830
Views
17
CrossRef citations to date
0
Altmetric
Research articles

The influence of submarine currents associated with the Subtropical Front upon seafloor depression morphologies on the eastern passive margin of South Island, New Zealand

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 112-125 | Received 19 May 2017, Accepted 28 Jan 2018, Published online: 18 Feb 2018

References

  • Andresen KJ, Huuse M. 2011. “Bulls-eye” pockmarks and polygonal faulting in the Lower Congo Basin: relative timing and implications for fluid expulsion during shallow burial. Mar Geol. 279:111–127. doi: 10.1016/j.margeo.2010.10.016
  • Andresen KJ, Huuse M, Clausen OR. 2008. Morphology and distribution of Oligocene and Miocene pockmarks in the Danish North Sea – implications for bottom current activity and fluid migration. Basin Res. 20:445–466. doi: 10.1111/j.1365-2117.2008.00362.x
  • Barnes PM. 1992. Mid-bathyal current scours and sediment drifts adjacent to the Hikurangi deep-sea turbidite channel, eastern New Zealand: evidence from echo character mapping. Mar Geol. 106:169–187. doi: 10.1016/0025-3227(92)90128-5
  • Best JL, Fielding CR, Jarvis I, Mozley P. 2009. Sedimentology: millenium reviews – The journal of the international association of sedimentologists. London, UK: John Wiley & Sons.
  • Bialas J, Klaucke I, Mögeltönder J, editors. 2013. RV SONNE Fahrtbericht/Cruise Report SO226 - CHRIMP CHatham RIse Methane Pockmarks GEOMAR Report, N. Ser. 007. GEOMAR Helmholtz-Zentrum für Ozeanforschung, Kiel, Germany, Kiel, Germany.
  • Bøe R, Rise L, Ottesen D. 1998. Elongate depressions on the southern slope of the Norwegian Trench (Skagerrak): morphology and evolution. Mar Geol. 146:191–203. doi: 10.1016/S0025-3227(97)00133-3
  • Böning CW, Dispert A, Visbeck M, Rintoul SR, Schwarzkopf FU. 2008. The response of the Antarctic circumpolar current to recent climate change. Nat Geosci. 1:864–869. doi: 10.1038/ngeo362
  • Bostock HC, Opdyke BN, Gagan MK, Kiss AE, Fifield LK. 2006. Glacial/interglacial changes in the East Australian current. Clim Dyn. 26:645–659. doi: 10.1007/s00382-005-0103-7
  • Browne IM, Moy CM, Riesselman CR, Neil HL, Curtin LG, Gorman AR, Wilson GS. 2017. Late Holocene intensification of the westerly winds at the subantarctic Auckland Islands (51° S), New Zealand. Clim Past Discuss. 13:1–37. doi: 10.5194/CP-2017-52
  • Carter L, Carter RM, Nelson CS, Fulthorpe CS, Neil HL. 1990. Evolution of pliocene to recent abyssal sediment waves on Bounty channel levees, New Zealand. Mar Geol. 95:97–109. doi: 10.1016/0025-3227(90)90043-J
  • Carter L, Mitchell JS. 1987. Late Quaternary sediment pathways through the deep ocean, east of New Zealand. Paleoceanography. 2:409–422. doi: 10.1029/PA002i004p00409
  • Carter L, Neil HL, McCave IN. 2000. Glacial to interglacial changes in non-carbonate and carbonate accummulation in the SW Pacific Ocean, New Zealand. Palaeogeogr Palaeoclimatol Palaeoecol. 162:333–356. doi: 10.1016/S0031-0182(00)00137-1
  • Carter L, Wilkin J. 1999. Abyssal circulation around New Zealand—a comparison between observations and a global circulation model. Mar Geol. 159:221–239. doi: 10.1016/S0025-3227(98)00205-9
  • Carter RM, Carter L, McCave IN. 1996. Current controlled sediment deposition from the shelf to the deep ocean: the Cenozoic evolution of circulation through the SW Pacific gateway. Geol Rundschau. 85:438–451. doi: 10.1007/Bf02369001
