2,186
Views
33
CrossRef citations to date
0
Altmetric
Reviews

Dietary nutrients shape gut microbes and intestinal mucosa via epigenetic modifications

, , , , , & ORCID Icon show all

References

  • Allen, J. M., L. J. Mailing, G. M. Niemiro, R. Moore, M. D. Cook, B. A. White, H. D. Holscher, and J. A. Woods. 2018. Exercise alters gut microbiota composition and function in lean and obese humans. Medicine and Science in Sports and Exercise 50 (4):747–57. doi: 10.1249/mss.0000000000001495.
  • Allen, J. M., L. J. Mailing, J. Cohrs, C. Salmonson, J. D. Fryer, V. Nehra, V. L. Hale, P. Kashyap, B. A. White, and J. A. Woods. 2018. Exercise training-induced modification of the gut microbiota persists after microbiota colonization and attenuates the response to chemically-induced colitis in gnotobiotic mice. Gut Microbes 9 (2):115–30. doi: 10.1080/19490976.2017.1372077.
  • Ansari, I., G. Raddatz, J. Gutekunst, M. Ridnik, D. Cohen, M. Abu-Remaileh, T. Tuganbaev, H. Shapiro, E. Pikarsky, E. Elinav, et al. 2020. The microbiota programs DNA methylation to control intestinal homeostasis and inflammation. Nature Microbiology 5 (4):610–9. doi: 10.1038/s41564-019-0659-3.
  • Bagarolli, R. A., N. Tobar, A. G. Oliveira, T. G. Araújo, B. M. Carvalho, G. Z. Rocha, J. F. Vecina, K. Calisto, D. Guadagnini, P. O. Prada, et al. 2017. Probiotics modulate gut microbiota and improve insulin sensitivity in DIO mice. The Journal of Nutritional Biochemistry 50:16–25. doi: 10.1016/j.jnutbio.2017.08.006.
  • Berdasco, M., and M. Esteller. 2017. Chapter 9–crosstalk between non-coding rnas and the epigenome in development. In Chromatin regulation & dynamics, eds. A. Göndör, 211–34. Salt Lake City: Academic Press. doi: 10.1016/C2014-0-03251-0.
  • Bidu, C., Q. Escoula, S. Bellenger, A. Spor, M. Galan, A. Geissler, A. Bouchot, D. Dardevet, B. Morio, P. D. Cani, et al. 2018. The transplantation of ω3 PUFA-altered gut microbiota of fat-1 mice to wild-type littermates prevents obesity and associated metabolic disorders. Diabetes 67 (8):1512–23. doi: 10.2337/db17-1488.
  • Budden, K. F., S. L. Gellatly, D. L. Wood, M. A. Cooper, M. Morrison, P. Hugenholtz, and P. M. Hansbro. 2017. Emerging pathogenic links between microbiota and the gut-lung axis. Nature Reviews. Microbiology 15 (1):55–63. doi: 10.1038/nrmicro.2016.142.
  • Caballero, S., and E. G. Pamer. 2015. Microbiota-mediated inflammation and antimicrobial defense in the intestine. Annual Review of Immunology 33:227–56. doi: 10.1146/annurev-immunol-032713-120238.
  • Carlberg, C., and F. Molnár. 2018. The histone code. In Human epigenomics, eds. Carlberg Carsten and Molnár Ferdinand, 75–88. Singapore: Springer Nature. doi: 10.1007/978-981-10-7614-5.
  • Chen, D., D. Jin, S. Huang, J. Wu, M. Xu, T. Liu, W. Dong, X. Liu, S. Wang, W. Zhong, et al. 2020. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Letters 469:456–67. doi: 10.1016/j.canlet.2019.11.019.
  • Chen, X., P. Song, P. Fan, T. He, D. Jacobs, C. L. Levesque, L. J. Johnston, L. Ji, N. Ma, Y. Chen, et al. 2018. Moderate dietary protein restriction optimized gut microbiota and mucosal barrier in growing pig model. Frontiers in Cellular and Infection Microbiology 8:246. doi: 10.3389/fcimb.2018.00246.
  • Costantini, L., R. Molinari, B. Farinon, and N. Merendino. 2017. Impact of omega-3 fatty acids on the gut microbiota. International Journal of Molecular Sciences 18 (12):2645. doi: 10.3390/ijms18122645.
  • Cuevas-Sierra, A., O. Ramos-Lopez, J. I. Riezu-Boj, F. I. Milagro, and J. A. Martinez. 2019. Diet, Gut Microbiota, and Obesity: Links with host genetics and epigenetics and potential applications. Adv Nutr 10 (suppl_1):S17–S30. doi: 10.1093/advances/nmy078.
  • D’Aquila, P., L. Lynn Carelli, F. De Rango, G. Passarino, and D. Bellizzi. 2020. Gut microbiota as important mediator between diet and DNA methylation and histone modifications in the host. Nutrients 12 (3):597. doi: 10.3390/nu12030597.
