609
Views
3
CrossRef citations to date
0
Altmetric
Research articles

Error in topographic attributes for volcanic hazard assessment of the Auckland Volcanic Field (New Zealand)

&
Pages 286-301 | Received 13 Apr 2015, Accepted 04 Nov 2015, Published online: 25 May 2016

References

  • Aguilar FJ, Mills JP. 2008. Accuracy assessment of LiDAR-derived digital elevation models. The Photogrammetric Record. 23:148–169. doi: 10.1111/j.1477-9730.2008.00476.x
  • Agustín-Flores J, Németh K, Cronin S, Lindsay J, Kereszturi G. 2015. Construction of the North Head (Maungauika) tuff cone: a product of Surtseyan volcanism, rare in the Auckland Volcanic Field, New Zealand. B Volcanol. 77:1–17. doi: 10.1007/s00445-014-0892-9
  • Beavan J, Motagh M, Fielding EJ, Donnelly N, Collett D. 2012. Fault slip models of the 2010–2011 Canterbury, New Zealand, earthquakes from geodetic data and observations of postseismic ground deformation. New Zeal J Geol Geophys. 55:207–221. doi: 10.1080/00288306.2012.697472
  • Bebbington MS, Cronin SJ. 2011. Spatio-temporal hazard estimation in the Auckland Volcanic Field, New Zealand, with a new event-order model. B Volcanol. 73:55–72. doi: 10.1007/s00445-010-0403-6
  • Brunori CA, Bignami C, Stramondo S, Bustos E. 2013. 20 years of active deformation on volcano caldera: joint analysis of InSAR and AInSAR techniques. Int J Appl Earth Obs. 23:279–287. doi: 10.1016/j.jag.2012.10.003
  • Cappello A, Zanon V, Del Negro C, Ferreira TJL, Queiroz MGPS. 2015. Exploring lava-flow hazards at Pico Island, Azores Archipelago (Portugal). Terra Nova. 27:156–161. doi: 10.1111/ter.12143
  • Chen C-F, Fan Z-M, Yue T-X, Dai H-L. 2011. A robust estimator for the accuracy assessment of remote-sensing-derived DEMs. Int J Remote Sens. 33:2482–2497. doi: 10.1080/01431161.2011.615766
  • Del Negro C, Cappello A, Neri M, Bilotta G, Herault A, Ganci G. 2013. Lava flow hazards at Mount Etna: constraints imposed by eruptive history and numerical simulations. Sci. Rep. 3, article no. 3493. doi:10.1038/srep03493.
  • El Difrawy MA, Runge MG, Moufti MR, Cronin SJ, Bebbington M. 2013. A first hazard analysis of the Quaternary Harrat Al-Madinah volcanic field, Saudi Arabia. J Volcanol Geoth Res. 267:39–46. doi: 10.1016/j.jvolgeores.2013.09.006
  • Evans IS. 1972. General geomorphometry, derivatives of altitude and descriptive statistics. In: Chorley RJ, editor. Spatial analysis in geomorphology. London: Methuen; p. 17–90.
  • Farr TG. 1992. Microtopographic evolution of lava flows at Cima Volcanic Field, Mojave Desert, California. J Geophys Res: Solid Earth. 97:15171–15179. doi: 10.1029/92JB01592
  • Felpeto A, Araña V, Ortiz R, Astiz M, García A. 2001. Assessment and modelling of lava flow hazard on Lanzarote (Canary Islands). Nat Hazards. 23:247–257. doi: 10.1023/A:1011112330766
  • Fisher PF, Tate NJ. 2006. Causes and consequences of error in digital elevation models. Prog Phys Geog. 30:467–489. doi: 10.1191/0309133306pp492ra
  • Fornaciai A, Favalli M, Karátson D, Tarquini S, Boschi E. 2012. Morphometry of scoria cones, and their relation to geodynamic setting: a DEM-based analysis. J Volcanol Geoth Res. 217–218:56–72. doi: 10.1016/j.jvolgeores.2011.12.012
  • Gallay M. 2013. Direct acquisition of data: airborne laser scanning. Geomorphological Techniques. 2:1–17.
