1,238
Views
0
CrossRef citations to date
0
Altmetric
Classroom Notes

The kinematics and static equilibria of a Slinky

Pages 1065-1083 | Received 29 Mar 2022, Published online: 12 Oct 2022

References

  • Berry, J. S., Savage, M., & Williams, J. (1989). Mechanics in decline? International Journal of Mathematical Education in Science and Technology, 20(2), 289–296. https://doi.org/10.1080/0020739890200209
  • Biggoggero, G. F., & Rovida, E. (1977). Problems in the teaching of mechanics. European Journal of Engineering Education, 2(4), 277–290. https://doi.org/10.1080/0304379770020406
  • Blake, J., & Smith, L. N. (1979). The Slinky as a model for transverse waves in a tenuous plasma. American Journal of Physics, 47(9), 807–808. https://doi.org/10.1119/1.11699
  • Broyden, C. G. (1970a). The convergence of a class of double rank minimization algorithms, Part I. IMA Journal of Applied Mathematics, 6(1), 76–90. https://doi.org/10.1093/imamat/6.1.76
  • Broyden, C. G. (1970b). The convergence of a class of double rank minimization algorithms, Part II. IMA Journal of Applied Mathematics, 6(3), 222–231. https://doi.org/10.1093/imamat/6.3.222
  • Cross, R., & Wheatland, M. S. (2012). Modeling a falling slinky. American Journal of Physics, 80(12), 1051–1060. https://doi.org/10.1119/1.4750489
  • Cumber, P. S. (2015). Waggling pendulums and visualisation in mechanics. International Journal of Mathematical Education in Science and Technology, 46(4), 611–630. https://doi.org/10.1080/0020739X.2014.987838
  • Cumber, P. S. (2016). Waggling conical pendulums and visualisation in mechanics. International Journal of Mathematical Education in Science and Technology, 47(4), 612–636. https://doi.org/10.1080/0020739X.2015.1088085
  • Cumber, P. S. (2017). Visualisation in mechanics: The dynamics of an unbalanced roller. International Journal of Mathematical Education in Science and Technology, 48(3), 434–454. https://doi.org/10.1080/0020739X.2016.1248509
  • Cumber, P. S. (2021). Visualisation in mechanics: The dynamics of washing machines. International Journal of Mathematical Education in Science and Technology, 52(4), 626–652. https://doi.org/10.1080/0020739X.2020.1794070
  • Cumber, P. S. (2022). There is more than one way to force a pendulum. International Journal of Mathematical Education in Science and Technology, https://doi.org/10.1080/0020739X.2022.2039971
  • Cunningham, W. J. (1947). The physics of the tumbling spring. American Journal of Physics, 15(4), 348–352. https://doi.org/10.1119/1.1990962
  • Eskandari-asl, A. (2018). Some static properties of Slinky. European Journal of Physics, 39(5), 055005. https://doi.org/10.1088/1361-6404/aacaae
  • Fay, T. H. (2002). The pendulum equation. International Journal of Mathematical Education in Science and Technology, 33(4), 505–519. https://doi.org/10.1080/00207390210130868
  • Fletcher, R. (1980). Practical methods of optimization, Vol. 1. John Wiley.
  • Fletcher, R., & Reeves, C. M. (1964). Function minimization by conjugate gradients. The Computer Journal, 7(2), 149–154. https://doi.org/10.1093/comjnl/7.2.149
  • French, A. P. (1994). The suspended Slinky: A problem in static equilibrium. The Physics Teacher, 32(4), 244–245. https://doi.org/10.1119/1.2343983
  • Gardner, M. (2000). A slinky problem. The Physics Teacher, 38(2), 78–79. https://doi.org/10.1119/1.1528652
  • Gluck, P. (2010). A project on soft springs and the Slinky. Physics Education, 45(2), 178–185. https://doi.org/10.1088/0031-9120/45/2/009
  • Graham, E., & Peek, A. (1997). Developing an approach to the introduction of rigid body dynamics. International Journal of Mathematical Education in Science and Technology, 28(3), 373–380. https://doi.org/10.1080/0020739970280307
  • Graham, E., & Rowlands, S. (2000). Using computer software in the teaching of mechanics. International Journal of Mathematical Education in Science and Technology, 31(4), 479–493. https://doi.org/10.1080/002073900412598
  • Graham, M. (2001). Analysis of Slinky levitation. The Physics Teacher, 39(2), 90–91. https://doi.org/10.1119/1.1355166
  • Gray, G. L., Costanzo, F., & Plesha, M. E. (2010). Engineering mechanics dynamics. McGraw Hill.
  • Holmes, D. P., Borum, A. D., Moore, W. F., Plaut, R. H., & Dillard, D. A. (2014). Equilibria and instabilities of a Slinky: Discrete model. International Journal of Non-Linear Mechanics, 65, 236–244. https://doi.org/10.1016/j.ijnonlinmec.2014.05.015
  • Hu, A.-P. (2010). A simple model of a Slinky walking down stairs. American Journal of Physics, 78(1), 35–39. https://doi.org/10.1119/1.3225921
  • James, R. A. (1947). Toy and process of use. U.S. Patent #2415012.
  • Longuet-Higgins, M. S. (1954). On Slinky: The dynamics of a loose, heavy spring. Mathematical Proceedings of the Cambridge Philosophical Society, 50(2), 347–351. https://doi.org/10.1017/S030500410002942X
  • Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308–313. https://doi.org/10.1093/comjnl/7.4.308
  • Sawicki, M. (2002). Static elongation of a suspended Slinky. The Physics Teacher, 40(5), 276–278. https://doi.org/10.1119/1.1516379
  • Vandergrift, G., Baker, T., DiGrazio, J., Dohne, A., Flori, A., Loomis, R., Steel, C., & Velat, D. (1989). Wave cut off on a suspended slinky. American Journal of Physics, 57(10), 949–951. https://doi.org/10.1119/1.15855
  • Widener, W. (2003). A graphical user interface for the learning of lateral vehicle dynamics. European Journal of Engineering Education, 28(2), 225–235. https://doi.org/10.1080/0304379031000079059
  • Wilson, J. F. (2001). Energy thresholds for tumbling springs. International Journal of Non-Linear Mechanics, 36(8), 1179–1196. https://doi.org/10.1016/S0020-7462(00)00088-3