  • Dalton, A., C. Mermier, and M. Zuhl. 2019. Exercise influence on the microbiome-gut-brain axis. Gut Microbes 10 (5):555–68. doi: 10.1080/19490976.2018.1562268.
  • David, L. A., C. F. Maurice, R. N. Carmody, D. B. Gootenberg, J. E. Button, B. E. Wolfe, A. V. Ling, A. S. Devlin, Y. Varma, M. A. Fischbach, et al. 2014. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505 (7484):559–63. doi: 10.1038/nature12820.
  • De Filippo, C., M. Di Paola, M. Ramazzotti, D. Albanese, G. Pieraccini, E. Banci, F. Miglietta, D. Cavalieri, and P. Lionetti. 2017. Diet, environments, and gut microbiota. A preliminary investigation in children living in rural and urban burkina faso and italy. Frontiers in Microbiology 8:1979. doi: 10.3389/fmicb.2017.01979.
  • Deehan, E. C., C. Yang, M. E. Perez-Muñoz, N. K. Nguyen, C. C. Cheng, L. Triador, Z. Zhang, J. A. Bakal, and J. Walter. 2020. Precision microbiome modulation with discrete dietary fiber structures directs short-chain fatty acid production. Cell Host & Microbe 27 (3):389–404. doi: 10.1016/j.chom.2020.01.006.
  • Derrien, M., A. S. Alvarez, and W. M. de Vos. 2019. The gut microbiota in the first decade of life. Trends in Microbiology 27 (12):997–1010. doi: 10.1016/j.tim.2019.08.001.
  • Diether, N. E., and B. P. Willing. 2019. Microbial fermentation of dietary protein: An important factor in diet-microbe-host interaction. Microorganisms 7 (1):19. doi: 10.3390/microorganisms7010019.
  • Durack, J., and S. V. Lynch. 2019. The gut microbiome: Relationships with disease and opportunities for therapy. The Journal of Experimental Medicine 216 (1):20–40. doi: 10.1084/jem.20180448.
  • El Aidy, S., Y. G. Bolsius, F. Raven, and R. Havekes. 2019. A brief period of sleep deprivation leads to subtle changes in mouse gut microbiota. Journal of Sleep Research 0:e12920. doi: 10.1111/jsr.12920.
  • Farias, N., N. Ho, S. Butler, L. Delaney, J. Morrison, S. Shahrzad, and B. L. Coomber. 2015. The effects of folic acid on global DNA methylation and colonosphere formation in colon cancer cell lines. The Journal of Nutritional Biochemistry 26 (8):818–26. doi: 10.1016/j.jnutbio.2015.02.002.
  • Farrelly, L. A., R. E. Thompson, S. Zhao, A. E. Lepack, Y. Lyu, N. V. Bhanu, B. Zhang, Y. E. Loh, A. Ramakrishnan, K. C. Vadodaria, et al. 2019. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature 567 (7749):535–9. doi: 10.1038/s41586-019-1024-7.
  • Fawcett, E. M., J. K. Johnson, C. Braden, E. Garcia, and D. L. Miller. 2019. Epigenetic bookmarking of H2S exposure in Caenorhabditis elegans. bioRxiv 619734. doi: 10.1101/619734.
  • Fellows, R., and P. Varga-Weisz. 2020. Chromatin dynamics and histone modifications in intestinal microbiota-host crosstalk. Molecular Metabolism 38:100925. doi: 10.1016/j.molmet.2019.12.005.
  • Fellows, R., J. Denizot, C. Stellato, A. Cuomo, P. Jain, E. Stoyanova, S. Balázsi, Z. Hajnády, A. Liebert, J. Kazakevych, et al. 2018. Microbiota derived short chain fatty acids promote histone crotonylation in the colon through histone deacetylases. Nature Communications 9 (1):105doi: 10.1038/s41467-017-02651-5.
  • Ferrari, A., G. T. Torrezan, D. M. Carraro, and S. Aguiar Junior. 2019. Association of folate and vitamins involved in the 1-carbon cycle with polymorphisms in the mmethylenetetrahydrofolate reductase gene (MTHFR) and global DNA methylation in patients with colorectal cancer. Nutrients 11 (6):1368. doi: 10.3390/nu11061368.
  • Gately, S. 2019. Human Microbiota and Personalized Cancer Treatments: Role of commensal microbes in treatment outcomes for cancer patients. Cancer Treatment and Research 178:253–64. doi: 10.1007/978-3-030-16391-4_10.
  • Gensollen, T., S. S. Iyer, D. L. Kasper, and R. S. Blumberg. 2016. How colonization by microbiota in early life shapes the immune system. Science (New York, N.Y.) 352 (6285):539–44. doi: 10.1126/science.aad9378.
