1,280
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Enhancing feedforward controller tuning via instrumental variables: with application to nanopositioning

, &
Pages 746-764 | Received 27 Jan 2016, Accepted 28 Jul 2016, Published online: 08 Sep 2016

References

  • Åström, K. (1970). Introduction to stochastic control theory. Mathematics in science and engineering (Vol. 70). New York, NY: Academic Press.
  • Bazanella, A.S., Campestrini, L., & Eckhard, D. (2012). Data-driven controller design: The H2 approach (1st ed.). Amsterdam: Springer.
  • Biagiotti, L., & Melchiorri, C. (2012). FIR filters for online trajectory planning with time- and frequency-domain specifications. Control Engineering Practice, 20, 1385–1399.
  • Boeren, F., Blanken, L., Bruijnen, D., & Oomen, T. (2015). Rational iterative feedforward control: Optimal instrumental variable approach for enhanced performance. Proceedings of the conference on decision and control (pp. 6058–6063), Osaka, Japan.
  • Boeren, F., Bruijnen, D., & Oomen, T. (2014). Iterative feedforward tuning approach and experimental verification for nano-precision motion systems. Proceedings of the ASME dynamic systems and control conference, San Antonio, TX, USA.
  • Boeren, F., Bruijnen, D., van Dijk, N., & Oomen, T. (2014). Joint input shaping and feedforward for point-to-point motion: Automated tuning for an industrial nanopositioning system. IFAC Mechatronics, 24, 572–581.
  • Boeren, F., Oomen, T., & Steinbuch, M. (2014). Accuracy aspects in motion feedforward tuning. Proceedings of the American control conference (pp. 2178–2183), Portland, OR, USA.
  • Boeren, F., Oomen, T., & Steinbuch, M. (2015). Iterative motion feedforward tuning: A data-driven approach based on instrumental variable identification. Control Engineering Practice, 37, 11–19.
  • Boerlage, M., Tousain, R., & Steinbuch, M. (2004). Jerk derivative feedforward control for motion systems. Proceedings of the American control conference (pp. 4843–4848), Boston, MA, USA.
  • Bolder, J., & Oomen, T. (2015). Rational basis functions in iterative learning control – with experimental verification on a motion system. IEEE Transactions on Control Systems Technology, 23, 722–729.
  • Bristow, D., Tharayil, M., & Alleyne, A. (2006). A survey of iterative learning control: A learning-based method for high-performance tracking control. IEEE Control Systems Magazine, 26, 96–114.
  • Butterworth, J., Pao, L., & Abramovitch, D. (2012). Analysis and comparison of three discrete-time feedforward model-inverse control techniques for nonminimum-phase systems. IFAC Mechatronics, 22, 577–587.
  • Clayton, G.M., Tien, S., Leang, K.K., Zou, Q., & Devasia, S. (2009). A review of feedforward control approaches in nanopositioning for high-speed SPM. Journal of Dynamic Systems, Measurement, and Control, 131, 0611011–06110119.
  • Devasia, S. (2002). Should model-based inverse inputs be used as feedforward under plant uncertainty ? IEEE Transactions on Automatic Control, 47, 1865–1871.
  • Fleming, A.J. (2014). Measuring and predicting resolution in nanopositioning systems. IFAC Mechatronics, 24, 605–618.
  • Formentin, S., Karimi, A., & Savaresi, S.M. (2013a). Optimal input design for direct data-driven tuning of model-reference controllers. Automatica, 49, 1874–1882.
  • Formentin, S., van Heusden, K., & Karimi, A. (2013b). A comparison of model-based and data-driven controller tuning. International Journal of Adaptive Control and Signal Processing, 28, 882–897.
  • Forssell, U. (1999). Closed-loop identification: Methods, theory and applications. Linköping: Linköping University.
  • Gilson, M., & Van den Hof, P. (2005). Instrumental variable methods for closed-loop system identification. Automatica, 41, 241–249.
  • Gorinevsky, D. (2002). Loop-shaping for iterative control of batch processes. IEEE Control Systems Magazine, 22, 55–65.
  • Groot Wassink, M., van de Wal, M., Scherer, C., & Bosgra, O. (2005). LPV control for a wafer stage: Beyond the theoretical solution. Control Engineering Practice, 13, 231–245.
  • Gunnarsson, S., & Norrlöf, M. (2001). On the design of ILC algorithms using optimization. Automatica, 37, 2011–2016.
  • Gunnarsson, S., & Norrlöf, M. (2006). On the disturbance properties of high order iterative learning control algorithms. Automatica, 42, 2031–2034.
  • Heertjes, M., Hennekens, D., & Steinbuch, M. (2010). MIMO feed-forward design in wafer scanners using a gradient approximation-based algorithm. Control Engineering Practice, 18, 495–506.
  • Hjalmarsson, H. (2009). System identification of complex and structured systems. European Journal of Control, 3, 275–310.
  • Hjalmarsson, H., Gevers, M., Gunnarsson, S., & Lequin, O. (1998). Iterative feedback tuning: Theory and applications. IEEE Control Systems, 18, 26–41.
  • Hoelzle, D.J., Johnson, A.J.W., & Alleyne, A.G. (2014). Bumpless transfer filter for exogenous feedforward signals. IEEE Transactions on Control Systems Technology, 22, 1581–1588.
  • Jakeman, A.J., & Young, P.C. (1979). Refined instrumental variable methods of time-series analysis: Parts II. Multivariable systems. International Journal of Control, 29, 621–644.