  • Gallay M, Lloyd CD, McKinley J, Barry L. 2013. Assessing modern ground survey methods and airborne laser scanning for digital terrain modelling: a case study from the Lake District, England. Comput Geosci. 51:216–227. doi: 10.1016/j.cageo.2012.08.015
  • Gao J. 1998. Impact of sampling intervals on the reliability of topographic variables mapped from grid DEMs at a micro-scale. Int J Geogr Inf Sci. 12:875–890. doi: 10.1080/136588198241545
  • Geyer A, García-Sellés D, Pedrazzi D, Barde-Cabusson S, Marti J, Muñoz JA. 2015. Studying monogenetic volcanoes with a terrestrial laser scanner: case study at Croscat volcano (Garrotxa Volcanic Field, Spain). B Volcanol. 77:1–14. doi: 10.1007/s00445-015-0909-z
  • Gorokhovich Y, Voustianiouk A. 2006. Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sens Environ. 104:409–415. doi: 10.1016/j.rse.2006.05.012
  • Grohmann CH, Sawakuchi AO. 2013. Influence of cell size on volume calculation using digital terrain models: a case of coastal dune fields. Geomorphology. 180–181:130–136. doi: 10.1016/j.geomorph.2012.09.012
  • Guilbaud M-N, Siebe C, Layer P, Salinas S. 2012. Reconstruction of the volcanic history of the Tacámbaro-Puruarán area (Michoacán, México) reveals high frequency of Holocene monogenetic eruptions. B Volcanol. 74:1187–1211. doi: 10.1007/s00445-012-0594-0
  • Guth PL. 2006. Geomorphometry from SRTM: Comparison to NED. Photogramm Eng Rem S. 72:269–277. doi: 10.14358/PERS.72.3.269
  • Hirt C, Filmer MS, Featherstone WE. 2010. Comparison and validation of the recent freely available ASTER-GDEM ver1, SRTM ver4.1 and GEODATA DEM-9S ver3 digital elevation models over Australia. Aust J Earth Sci. 57:337–347. doi: 10.1080/08120091003677553
  • Hodgson ME, Bresnahan P. 2004. Accuracy of airborne Lidar-derived elevation: empirical assessment and error budget. Photogramm Eng Rem Sens. 70:331–339. doi: 10.14358/PERS.70.3.331
  • Hodgson ME, Jensen J, Raber G, Tullis J, Davis BA, Thompson G, Schuckman K. 2005. An elevation of LiDAR-derived elevation and terrain slope in leaf-off conditions. Photogramm Eng Rem Sens. 71:817–823. doi: 10.14358/PERS.71.7.817
  • Höhle J, Höhle M. 2009. Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J Photogramm. 64:398–406. doi: 10.1016/j.isprsjprs.2009.02.003
  • Huggel C, Schneider D, Miranda PJ, Delgado Granados H, Kääb A. 2008. Evaluation of ASTER and SRTM DEM data for lahar modeling: a case study on lahars from Popocatépetl Volcano, Mexico. J Volcanol Geoth Res. 170:99–110. doi: 10.1016/j.jvolgeores.2007.09.005
  • ILWIS. 2001. ILWIS 3.0 Academic—user’s guide [Internet]. Enschede, The Netherlands: Unit Geo Software Development Sector Remote Sensing and GIS IT Department, International Institute for Aerospace Survey and Earth Sciences (ITC); [cited 2016 May 17]. Available from: http://www.itc.nl/ilwis/documentation/version3.asp
  • Jarvis A, Reuter HI, Nelson A, Guevara E. 2008. Hole-filled SRTM for the globe. Version 4 [Internet]. CGIAR-CSI SRTM 90m Database. [cited 2016 May 17]. Available from: http://www.cgiar-csi.org/data/srtm-90m-digital-elevation-database-v4-1
  • Jordan G. 2003. Morphometric analysis and tectonic interpretation of digital terrain data: a case study. Earth Surf Proc Land. 28:807–822. doi: 10.1002/esp.469
  • Jordan G. 2007. Digital Terrain analysis in a GIS environment. Concepts and development. In: Peckham R, Jordan G, editors. Digital terrain modelling. Berlin: Springer; p. 1–43.
  • Jordan G, Meijninger BML, van Hinsbergen DJJ, Meulenkamp JE, van Dijk PM. 2005. Extraction of morphotectonic features from DEMs: development and applications for study areas in Hungary and NW Greece. Int J Appl Earth Obs. 7:163–182. doi: 10.1016/j.jag.2005.03.003
  • Kereszturi G, Cappello A, Ganci G, et al. 2014. Numerical simulation of basaltic lava flows in the Auckland Volcanic Field, New Zealand—Implication for volcanic hazard assessment. B Volcanol. 76:1–17.
