2,186
Views
33
CrossRef citations to date
0
Altmetric
Reviews

Dietary nutrients shape gut microbes and intestinal mucosa via epigenetic modifications

, , , , , & ORCID Icon show all
Pages 783-797 | Published online: 12 Oct 2020
 

Abstract

The imbalance of intestinal microecology firstly impairs intestinal mucosa barrier and function, then further damages the functions and homeostasis of distal organs, leading to systemic diseases. Nutrients, transplantation of bacteria flora and modes of life can shape gut microbiota and intestinal mucosa barrier and mitigate stress. Current researches demonstrate that dynamic epigenetic modifications of intestinal tissue strongly mediate the crosstalk between gut microbes and gut mucosa barrier. Lactobacillus and Bifidobacterium species can synthesize folate to increase DNA methylation and mRNA N6-methyladenosine (m6A) of gut, which ensures intestinal normal development. Clostridial cluster, Anaerostipes and Eubacterium can induce histone acylation modifications by butyrate to enhance the development and immune balance of gut. Herein, we summarizes the present scientific understanding of how dietary nutrients shape gut microbiota and further regulate intestinal mucosa functions via epigenetic modifications, which will shed light on manipulation of gut microbiota by dietary nutrients, for prevention or clinical treatment of intestinal diseases.

Acknowledgements

Our profound admiration and respect go to researchers in this field and in our laboratories for their dedication and hard work. We apologize to scientists whose work is in this field but their papers are not cited in this review owing to space limitations.

Disclosure statement

The authors declare that they have no competing interests.

Additional information

Funding

This work was supported by the National Key R&D Program of China (2018YFD0500601 and 2017YFD0500501), the National Natural Science Foundation of China (31930106, 31829004 and 31722054), the National Ten-thousand Talents Program of China (23070201), the Key Research & Developmental Program of Shandong Province (2019JZZY020308), and the 111 Project (B16044).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 440.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.