87
Views
132
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Purα Is Essential for Postnatal Brain Development and Developmentally Coupled Cellular Proliferation As Revealed by Genetic Inactivation in the Mouse

, , , , , , , , , , & show all
Pages 6857-6875 | Received 23 Jul 2002, Accepted 10 Apr 2003, Published online: 27 Mar 2023
 

Abstract

The single-stranded DNA- and RNA-binding protein, Purα, has been implicated in many biological processes, including control of transcription of multiple genes, initiation of DNA replication, and RNA transport and translation. Deletions of the PURA gene are frequent in acute myeloid leukemia. Mice with targeted disruption of the PURA gene in both alleles appear normal at birth, but at 2 weeks of age, they develop neurological problems manifest by severe tremor and spontaneous seizures and they die by 4 weeks. There are severely lower numbers of neurons in regions of the hippocampus and cerebellum of PURA−/− mice versus those of age-matched +/+ littermates, and lamination of these regions is aberrant at time of death. Immunohistochemical analysis of MCM7, a protein marker for DNA replication, reveals a lack of proliferation of precursor cells in these regions in the PURA−/− mice. Levels of proliferation were also absent or low in several other tissues of the PURA−/− mice, including those of myeloid lineage, whereas those of PURA+/− mice were intermediate. Evaluation of brain sections indicates a reduction in myelin and glial fibrillary acidic protein labeling in oligodendrocytes and astrocytes, respectively, indicating pathological development of these cells. At postnatal day 5, a critical time for cerebellar development, Purα and Cdk5 were both at peak levels in bodies and dendrites of Purkinje cells of PURA+/+ mice, but both were absent in dendrites of PURA−/− mice. Purα and Cdk5 can be coimmunoprecipitated from brain lysates of PURA+/+ mice. Immunohistochemical studies reveal a dramatic reduction in the level of both phosphorylated and nonphosphorylated neurofilaments in dendrites of the Purkinje cell layer and of synapse formation in the hippocampus. Overall results are consistent with a role for Purα in developmentally timed DNA replication in specific cell types and also point to a newly emerging role in compartmentalized RNA transport and translation in neuronal dendrites.

ACKNOWLEDGMENTS

We thank past and present members of the Center for Neurovirology and Cancer Biology for insightful discussion and sharing of ideas and reagents, particularly Sidney Croul for effort and guidance in the early stages of the neuropathological studies. We thank C. Schriver for editorial assistance. We thank Andrew D. Bergemann for helpful discussion. Jane A. Strauchen provided valuable pathologic analyses of mouse blood and lymphoid systems.

This work was made possible by grants awarded by the NIH to K.K., J.G., E.M.J., and S.A.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 265.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.