodynamic forces on the mean contact force acting on a pantograph. Proc Inst Mech Eng Part F J Rail Rapid Transit. 2016;230:1698–1713. doi: 10.1177/0954409715606748
  • Song Y, Liu Z, Wang H, et al. Nonlinear analysis of wind-induced vibration of high-speed railway catenary and its influence on pantograph–catenary interaction. Veh Syst Dyn. 2016;54:723–747. doi: 10.1080/00423114.2016.1156134
  • ABAQUS 6.14 Theory Manual. Dassault Systèmes; 2014.
  • Ambrósio J, Pombo J, Pereira M, et al. Recent developments in pantograph-catenary interaction modelling and analysis. Int J Railw Technol. 2012;1:249–278. doi: 10.4203/ijrt.1.1.12
  • ROGER 1000 [Internet]. [cited 2016 Jun 16]. Available from: http://www.mermecgroup.com/inspect/recording-cars/104/roger-1000.php
  • BANVERKET. Analys av kontaktledningsdynamik vid flera verksamma strömavtagare Del 1, BKL 02/10. Banverket 2004.
  • Carnevale M, Collina A. Processing of collector acceleration data for condition-based monitoring of overhead lines. Proc Inst Mech Eng Part F J Rail Rapid Transit. 2016;230:472–485. doi: 10.1177/0954409714545637
  • Zhou N, Zhang W, Li R. Dynamic performance of a pantograph-catenary system with the consideration of the appearance characteristics of contact surfaces. J Zhejiang Univ Sci A. 2011;12:913–920. doi: 10.1631/jzus.A11GT015
  • Ambrósio J, Pombo J, Pereira M. Optimization of high-speed railway pantographs for improving pantograph-catenary contact. Theor Appl Mech Lett. 2013;3:013006. doi: 10.1063/2.1301306

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.