  • Kereszturi G, Geyer A, Martí J, Németh K, Dóniz-Páez FJ. 2013a. Evaluation of morphometry-based dating of monogenetic volcanoes—a case study from Bandas del Sur, Tenerife (Canary Islands). B Volcanol. 75:1–19. doi: 10.1007/s00445-013-0734-1
  • Kereszturi G, Németh K, Cronin JS, Agustin-Flores J, Smith IEM, Lindsay J. 2013b. A model for calculating eruptive volumes for monogenetic volcanoes—Implication for the Quaternary Auckland Volcanic Field, New Zealand. J Volcanol Geoth Res. 266:16–33. doi: 10.1016/j.jvolgeores.2013.09.003
  • Kereszturi G, Procter J, Cronin JS, Németh K, Bebbington M, Lindsay J. 2012. LiDAR-based quantification of lava flow susceptibility in the City of Auckland (New Zealand). Remote Sens Environ. 125:198–213. doi: 10.1016/j.rse.2012.07.015
  • Kinsey-Henderson AE, Wilkinson SN. 2013. Evaluating Shuttle radar and interpolated DEMs for slope gradient and soil erosion estimation in low relief terrain. Environ Modell Softw. 40:128–139. doi: 10.1016/j.envsoft.2012.08.010
  • Kurtz C, Stumpf A, Malet J-P, Gançarski P, Puissant A, Passat N. 2014. Hierarchical extraction of landslides from multiresolution remotely sensed optical images. ISPRS J Photogramm. 87:122–136. doi: 10.1016/j.isprsjprs.2013.11.003
  • Li P, Shi C, Li Z, Muller J-P, Drummond J, Li X, Li T, Li Y, Liu J. 2012. Evaluation of ASTER GDEM using GPS benchmarks and SRTM in China. Int J Remote Sens. 34:1744–1771. doi: 10.1080/01431161.2012.726752
  • Liao M, Jiang H, Wang Y, Wang T, Zhang L. 2013. Improved topographic mapping through high-resolution SAR interferometry with atmospheric effect removal. ISPRS J Photogramm. 80:72–79. doi: 10.1016/j.isprsjprs.2013.03.008
  • Lindsay JM, Leonard GS, Smid ER, Hayward BW. 2011. Age of the Auckland Volcanic field: a review of existing data. New Zeal J Geol Geophys. 54:379–401. doi: 10.1080/00288306.2011.595805
  • Litchfield N, Van Dissen R, Nicol A. 2007. Reassessment of slip rate and implications for surface rupture hazard of the Martinborough Fault, South Wairarapa, New Zealand. New Zeal J Geol Geophys. 50:239–243. doi: 10.1080/00288300709509834
  • Liu X. 2008. Airborne LiDAR for DEM generation: some critical issues. Prog Phys Geog. 32:31–49. doi: 10.1177/0309133308089496
  • MacMillan RA, Shary PA. 2008. Landforms and landform elements in geomorphometry. In: Hengl T, Reuter H, editors. Geomorphometry: concepts, software, applications. Amsterdam: Elsevier B.V.; p. 227–254.
  • Mazzarini F, Favalli M, Isola I, Neri M, Pareschi MT. 2008. Surface roughness of pyroclastic deposits at Mt. Etna by 3D laser scanning. Ann Geophys. 51:813–822.
  • Meng X, Wang L, Silván-Cárdenas JL, Currit N. 2009. A multi-directional ground filtering algorithm for airborne LIDAR. ISPRS J Photogramm. 64:117–124. doi: 10.1016/j.isprsjprs.2008.09.001
  • Minár J, Evans IS. 2008. Elementary forms for land surface segmentation: the theoretical basis of terrain analysis and geomorphological mapping. Geomorphology. 95:236–259. doi: 10.1016/j.geomorph.2007.06.003
  • Moore ID, Grayson RB, Landson AR. 1991. Digital Terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrol Process. 5:3–30. doi: 10.1002/hyp.3360050103
  • Mukherjee S, Joshi PK, Mukherjee S, Ghosh A, Garg RD, Mukhopadhyay A. 2013. Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). Int J Appl Earth Obs. 21:205–217. doi: 10.1016/j.jag.2012.09.004
  • Murcia H, Németh K, El-Masry NN, Lindsay JM, Moufti MRH, Wameyo P, Cronin SJ, Smith IEM, Kereszturi G. 2015. The Al-Du'aythah volcanic cones, Al-Madinah City: implications for volcanic hazards in northern Harrat Rahat, Kingdom of Saudi Arabia. B Volcanol. 77:1–19. doi: 10.1007/s00445-015-0936-9
  • Nelson A, Reuter HI, Gessler P. 2008. DEM production methods and sources. In: Hengl T, Reuter H, editor. Geomorphometry: concepts, software, applications. Amsterdam: Elsevier B.V.; p. 65–85.