  • Ghadimi, D., U. Helwig, J. Schrezenmeir, K. J. Heller, and M. de Vrese. 2012. Epigenetic imprinting by commensal probiotics inhibits the IL-23/IL-17 axis in an in vitro model of the intestinal mucosal immune system. Journal of Leukocyte Biology 92 (4):895–911. doi: 10.1189/jlb.0611286.
  • Gibson, G. R., R. Hutkins, M. E. Sanders, S. L. Prescott, R. A. Reimer, S. J. Salminen, K. Scott, C. Stanton, K. S. Swanson, P. D. Cani, et al. 2017. Expert consensus document: The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nature Reviews. Gastroenterology & Hepatology 14 (8):491–502. doi: 10.1038/nrgastro.2017.75.
  • Gilbert, J. A., M. J. Blaser, J. G. Caporaso, J. K. Jansson, S. V. Lynch, and R. Knight. 2018. Current understanding of the human microbiome. Nature Medicine 24 (4):392–400. doi: 10.1038/nm.4517.
  • Goldenberg, J. Z., C. Yap, L. Lytvyn, C. K. Lo, J. Beardsley, D. Mertz, and B. C. Johnston. 2017. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. The Cochrane Database of Systematic Reviews 12:CD006095. doi: 10.1002/14651858.cd006095.pub4.
  • Gomez-Arango, L. F., H. L. Barrett, S. A. Wilkinson, L. K. Callaway, H. D. McIntyre, M. Morrison, and M. Dekker Nitert. 2018. Low dietary fiber intake increases Collinsella abundance in the gut microbiota of overweight and obese pregnant women. Gut Microbes 9 (3):189–201. doi: 10.1080/19490976.2017.1406584.
  • González-Riano, C., D. Dudzik, A. Garcia, A. Gil-de-la-Fuente, A. Gradillas, J. Godzien, Á. López-Gonzálvez, F. Rey-Stolle, D. Rojo, F. J. Ruperez, et al. 2020. Recent developments along the analytical process for metabolomics workflows. Analytical Chemistry 92 (1):203–26. doi: 10.1021/acs.analchem.9b04553.
  • Haller, D., L. Holt, S. C. Kim, R. F. Schwabe, R. B. Sartor, and C. Jobin. 2003. Transforming growth factor-beta 1 inhibits non-pathogenic Gram negative bacteria-induced NF-kappa B recruitment to the interleukin-6 gene promoter in intestinal epithelial cells through modulation of histone acetylation. The Journal of Biological Chemistry 278 (26):23851–60. doi: 10.1074/jbc.m300075200.
  • Han, M., C. Wang, P. Liu, D. Li, Y. Li, and X. Ma. 2017. Dietary fiber gap and host gut microbiota. Protein and Peptide Letters 24 (5):388–96. doi: 10.2174/0929866524666170220113312.
  • Hang, S., D. Paik, L. Yao, E. Kim, J. Trinath, J. Lu, S. Ha, B. N. Nelson, S. P. Kelly, L. Wu, et al. 2019. Bile acid metabolites control TH17 and Treg cell differentiation. Nature 576 (7785):143–8. doi: 10.1038/s41586-019-1785-z.
  • Hibberd, M. C., M. Wu, D. A. Rodionov, X. Li, J. Cheng, N. W. Griffin, M. J. Barratt, R. J. Giannone, R. L. Hettich, A. L. Osterman, et al. 2017. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. Science Translational Medicine 9 (390):eaal4069. doi: 10.1126/scitranslmed.aal4069.
  • Huang, C. Z., T. Yu, and Q. K. Chen. 2015. DNA methylation dynamics during differentiation, proliferation, and tumorigenesis in the intestinal tract. Stem Cells and Development 24 (23):2733–9. doi: 10.1089/scd.2015.0235.
  • Jia, W., G. Xie, and W. Jia. 2018. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nature Reviews. Gastroenterology & Hepatology 15 (2):111–28. doi: 10.1038/nrgastro.2017.119.
  • Kagohara, L. T., G. L. Stein-O'Brien, D. Kelley, E. Flam, H. C. Wick, L. V. Danilova, H. Easwaran, A. V. Favorov, J. Qian, D. A. Gaykalova, et al. 2018. Epigenetic regulation of gene expression in cancer: Techniques, resources and analysis. Briefings in Functional Genomics 17 (1):49–63. doi: 10.1093/bfgp/elx018.
  • Kalantar-Zadeh, K.,. K. J. Berean, R. E. Burgell, J. G. Muir, and P. R. Gibson. 2019. Intestinal gases: Influence on gut disorders and the role of dietary manipulations. Nature reviews. Gastroenterology & Hepatology 16 (12):733–47. doi: 10.1038/s41575-019-0193-z.
  • Kok, D. E., W. T. Steegenga, and J. A. McKay. 2018. Folate and epigenetics: Why we should not forget bacterial biosynthesis. Epigenomics 10 (9):1147–50. doi: 10.2217/epi-2018-0117.