  • Janot, A., Gautier, M., Jubien, A., & Vandanjon, P.O. (2014). Comparison between the CLOE method and the DIDIM method for robots identification. IEEE Transaction on Control Systems Technology, 22, 1935–1941.
  • Janot, A., Vandanjon, P.O., & Gautier, M. (2014a). A generic instrumental variable approach for industrial robot identification. IEEE Transaction on Control Systems Technology, 22, 132–145.
  • Janot, A., Vandanjon, P.O., & Gautier, M. (2014b). An instrumental variable approach for rigid industrial robots identification. Control Engineering Practice, 25, 85–101.
  • Jung, Y., & Enqvist, M. (2013). Estimating models of inverse systems. Proceedings of the conference on decision and control (pp. 7143–7148), Firenze, Italy.
  • Kara-Mohamed, M., Heath, W.P., & Lanzon, A. (2015). Enhanced tracking for nanopositioning systems using feedforward/feedback multivariable control design. IEEE Transactions on Control Systems Technology, 23, 1003–1013.
  • Karimi, A., Butcher, M., & Longchamp, R. (2008). Model-free precompensator tuning based on the correlation approach. IEEE Transactions on Control Systems Technology, 16, 1013–1020.
  • Khalil, W., & Dombre, E. (2002). Modeling, identification, and control of robots. Bristol, PA: Taylor & Francis.
  • Kim, K.S., & Zou, Q. (2013). A modeling-free inversion-based iterative feedforward control for precision output tracking of linear time-invariant systems. IEEE/ASME Transactions on Mechatronics, 18, 1767–1777.
  • Kushner, H.J., & Yin, G.G. (2003). Stochastic approximation and recursive algorithms and applications. Stochastic modelling and applied probability (Vol. 35). New York, NY: Springer-Verlag.
  • Lambrechts, P., Boerlage, M., & Steinbuch, M. (2005). Trajectory planning and feedforward design for electromechanical motion systems. Control Engineering Practice, 13, 145–157.
  • Mishra, S., Coaplen, J., & Tomizuka, M. (2007). Precision positioning of wafer scanners: Segmented iterative learning control for nonrepetitive disturbances. IEEE Control Systems Magazine, 27, 20–25.
  • Oomen, T., van Herpen, R., Quist, S., van de Wal, M., Bosgra, O., & Steinbuch, M. (2014). Connecting system identification and robust control for next-generation motion control of a wafer stage. IEEE Transactions on Control Systems Technology, 22, 102–118.
  • Puthenpura, S.C., & Sinha, N.K. (1986). Identification of continuous-time systems using instrumental variables with application to an industrial robot. IEEE Transactions on Industrial Electronics, IE-33, 224–229.
  • Skogestad, S., & Postlethwaite, I. (2005). Multivariable feedback control: Analysis and design (2nd ed.). West Sussex: John Wiley & Sons.
  • Söderström, T. (2002). Discrete-time stochastic systems – estimation and control. London: Springer-Verlag.
  • Söderström, T., & Stoica, P. (1983). Instrumental variable methods for system identification. Lecture notes in control and information sciences (Vol. 57). Berlin: Springer-Verlag.
  • Söderström, T., & Stoica, P. (1989). System identification. Hemel Hempstead: Prentice Hall.
  • Söderström, T., Stoica, P., & Trulsson, E. (1987). Instrumental variable methods for closed loop systems. Proceedings of the IFAC World Congress on automatic control (pp. 363–368), Munich, Germany.
  • Steinbuch, M., & Norg, M. (1998). Advanced motion control: An industrial perspective. European Journal of Control, 4, 278–293.
  • van de Wal, M., van Baars, G., & Sperling, F. (2000). Reduction of residual vibrations by H∞ feedback control. Proceedings of the fifth motion and vibration conference (MOVIC) (Vol. 2, pp. 481–486), Sydney, Australia.
  • van de Wijdeven, J., & Bosgra, O. (2010). Using basis functions in iterative learning control: Analysis and design theory. International Journal of Control, 83, 661–675.
  • van der Meulen, S., Tousain, R., & Bosgra, O. (2008). Fixed structure feedforward controller design exploiting iterative trials: Application to a wafer stage and a desktop printer. Journal of Dynamic Systems, Measurement, and Control, 130, 0510061–05100616.
  • Yoshida, K., Ikeda, N., & Mayeda, H. (1992). Experimental study of the identification methods for an industrial robot manipulator. Proceedings of the international conference on intelligent robots and systems (pp. 263–270), Raleigh, NC, USA.
  • Young, P.C. (1976). Some observations on instrumental variable methods of time-series analysis. International Journal of Control, 23, 293–612.
  • Young, P.C. (2015). Refined instrumental variable estimation: Maximum likelihood optimization of a unified Box-Jenkins model. Automatica, 52, 35–46.
  • Young, P.C., & Jakeman, A.J. (1979). Refined instrumental variable methods of time-series analysis: Parts I. Single input, single output systems. International Journal of Control, 29, 1–30.
  • Young, P.C., & Jakeman, A.J. (1980). Refined instrumental variable methods of time-series analysis: Parts III. Extensions. International Journal of Control, 31, 741–764.
  • Zhong, H., Pao, L.Y., & de Callafon, R.A. (2012). Feedforward control for disturbance rejection: Model matching and other methods. Proceedings of the Chinese conference on decision and control (pp. 3525–3533), Taiyuan, China.