  • Procter JN, Cronin SJ, Platz T, Patra A, Dalbey K, Sheridan M, Neall V. 2010. Mapping block-and-ash flow hazards based on Titan 2D simulations: a case study from Mt. Taranaki, NZ. Nat Hazards. 53:483–501. doi: 10.1007/s11069-009-9440-x
  • Qin C-Z, Bao L-L, Zhu AX, Wang R-X, Hu X-M. 2013. Uncertainty due to DEM error in landslide susceptibility mapping. Int J Geogr Inf Sci. 27:1364–1380. doi: 10.1080/13658816.2013.770515
  • Raaflaub LD, Collins MJ. 2006. The effect of error in gridded digital elevation models on the estimation of topographic parameters. Environ Modell Softw. 21:710–732. doi: 10.1016/j.envsoft.2005.02.003
  • Rabus B, Eineder M, Roth A, Bamler R. 2003. The shuttle radar topography mission—a new class of digital elevation models acquired by spaceborne radar. ISPRS J Photogramm. 57:241–262. doi: 10.1016/S0924-2716(02)00124-7
  • Shary PA, Sharaya LS, Mitusov AV. 2002. Fundamental quantitative methods of land surface analysis. Geoderma. 107:1–32. doi: 10.1016/S0016-7061(01)00136-7
  • Shepard MK, Campbell BA, Bulmer MH, Farr TG, Gaddis LR, Plaut JJ. 2001. The roughness of natural terrain: a planetary and remote sensing perspective. J Geophys Res: Planets. 106:32777–32795. doi: 10.1029/2000JE001429
  • Shortridge A, Messina J. 2011. Spatial structure and landscape associations of SRTM error. Remote Sens Environ. 115:1576–1587. doi: 10.1016/j.rse.2011.02.017
  • Speight JG. 1974. A parametric approach to landform regions. Special Publication Institute of British Geographers. 7:213–230.
  • Spörli KB, Black PM, Lindsay JM. 2015. Excavation of buried Dun Mountain–Maitai terrane ophiolite by volcanoes of the Auckland Volcanic field, New Zealand. New Zeal J Geol Geophys. 58:229–243. doi: 10.1080/00288306.2015.1035285
  • Székely B, Koma Z, Karátson D, Dorninger P, Wörner G, Brandmeier M, Nothegger C. 2014. Automated recognition of quasi-planar ignimbrite sheets as paleosurfaces via robust segmentation of digital elevation models: an example from the Central Andes. Earth Surf Proc Land. 39:1386–1399. doi: 10.1002/esp.3606
  • Tarekegn TH, Haile AT, Rientjes T, Reggiani P, Alkema D. 2010. Assessment of an ASTER-generated DEM for 2D hydrodynamic flood modeling. Int J Appl Earth Obs. 12:457–465. doi: 10.1016/j.jag.2010.05.007
  • Villamor P, Litchfield N, Barrell D, Van Dissen R, Hornblow S, Quigley M, Levick S, Ries W, Duffy B, Begg J, et al. 2012. Map of the 2010 Greendale Fault surface rupture, Canterbury, New Zealand: application to land use planning. New Zeal J Geol Geophys. 55:223–230. doi: 10.1080/00288306.2012.680473
  • Wise S. 2011. Cross-validation as a means of investigating DEM interpolation error. Comput Geosci. 37:978–991. doi: 10.1016/j.cageo.2010.12.002
  • Wood J. 1996. The geomorphological characterization of digital elevation models [Unpublished thesis]. University of Leicester, UK.
  • Wu S, Jonathan Li J, Huang GH. 2008. A study on DEM-derived primary topographic attributes for hydrologic applications: sensitivity to elevation data resolution. Appl Geogr. 28:210–223. doi: 10.1016/j.apgeog.2008.02.006
  • Yang P, Ames DP, Fonseca A, Anderson D, Shrestha R, Glenn NF, Cao Y. 2014. What is the effect of LiDAR-derived DEM resolution on large-scale watershed model results? Environ Modell Softw. 58:48–57. doi: 10.1016/j.envsoft.2014.04.005
  • Zandbergen PA. 2011. Characterizing the error distribution of lidar elevation data for North Carolina. Int J Remote Sens. 32:409–430. doi: 10.1080/01431160903474939
  • Zevenbergen LW, Thorne CR. 1987. Quantitative analysis of land surface topography. Earth Surf Proc Land. 12:47–56. doi: 10.1002/esp.3290120107
  • Zhang K, Whitman D. 2005. Comparison of three algorithms for filtering airborne Lidar data. Photogramm Eng Rem S. 71:313–324. doi: 10.14358/PERS.71.3.313
  • Zhang W, Montgomery DR. 1994. Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Resour Res. 30:1019–1028. doi: 10.1029/93WR03553

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.