  • Krautkramer, K. A., J. H. Kreznar, K. A. Romano, E. I. Vivas, G. A. Barrett-Wilt, M. E. Rabaglia, M. P. Keller, A. D. Attie, F. E. Rey, and J. M. Denu. 2016. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Molecular Cell 64 (5):982–92. doi: 10.1016/j.molcel.2016.10.025.
  • Kuang, Z., Y. Wang, Y. Li, C. Ye, K. A. Ruhn, C. L. Behrendt, E. N. Olson, and L. V. Hooper. 2019. The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3. Science (New York, N.Y.) 365 (6460):1428–34. doi: 10.1126/science.aaw3134.
  • Kubinak, J. L., W. Z. Stephens, R. Soto, C. Petersen, T. Chiaro, L. Gogokhia, R. Bell, N. J. Ajami, J. F. Petrosino, L. Morrison, et al. 2015. MHC variation sculpts individualized microbial communities that control susceptibility to enteric infection. Nature Communications 6:8642. doi: 10.1038/ncomms9642.
  • Kundu, P., E. Blacher, E. Elinav, and S. Pettersson. 2017. Our gut microbiome: The evolving inner self. Cell 171 (7):1481–93. doi: 10.1016/j.cell.2017.11.024.
  • LeBlanc, J. G., C. Milani, G. S. de Giori, F. Sesma, D. van Sinderen, and M. Ventura. 2013. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Current Opinion in Biotechnology 24 (2):160–8. doi: 10.1016/j.copbio.2012.08.005.
  • Li, X., T. Wang, M. Zhao, T. Huang, D. Sun, L. Han, H. Nisa, X. Shang, Y. Heianza, and L. Qi. 2019. DNA methylation variant, B-vitamins intake and longitudinal change in body mass index. International Journal of Obesity 43 (3):468–74. doi: 10.1038/s41366-018-0106-1.
  • Lim, E. S., D. Wang, and L. R. Holtz. 2016. The bacterial microbiome and virome milestones of infant development. Trends Microbiol 24 (10):801–10. doi: 10.1016/j.tim.2016.06.001.
  • Liu, S., A. P. da Cunha, R. M. Rezende, R. Cialic, Z. Wei, L. Bry, L. E. Comstock, R. Gandhi, and H. L. Weiner. 2016. The host shapes the gut microbiota via fecal microRNA. Cell Host & Microbe 19 (1):32–43. doi: 10.1016/j.chom.2015.12.005.
  • Liu, Y., X. Tian, B. He, T. K. Hoang, C. M. Taylor, E. Blanchard, J. Freeborn, S. Park, M. Luo, J. Couturier, et al. 2019. Lactobacillus reuteri DSM 17938 feeding of healthy newborn mice regulates immune responses while modulating gut microbiota and boosting beneficial metabolites. American Journal of Physiology. Gastrointestinal and Liver Physiology 317 (6):G824–G838. doi: 10.1152/ajpgi.00107.2019.
  • Liu, Y., Y. Wang, Y. Ni, C. K. Y. Cheung, K. S. L. Lam, Y. Wang, Z. Xia, D. Ye, J. Guo, M. A. Tse, et al. 2020. Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention. Cell Metabolism 31 (1):77–91. doi: 10.1016/j.cmet.2019.11.001.
  • Lorch, Y., and R. D. Kornberg. 2017. Chromatin-remodeling for transcription. Quarterly Reviews of Biophysics 50:e5. doi: 10.1017/s003358351700004x.
  • Luck, H., S. Khan, J. H. Kim, J. K. Copeland, X. S. Revelo, S. Tsai, M. Chakraborty, K. Cheng, Y. Tao Chan, M. K. Nøhr, et al. 2019. Gut-associated IgA + immune cells regulate obesity-related insulin resistance. Nature Communications 10 (1):3650. doi: 10.1038/s41467-019-11370-y.
  • Luu, M., and A. Visekruna. 2019. Short-chain fatty acids: Bacterial messengers modulating the immunometabolism of T cells. European Journal of Immunology 49 (6):842–8. doi: 10.1002/eji.201848009.
  • Ma, N., and X. Ma. 2019. Dietary amino acids and the gut-microbiome-immune axis: Physiological metabolism and therapeutic prospects. Comprehensive Reviews in Food Science and Food Safety 18 (1):221–42. doi: 10.1111/1541-4337.12401.
  • Ma, N., P. Guo, J. Zhang, T. He, S. W. Kim, G. Zhang, and X. Ma. 2018. Nutrients mediate intestinal bacteria-mucosal immune crosstalk. Frontiers in Immunology 9:5. doi: 10.3389/fimmu.2018.00005.
  • Magnúsdóttir, S., D. Ravcheev, V. de Crécy-Lagard, and I. Thiele. 2015. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Frontiers in Genetics 6:148. doi: 10.3389/fgene.2015.00148.
