21
Views
291
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Activation of IκB Kinase β by Protein Kinase C Isoforms

, , , &
Pages 2180-2188 | Received 29 Jun 1998, Accepted 12 Nov 1998, Published online: 27 Mar 2023
 

Abstract

The atypical protein kinase C (PKC) isotypes (λ/ιPKC and ζPKC) have been shown to be critically involved in important cell functions such as proliferation and survival. Previous studies have demonstrated that the atypical PKCs are stimulated by tumor necrosis factor alpha (TNF-α) and are required for the activation of NF-κB by this cytokine through a mechanism that most probably involves the phosphorylation of IκB. The inability of these PKC isotypes to directly phosphorylate IκB led to the hypothesis that ζPKC may use a putative IκB kinase to functionally inactivate IκB. Recently several groups have molecularly characterized and cloned two IκB kinases (IKKα and IKKβ) which phosphorylate the residues in the IκB molecule that serve to target it for ubiquitination and degradation. In this study we have addressed the possibility that different PKCs may control NF-κB through the activation of the IKKs. We report here that αPKC as well as the atypical PKCs bind to the IKKs in vitro and in vivo. In addition, overexpression of ζPKC positively modulates IKKβ activity but not that of IKKα, whereas the transfection of a ζPKC dominant negative mutant severely impairs the activation of IKKβ but not IKKα in TNF-α-stimulated cells. We also show that cell stimulation with phorbol 12-myristate 13-acetate activates IKKβ, which is entirely dependent on the activity of αPKC but not that of the atypical isoforms. In contrast, the inhibition of αPKC does not affect the activation of IKKβ by TNF-α. Interestingly, recombinant active ζPKC and αPKC are able to stimulate in vitro the activity of IKKβ but not that of IKKα. In addition, evidence is presented here that recombinant ζPKC directly phosphorylates IKKβ in vitro, involving Ser177 and Ser181. Collectively, these results demonstrate a critical role for the PKC isoforms in the NF-κB pathway at the level of IKKβ activation and IκB degradation.

ACKNOWLEDGMENTS

This work was supported by grants SAF96-0216 from CICYT, PM96-0002-C02 from DGICYT, and BIO4-CT97-2071 from the European Union and by funds from Glaxo Wellcome Spain and has benefited from an institutional grant from Fundación Ramón Areces to the CBM.

We are indebted to Esther Garcia, Carmen Ibañez, and Beatriz Ranera for technical assistance and to Gonzalo Paris and Isabel Perez for their help and enthusiasm. We thank Dave Goeddel for a critical reading of the manuscript and for helpful comments during this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.