420
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

A new optimisation method of PIDC controller under constraints on robustness and sensitivity to measurement noise using amplitude optimum principle

ORCID Icon, , &
Pages 36-50 | Received 08 May 2020, Accepted 24 Mar 2021, Published online: 22 Apr 2021

References

  • Astrom, K., & Hägglund, T. (1995). PID controllers: Theory, design and tuning. Instrument Society of America.
  • Åström, K. J., & Hägglund, T. (2004). Revisiting the Ziegler-Nichols step response method for PID control. Journal of Process Control, 14(6), 635–650. https://doi.org/10.1016/j.jprocont.2004.01.002
  • Åström, K. J., & Hägglund, T. (2006). Advanced PID control. The Instrumentation Systems and Automation Society.
  • Åström, K. J., Panagopoulos, H., & Hägglund, T. (1998). Design of PI controllers based on non-convex optimization. Automatica, 34(5), 585–601. https://doi.org/10.1016/S0005-1098(98)00011-9
  • Begum, K. G., Rao, A. S., & Radhakrishnan. (2017). Enhanced IMC based PID controller design for non-minimum phase (NMP) integrating processes with time delays. ISA Transactions, 68, 223–234. https://doi.org/10.1016/j.isatra.2017.03.005
  • Bingul, Z., & Karahan, O. (2018a). Comparison of PID and FOPID controllers tuned by PSO and ABC algorithms for unstable and integrating systems with time delay. Optimal Control Applications and Methods, 39(4), 1431–1450. https://doi.org/10.1002/oca.2419
  • Bingul, Z., & Karahan, O. (2018b). A novel performance criterion approach to optimum design of PID controller using cuckoo search algorithm for AVR system. Journal of the Franklin Institute, 355(13), 5534–5559. https://doi.org/10.1016/j.jfranklin.2018.05.056
  • Bošković, M., Rapaić, M. R., Šekara, T. B., Mandić, P. D., & Lazarević, M. P. (2017). Pole placement based design of PIDC controller under constraint on robustness. Proceedings of Infoteh, 16, 664–668.
  • Bošković, M., Šekara, T. B., & Rapaić, M. R. (2020). Novel tuning rules for PIDC and PID load frequency controllers considering robustness and sensitivity to measurement noise. International Journal of Electrical Power and Energy Systems, 114, Article 105416. https://doi.org/10.1016/j.ijepes.2019.105416
  • Cvejn, J. (2013). The design of PID controller for non-oscillating time-delayed plants with guaranteed stability margin based on the modulus optimum criterion. Journal of Process Control, 23(4), 570–584. https://doi.org/10.1016/j.jprocont.2013.01.008
  • Cvejn, J., & Vrančić, D. (2018). The magnitude optimum tuning of the PID controller: Improving load disturbance rejection by extending the controller. Transactions of the Institute of Measurement and Control, 40(5), 1669–1680. https://doi.org/10.1177/0142331216688749
  • Desborough, L., & Miller, R. (2002). Increasing customer value of industrial control performance monitoring – Honeywell’s experience. AIChE Symposium Series, 98(326), 169–189.
  • Fiser, J., Zítek, P., & Vyhlídal, T. (2015). Magnitude optimum design of PID control loop with delay. IFAC-PapersOnLine, 48(12), 446–451. https://doi.org/10.1016/j.ifacol.2015.09.419
  • Grimholt, C., & Skogestad, S. (2018). Optimal PI and PID control of first-order plus delay processes and evaluation of the original and improved SIMC rules. Journal of Process Control, 70(2018), 36–46. https://doi.org/10.1016/j.jprocont.2018.06.011
  • Huba, M., & Vrančić, D. (2018). Comparing filtered PI, PID and PIDD 2 control for the FOTD plants. IFAC PapersOnLine, 51(4), 954–959. https://doi.org/10.1016/j.ifacol.2018.06.099
  • Isaksson, A. J., & Graebe, S. F. (2002). Derivative filter is an integral part of PID design. IEE Proceedings – Control Theory and Applications, 149(1), 41–45. https://doi.org/10.1049/ip-cta:20020111
  • Kessler, C. (1958). Das Symmetrische Optimum, Teil I. At – Automatisierungstechnik, 6(1–12), 395–400. https://doi.org/10.1524/auto.1958.6.112.395
  • Kos, T., Huba, M., & Vrančić, D. (2020). Parametric and nonparametric PI controller tuning method for integrating processes based on magnitude optimum. Applied Sciences, 10(4), 1–32. https://doi.org/10.3390/app10041443
  • Kristiansson, B., & Lennartson, B. (2006). Evaluation and simple tuning of PID controllers with high-frequency robustness. Journal of Process Control, 16(2), 91–102. https://doi.org/10.1016/j.jprocont.2005.05.006