  • Makki, K., E. C. Deehan, J. Walter, and F. Bäckhed. 2018. The impact of dietary fiber on gut microbiota in host health and disease. Cell Host & Microbe 23 (6):705–15. doi: 10.1016/j.chom.2018.05.012.
  • Manzo, V. E., and A. S. Bhatt. 2015. The human microbiome in hematopoiesis and hematologic disorders. Blood 126 (3):311–8. doi: 10.1182/blood-2015-04-574392.
  • Miller, L. E., A. K. Zimmermann, and A. C. Ouwehand. 2016. Contemporary meta-analysis of short-term probiotic consumption on gastrointestinal transit. World Journal of Gastroenterology 22 (21):5122–31. doi: 10.3748/wjg.v22.i21.5122.
  • Miro-Blanch, J., and O. Yanes. 2019. Epigenetic regulation at the interplay between gut microbiota and host metabolism. Frontiers in Genetics 10:638doi: 10.3389/fgene.2019.00638.
  • Monaghan, T., B. H. Mullish, J. Patterson, G. K. Wong, J. R. Marchesi, H. Xu, T. Jilani, and D. Kao. 2019. Effective fecal microbiota transplantation for recurrent Clostridioides difficile infection in humans is associated with increased signalling in the bile acid-farnesoid X receptor-fibroblast growth factor pathway. Gut Microbes 10 (2):142–8. doi: 10.1080/19490976.2018.1506667.
  • Monda, V., I. Villano, A. Messina, A. Valenzano, T. Esposito, F. Moscatelli, A. Viggiano, G. Cibelli, S. Chieffi, M. Monda, et al. 2017. Exercise modifies the gut microbiota with positive health effects. Oxidative Medicine and Cellular Longevity 2017:3831972. doi: 10.1155/2017/3831972.
  • Moya, A., and M. Ferrer. 2016. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends in Microbiology 24 (5):402–13. doi: 10.1016/j.tim.2016.02.002.
  • Negi, S., D. K. Das, S. Pahari, S. Nadeem, and J. N. Agrewala. 2019. Potential role of gut microbiota in induction and regulation of innate immune memory. Frontiers in Immunology 10:2441. doi: 10.3389/fimmu.2019.02441.
  • Ng, K. M., A. Aranda-Díaz, C. Tropini, M. R. Frankel, W. Van Treuren, C. T. O'Loughlin, B. D. Merrill, F. B. Yu, K. M. Pruss, R. A. Oliveira, et al. 2019. Recovery of the gut microbiota after antibiotics depends on host diet, community context, and environmental reservoirs. Cell Host & Microbe 26 (5):650–65. doi: 10.1016/j.chom.2019.10.011.
  • Olszak, T., D. An, S. Zeissig, M. P. Vera, J. Richter, A. Franke, J. N. Glickman, R. Siebert, R. M. Baron, D. L. Kasper, et al. 2012. Microbial exposure during early life has persistent effects on natural killer T cell function. Science (New York, N.Y.) 336 (6080):489–93. doi: 10.1126/science.1219328.
  • Paul, B., S. Barnes, W. Demark-Wahnefried, C. Morrow, C. Salvador, C. Skibola, and T. O. Tollefsbol. 2015. Influences of diet and the gut microbiome on epigenetic modulation in cancer and other diseases. Clin Epigenetics 7:112. doi: 10.1186/s13148-015-0144-7.
  • Plaza-Diaz, J., F. J. Ruiz-Ojeda, M. Gil-Campos, and A. Gil. 2019. Mechanisms of action of probiotics. Advances in Nutrition (Bethesda, Md.) 10 (suppl_1):S49–S66. doi: 10.1093/advances/nmy063.
  • Postler, T. S., and S. Ghosh. 2017. Understanding the holobiont: How microbial metabolites affect human health and shape the immune system. Cell Metabolism 26 (1):110–30. doi: 10.1016/j.cmet.2017.05.008.
  • Qin, J., R. Li, J. Raes, M. Arumugam, K. S. Burgdorf, C. Manichanh, T. Nielsen, N. Pons, F. Levenez, T. Yamada, et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464 (7285):59–65. doi: 10.1038/nature08821.
  • Rastelli, M., P. D. Cani, and C. Knauf. 2019. The gut microbiome influences host endocrine functions. Endocrine Reviews 40 (5):1271–84. doi: 10.1210/er.2018-00280.
  • Ratajczak, W., A. Rył, A. Mizerski, K. Walczakiewicz, O. Sipak, and M. Laszczyńska. 2019. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochimica Polonica 66 (1):1–12. doi: 10.18388/abp.2018_2648.
  • Rau, M., A. Rehman, H. Levels, J. Wei, N. Beyersdorf, P. Rosenstiel, and A. Geier. 2017. Short-chain fatty acids and SCFA-producing bacteria in NAFLD patients are associated with an increased Th17/rTreg ratio and hepatic disease progression. Zeitschrift für Gastroenterologie 55 (05):e1–e27. doi: 10.1055/s-0037-1603048.
  • Rinninella, E., M. C. Mele, N. Merendino, M. Cintoni, G. Anselmi, A. Caporossi, A. Gasbarrini, and A. M. Minnella. 2018. The role of diet, micronutrients and the gut microbiota in age-related macular degeneration: New perspectives from the gut-retina axis. Nutrients 10 (11):1677. doi: 10.3390/nu10111677.
  • Riva, A., O. Kuzyk, E. Forsberg, G. Siuzdak, C. Pfann, C. Herbold, H. Daims, A. Loy, B. Warth, and D. Berry. 2019. A fiber-deprived diet disturbs the fine-scale spatial architecture of the murine colon microbiome. Nature Communications 10 (1):4366doi: 10.1038/s41467-019-12413-0.
  • Rivière, A., M. Selak, D. Lantin, F. Leroy, and D. Vuyst. 2016. L. Bifidobacteria and butyrate-producing colon bacteria: Importance and strategies for their stimulation in the human gut. Frontiers in Microbiology 7:979. doi: 10.3389/fmicb.2016.00979.
  • Robertson, R. C., A. R. Manges, B. B. Finlay, and A. J. Prendergast. 2019. The human microbiome and child growth - first 1000 days and beyond. Trends in Microbiology 27 (2):131–47. doi: 10.1016/j.tim.2018.09.008.
  • Röth, D., A. J. Chiang, W. Hu, G. B. Gugiu, C. N. Morra, J. Versalovic, and M. Kalkum. 2019. Two-carbon folate cycle of commensal Lactobacillus reuteri 6475 gives rise to immunomodulatory ethionine, a source for histone ethylation. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology 33 (3):3536–48. doi: 10.1096/fj.201801848r.
  • Rothschild, D., O. Weissbrod, E. Barkan, A. Kurilshikov, T. Korem, D. Zeevi, P. I. Costea, A. Godneva, I. N. Kalka, N. Bar, et al. 2018. Environment dominates over host genetics in shaping human gut microbiota. Nature 555 (7695):210–5. doi: 10.1038/nature25973.
  • Saavedra, F., E. Boyarchuk, F. Alvarez, G. Almouzni, and A. Loyola. 2019. Metabolic deregulations affecting chromatin architecture: One-carbon metabolism and krebs cycle impact histone methylation. In The DNA, RNA, and histone methylomes, eds. Stefan Jurga and Jan Barciszewski, 573–606. Berlin: Springer. doi: 10.1007/978-3-030-14792-1.
  • Sabari, B. R., D. Zhang, C. D. Allis, and Y. Zhao. 2017. Metabolic regulation of gene expression through histone acylations. Nature Reviews. Molecular Cell Biology 18 (2):90–101. doi: 10.1038/nrm.2016.140.
  • Salvucci, E. 2016. Microbiome, holobiont and the net of life. Critical Reviews in Microbiology 42 (3):485–94. doi: 10.3109/1040841X.2014.962478.
  • Sanchez, H. N., J. B. Moroney, H. Gan, T. Shen, J. L. Im, T. Li, J. R. Taylor, H. Zan, and P. Casali. 2020. B cell-intrinsic epigenetic modulation of antibody responses by dietary fiber-derived short-chain fatty acids. Nature Communications 11 (1):60. doi: 10.1038/s41467-019-13603-6.
  • Sanders, M. E., D. J. Merenstein, G. Reid, G. R. Gibson, and R. A. Rastall. 2019. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nature Reviews. Gastroenterology & Hepatology 16 (10):605–16. doi: 10.1038/s41575-019-0173-3.
  • Schilderink, R., C. Verseijden, J. Seppen, V. Muncan, G. R. van den Brink, T. T. Lambers, E. A. van Tol, and W. J. de Jonge. 2016. The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC. American Journal of Physiology. Gastrointestinal and Liver Physiology 310 (11):G1138–G1146. doi: 10.1152/ajpgi.00411.2015.
  • Serefidou, M., A. V. Venkatasubramani, and A. Imhof. 2019. The impact of one carbon metabolism on histone methylation. Frontiers in Genetics 10:764doi: 10.3389/fgene.2019.00764.
  • Seth, P., P. N. Hsieh, S. Jamal, L. Wang, S. P. Gygi, M. K. Jain, J. Coller, and J. S. Stamler. 2019. Regulation of microRNA machinery and development by interspecies S-Nitrosylation. Cell 176 (5):1014–25. doi: 10.1016/j.cell.2019.01.037.
  • Simithy, J., S. Sidoli, Z. F. Yuan, M. Coradin, N. V. Bhanu, D. M. Marchione, B. J. Klein, G. A. Bazilevsky, C. E. McCullough, R. S. Magin, et al. 2017. Characterization of histone acylations links chromatin modifications with metabolism. Nature Communications 8 (1):1141doi: 10.1038/s41467-017-01384-9.