  • Mandić, P. D., Šekara, T. B., Lazarević, M. P., & Bošković, M. (2017). Dominant pole placement with fractional order PID controllers: D-decomposition approach. ISA Transactions, 67, 76–86. https://doi.org/10.1016/j.isatra.2016.11.013
  • Mataušek, M. R., & Šekara, T. B. (2011). PID controller frequency-domain tuning for stable, integrating and unstable processes, including dead-time. Journal of Process Control, 21(1), 17–27. https://doi.org/10.1016/j.jprocont.2010.09.007
  • Medarametla, P. K., & Komanapalli, V. L. N. (2017). Maximum sensitivity based new PID controller tuning for integrating systems using polynomial method. Chemical Product and Process Modeling, 12(3). https://doi.org/10.1515/cppm-2016-0070
  • Novella-Rodríguez, D. F., Cuéllar, B. D. M., Márquez-Rubio, J. F., Hernández-Pérez, MÁ, & Velasco-Villa, M. (2019). PD–PID controller for delayed systems with two unstable poles: A frequency domain approach. International Journal of Control, 92(5), 1196–1208. https://doi.org/10.1080/00207179.2017.1386326
  • O’Dwyer, A. (2009). Handbook of PI and PID controller tuning rules. Imperial College Press.
  • Padula, F., & Visioli, A. (2012). Optimal tuning rules for proportional-integral-derivative and fractional-order proportional-integral-derivative controllers for integral and unstable processes. IET Control Theory and Applications, 6(6), 776–786. https://doi.org/10.1049/iet-cta.2011.0419
  • Panagopoulos, H., Åström, K. J., & Hägglund, T. (2002). Design of PID controllers based on constrained optimisation. IEE Proceedings – Control Theory and Applications, 149(1), 32–40. https://doi.org/10.1049/ip-cta:20020102
  • Papadopoulos, K. G. (2015). PID controller tuning using the magnitude optimum criterion. Springer-Verlag.
  • Papadopoulos, K. G., Tselepis, N. D., & Margaris, N. I. (2012). Revisiting the magnitude optimum criterion for robust tuning of PID type-I control loops. Journal of Process Control, 22(6), 1063–1078. https://doi.org/10.1016/j.jprocont.2012.04.007
  • Papadopoulos, K. G., Yadav, P. K., & Margaris, N. I. (2017). Explicit analytical tuning rules for digital PID controllers via the magnitude optimum criterion. ISA Transactions, 70, 357–377. https://doi.org/10.1016/j.isatra.2017.06.020
  • Puangdownreong, D. (2012). Application of current search to optimum PIDA controller design. Intelligent Control and Automation, 3(2012), 303–312. https://doi.org/10.4236/ica.2012.34035
  • Rao, A. S., & Chidambaram, M. (2006). Enhanced two-degrees-of-freedom control strategy for second-order unstable processes with time delay. Industrial and Engineering Chemistry Research, 45(10), 3604–3614. https://doi.org/10.1021/ie051046+
  • Ravi Kishore, C., & Padma Sree, R. (2018). Design of PID controllers for unstable systems using multiple dominant pole placement method. Indian Chemical Engineer, 60(4), 356–370. https://doi.org/10.1080/00194506.2017.1363673
  • Rhinehart, R. R. (2000). The century’s greatest contributions to control practice. ISA Transactions, 39(1), 3–13. https://doi.org/10.1016/S0019-0578(00)00010-0
  • Saab, S. S., & Jaafar, R. H. (2019). A proportional-derivative-double derivative controller for robot manipulators. International Journal of Control. https://doi.org/10.1080/00207179.2019.1642518
  • Samad, T. (2017). A survey on industry impact and challenges thereof. IEEE Control Systems, 37(1), 17–18. https://doi.org/10.1109/MCS.2016.2621438
  • Seer, Q. H., & Nandong, J. (2019). Stabilising PID tuning for a class of fourth-order integrating nonminimum-phase systems. International Journal of Control, 92(6), 1226–1242. https://doi.org/10.1080/00207179.2017.1387289
  • Šekara, T. B., & Mataušek, M. R. (2009). Optimization of PID controller based on maximization of the proportional gain under constraints on robustness and sensitivity to measurement noise. IEEE Transactions on Automatic Control, 54(1), 184–189. https://doi.org/10.1109/TAC.2008.2008359
  • Šekara, T. B., & Mataušek, M. R. (2010). Revisiting the Ziegler-Nichols process dynamics characterization. Journal of Process Control, 20(3), 360–363. https://doi.org/10.1016/j.jprocont.2009.08.004