  • Simon, J. C., J. R. Marchesi, C. Mougel, and M. A. Selosse. 2019. Host-microbiota interactions: From holobiont theory to analysis. Microbiome 7 (1):5doi: 10.1186/s40168-019-0619-4.
  • Sinclair, W. R., J. H. Shrimp, T. T. Zengeya, R. A. Kulkarni, J. M. Garlick, H. Luecke, A. J. Worth, I. A. Blair, N. W. Snyder, and J. L. Meier. 2018. Bioorthogonal pro-metabolites for profiling short chain fatty acylation. Chemical Science 9 (5):1236–41. doi: 10.1039/c7sc00247e.
  • Song, X., X. Sun, S. F. Oh, M. Wu, Y. Zhang, W. Zheng, N. Geva-Zatorsky, R. Jupp, D. Mathis, C. Benoist, et al. 2020. Microbial bile acid metabolites modulate gut RORγ + regulatory T cell homeostasis. Nature 577 (7790):410–5. doi: 10.1038/s41586-019-1865-0.
  • Sun, M., W. Wu, Z. Liu, and Y. Cong. 2017. Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. Journal of Gastroenterology 52 (1):1–8. doi: 10.1007/s00535-016-1242-9.
  • Takahashi, K. 2014. Influence of bacteria on epigenetic gene control. Cellular and Molecular Life Sciences : CMLS 71 (6):1045–54. doi: 10.1007/s00018-013-1487-x.
  • Takahashi, K., Y. Sugi, K. Nakano, M. Tsuda, K. Kurihara, A. Hosono, and S. Kaminogawa. 2011. Epigenetic control of the host gene by commensal bacteria in large intestinal epithelial cells. The Journal of Biological Chemistry 286 (41):35755–62. doi: 10.1074/jbc.m111.271007.
  • Tett, A., K. D. Huang, F. Asnicar, H. Fehlner-Peach, E. Pasolli, N. Karcher, F. Armanini, P. Manghi, K. Bonham, M. Zolfo, et al. 2019. The Prevotella copri complex comprises four distinct clades underrepresented in Westernized populations. Cell Host Microbe 26 (5):666–79. doi: 10.1016/j.chom.2019.08.018.
  • Thaiss, C. A., D. Zeevi, M. Levy, G. Zilberman-Schapira, J. Suez, A. C. Tengeler, L. Abramson, M. N. Katz, T. Korem, N. Zmora, et al. 2014. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159 (3):514–29. doi: 10.1016/j.cell.2014.09.048.
  • Triplett, J., D. Ellis, A. Braddock, E. Roberts, K. Ingram, E. Perez, A. Short, D. Brown, V. Hutzley, C. Webb, et al. 2020. Temporal and region-specific effects of sleep fragmentation on gut microbiota and intestinal morphology in Sprague Dawley rats. Gut Microbes 11 (4):706–15. doi: 10.1080/19490976.2019.1701352.
  • Vatanen, T., D. R. Plichta, J. Somani, P. C. Münch, T. D. Arthur, A. B. Hall, S. Rudolf, E. J. Oakeley, X. Ke, R. A. Young, et al. 2019. Genomic variation and strain-specific functional adaptation in the human gut microbiome during early life. Nature Microbiology 4 (3):470–9. doi: 10.1038/s41564-018-0321-5.
  • Vázquez-Castellanos, J. F., A. Biclot, G. Vrancken, G. R. Huys, and J. Raes. 2019. Design of synthetic microbial consortia for gut microbiota modulation. Current Opinion in Pharmacology 49:52–9. doi: 10.1016/j.coph.2019.07.005.
  • Venegas, P., D. D. la Fuente, M. K. Landskron, G. González, M. J. Quera, R. Dijkstra, G. Harmsen, H. J. M. Faber, K. N. Hermoso. and M. A. 2019. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Frontiers in Immunology 10:277. doi: 10.3389/fimmu.2019.00277.
  • Wan, Y., F. Wang, J. Yuan, J. Li, D. Jiang, J. Zhang, H. Li, R. Wang, J. Tang, T. Huang, et al. 2019. Effects of dietary fat on gut microbiota and faecal metabolites, and their relationship with cardiometabolic risk factors: A 6-month randomised controlled-feeding trial. Gut 68 (8):1417–29. doi: 10.1136/gutjnl-2018-317609.
  • Wang, X., Y. Li, W. Chen, H. Shi, A. M. Eren, A. Morozov, C. He, G. Z. Luo, and T. Pan. 2019. Transcriptome-wide reprogramming of N6-methyladenosine modification by the mouse microbiome. Cell Research 29 (2):167–70. doi: 10.1038/s41422-018-0127-2.