  • Šekara, T. B., & Mataušek, M. R. (2011). Classification of dynamic processes and PID controller tuning in a parameter plane. Journal of Process Control, 21(4), 620–626. https://doi.org/10.1016/j.jprocont.2010.12.004
  • Šekara, T. B., Rapaic, M. R., & Lazarevic, M. P. (2014). Optimal tuning of fractional PIDCα controller in the frequency domain. 2014 International Conference on Fractional Differentiation and Its Applications, ICFDA (pp. 1–4). IEEE.
  • Šekara, T. B., & Trifunović, M. B. (2010). Optimization in the frequency domain of the PID controller in series with a lead-lag filter. Proceedings of INDEL, 8, 258–261.
  • Seshagiri Rao, A., Rao, V. S. R., & Chidambaram, M. (2009). Direct synthesis-based controller design for integrating processes with time delay. Journal of the Franklin Institute, 346(1), 38–56. https://doi.org/10.1016/j.jfranklin.2008.06.004
  • Shamsuzzoha, M., & Lee, M. (2008a). Analytical design of enhanced PID filter controller for integrating and first order unstable processes with time delay. Chemical Engineering Science, 63(10), 2717–2731. https://doi.org/10.1016/j.ces.2008.02.028
  • Shamsuzzoha, M., & Lee, M. (2008b). Design of advanced PID controller for enhanced disturbance rejection of second-order processes with time delay. AIChE Journal, 54(6), 1526–1536. https://doi.org/10.1002/aic.11483
  • Shinskey, F. G. (1990). How good are our controllers in absolute performance and robustness? Measurement and Control, 23(4), 114–121. https://doi.org/10.1177/002029409002300402
  • Skogestad, S. (2003). Simple analytic rules for model reduction and PID controller tuning. Journal of Process Control, 13(4), 291–309. https://doi.org/10.1016/S0959-1524(02)00062-8
  • Soltesz, K., Grimholt, C., & Skogestad, S. (2017). Simultaneous design of proportional-integral-derivative controller and measurement filter by optimisation. IET Control Theory and Applications, 11(3), 341–348. https://doi.org/10.1049/iet-cta.2016.0297
  • Uma, S., & Rao, A. S. (2016). Enhanced modified Smith predictor for second-order non-minimum phase unstable processes. International Journal of Systems Science, 47(4), 966–981. https://doi.org/10.1080/00207721.2014.911385
  • Umland, J. W., & Safiuddin, M. (1990). Magnitude and symmetric optimum criterion for the design of linear control systems: What is it and how does it compare with the others? IEEE Transactions on Industry Applications, 26(3), 489–497. https://doi.org/10.1109/28.55967
  • Vanavil, B., Anusha, A. V. N. L., Perumalsamy, M., & Rao, A. S. (2014). Enhanced IMC-PID controller design with lead-lag filter for unstable and integrating processes with time delay. Chemical Engineering Communications, 201(11), 1468–1496. https://doi.org/10.1080/00986445.2013.818983
  • Vrančić, D., Strmčnik, S., Kocijan, J., & de Moura Oliveira, P. B. (2010). Improving disturbance rejection of PID controllers by means of the magnitude optimum method. ISA Transactions, 49(1), 47–56. https://doi.org/10.1016/j.isatra.2009.08.002
  • Vu, T. N. L., & Lee, M. (2013). A unified approach to the design of advanced proportional-integral-derivative controllers for time-delay processes. Korean Journal of Chemical Engineering, 30(3), 546–558. https://doi.org/10.1007/s11814-012-0161-6
  • Wallén, A., Åström, K. J., & Hägglund, T. (2008). Loop-shaping design of PID controllers with constant Ti/Td ratio. Asian Journal of Control, 4(4), 403–409. https://doi.org/10.1111/j.1934-6093.2002.tb00080.x
  • Wang, Q., Lu, C., & Pan, W. (2016). IMC PID controller tuning for stable and unstable processes with time delay. Chemical Engineering Research and Design, 105, 120–129. https://doi.org/10.1016/j.cherd.2015.11.011
  • Whiteley, A. L. (1946). Theory of servo systems, with particular reference to stabilization. Journal of the Institution of Electrical Engineers – Part II: Power Engineering, 93(34), 353–367. https://doi.org/10.1049/ji-2.1946.0083
  • Ziegler, J. G., & Nichols, N. B. (1942). Optimum settings for automatic controllers. Transactions of ASME, 64(6), 759–768.
  • Zítek, P., & Fišer, J. (2018). A universal map of three-dominant-pole assignment for PID controller tuning. International Journal of Control, 2267–2274. https://doi.org/10.1080/00207179.2018.1554267

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.