  • Watson, M. M., and K. Søreide. 2017. The gut microbiota influence on human epigenetics, health, and disease. In Handbook of epigenetics, ed. T. Tollefsbol, 2nd ed., 495–510. Salt Lake City: Academic Press. doi: 10.1016/B978-0-12-805388-1.00043-2.
  • Wei, J. W., K. Huang, C. Yang, and C. S. Kang. 2017. Non-coding RNAs as regulators in epigenetics (Review). Oncology Reports 37 (1):3–9. doi: 10.3892/or.2016.5236.
  • Wei, W., X. Liu, J. Chen, S. Gao, L. Lu, H. Zhang, G. Ding, Z. Wang, Z. Chen, T. Shi, et al. 2017. Class I histone deacetylases are major histone decrotonylases: Evidence for critical and broad function of histone crotonylation in transcription. Cell research 27 (7):898–915. doi: 10.1038/cr.2017.68.
  • Wiest, R., A. Albillos, M. Trauner, J. S. Bajaj, and R. Jalan. 2017. Targeting the gut-liver axis in liver disease. Journal of Hepatology 67 (5):1084–103. doi: 10.1016/j.jhep.2017.05.007.
  • Wilson, B. C., T. Vatanen, W. S. Cutfield, and J. M. O'Sullivan. 2019. The super-donor phenomenon in fecal microbiota transplantation. Frontiers in Cellular and Infection Microbiology 9:2. doi: 10.3389/fcimb.2019.00002.
  • Wilson, B., and K. Whelan. 2017. Prebiotic inulin-type fructans and galacto-oligosaccharides: Definition, specificity, function, and application in gastrointestinal disorders. Journal of Gastroenterology and Hepatology 32 (S1):64–8. doi: 10.1111/jgh.13700.
  • Woo, V., and T. Alenghat. 2017. Host-microbiota interactions: epigenomic regulation. Current Opinion in Immunology 44:52–60. doi: 10.1016/j.coi.2016.12.001.
  • Wu, J., K. Frazier, J. Zhang, Z. Gan, T. Wang, and X. Zhong. 2020. Emerging role of m6 A RNA methylation in nutritional physiology and metabolism. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity 21 (1):e12942doi: 10.1111/obr.12942.
  • Wu, J., N. Ma, L. J. Johnston, and X. Ma. 2020. Dietary nutrients mediate intestinal host defense peptide expression. Advances in Nutrition (Bethesda, Md.) 11 (1):92–102. doi: 10.1093/advances/nmz057.
  • Xiong, H., B. Guo, Z. Gan, D. Song, Z. Lu, H. Yi, Y. Wu, Y. Wang, and H. Du. 2016. Butyrate upregulates endogenous host defense peptides to enhance disease resistance in piglets via histone deacetylase inhibition. Scientific Reports 6:27070doi: 10.1038/srep27070.
  • Yano, J. M., K. Yu, G. P. Donaldson, G. G. Shastri, P. Ann, L. Ma, C. R. Nagler, R. F. Ismagilov, S. K. Mazmanian, and E. Y. Hsiao. 2015. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161 (2):264–76. doi: 10.1016/j.cell.2015.02.047.
  • Ye, J., W. Wu, Y. Li, and L. Li. 2017. Influences of the gut microbiota on DNA methylation and histone modification. Digestive Diseases and Sciences 62 (5):1155–64. doi: 10.1007/s10620-017-4538-6.
  • Zhang, F., B. Cui, X. He, Y. Nie, K. Wu, and D. Fan. 2018. Microbiota transplantation: Concept, methodology and strategy for its modernization. Protein & Cell 9 (5):462–73. doi: 10.1007/s13238-018-0541-8.
  • Zhang, J., J. Zhao, H. Jin, R. Lv, H. Shi, G. De, B. Yang, Z. Sun, and H. Zhang. 2020. Probiotics maintain the intestinal microbiome homeostasis of the sailors during a long sea voyage. Gut Microbes 11 (4):930–43. doi: 10.1080/19490976.2020.1722054.
  • Zhao, S., X. Zhang, and H. Li. 2018. Beyond histone acetylation-writing and erasing histone acylations. Current Opinion in Structural Biology 53:169–77. doi: 10.1016/j.sbi.2018.10.001.
  • Zhou, D., Q. Pan, X. L. Liu, R. X. Yang, Y. W. Chen, C. Liu, and J. G. Fan. 2017. Clostridium butyricum B1 alleviates high-fat diet-induced steatohepatitis in mice via enterohepatic immunoregulation. Journal of Gastroenterology and Hepatology 32 (9):1640–8. doi: 10.1111/jgh.13742.
  • Zhuang, L., H. Chen, S. Zhang, J. Zhuang, Q. Li, and Z. Feng. 2019. Intestinal microbiota in early life and its implications on childhood health. Genomics, Proteomics & Bioinformatics 17 (1):13–25. doi: 10.1016/j.gpb.2018.10.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.