  • Chen H, Xie X, Van Rooij D, Vandorpe T, Su M, Wang D. 2014. Depositional characteristics and processes of alongslope currents related to a seamount on the northwestern margin of the Northwest Sub-Basin, South China Sea. Mar Geol. 355:36–53. doi: 10.1016/j.margeo.2014.05.008
  • Chenrai P, Huuse M. 2017. Pockmark formation by porewater expulsion during rapid progradation in the offshore Taranaki Basin, New Zealand. Mar Pet Geol. 82:399–413. doi: 10.1016/j.marpetgeo.2017.02.017
  • Chiswell SM. 1994. Acoustic Doppler current profiler measurements over the Chatham Rise. New Zeal J Mar Freshw Res. 28:167–178. doi: 10.1080/00288330.1994.9516605
  • Chiswell SM. 2003. Circulation within the Wairarapa Eddy, New Zealand. New Zeal J Mar Freshw Res. 37:691–704. doi: 10.1080/00288330.2003.9517199
  • Chiswell SM, Rickard GJ. 2006. Comparison of model and observational ocean circulation climatologies for the New Zealand region. J Geophys Res. 111:1–22. doi: 10.1029/2006JC003489
  • Cobianchi M, Mancin N, Lupi C, Bordiga M, Bostock HC. 2015. Effects of oceanic circulation and volcanic ash-fall on calcite dissolution in bathyal sediments from the SW Pacific Ocean over the last 550ka. Palaeogeogr Palaeoclimatol Palaeoecol. 429:72–82. doi: 10.1016/j.palaeo.2015.03.045
  • Coffin RB, Boyd TJ, Rose PS, Yoza B, Milholland LC, Downer R, Woods S. 2013. Geochemical cruise report: SO226/2 RV sonne Chatham Rise expedition. Washington, DC, USA: US Naval Research Laboratory.
  • Collins JA, Molnar P, Sheehan AF. 2011. Multibeam bathymetric surveys of submarine volcanoes and mega-pockmarks on the Chatham Rise, New Zealand. New Zeal J Geol Geophys. 54:329–339. doi: 10.1080/00288306.2011.589860
  • Condie S, Condie R. 2016. Retention of plankton within ocean eddies. Glob Ecol Biogeogr. 25:1264–1277. doi: 10.1111/geb.12485
  • Cook RA, Wood RA, Campbell HJ. 1989. The Chatham Rise: an exploration frontier. 1989 petroleum conference; Ministry of Economic Development, New Zealand Petroleum and Minerals, New Zealand. p. 35–41.
  • Cullen DJ. 1987. The submarine phosphate resource on central Chatham Rise. Wellington, New Zealand: National Institute of Water and Atmospheric Research (NIWA).
  • Davy B, Pecher I, Wood R, Carter L, Gohl K. 2010. Gas escape features off New Zealand: evidence of massive release of methane from hydrates. Geophys Res Lett. 37:1–5. doi: 10.1029/2010GL045184
  • Faugères J-C, Stow DAV. 1993. Bottom-current-controlled sedimentation: a synthesis of the contourite problem. Sediment Geol. 82:287–297. doi: 10.1016/0037-0738(93)90127-Q
  • Fenner J, Carter L, Stewart R. 1992. Late Quaternary paleoclimatic and paleoceanographic change over northern Chatham Rise, New Zealand. Mar Geol. 108:383–404. doi: 10.1016/0025-3227(92)90206-W
  • Field BD, Browne GH, Davy B, Herzer RH, Hoskins RH, Raine JI, Wilson GJ, Sewell RJ, Smale D, Watters WA. 1989. Creteaceous and Cenozoic sedimentary basins and geological evolution of the Canterbury region, South Island, New Zealand. Wellington, New Zealand: New Zealand Geological Survey.
  • Fildani A, Normark WR, Kostic S, Parker G. 2006. Channel formation by flow stripping: large-scale scour features along the Monterey East channel and their relation to sediment waves. Sedimentology. 53:1265–1287. doi: 10.1111/j.1365-3091.2006.00812.x
  • Fulthorpe CS, Hoyanagi K, Blum P, IODP Expedition 317 Scientists. 2011. IODP expedition 317: exploring the record of Sea-Level change Off New Zealand. Sci Drill. 12:4–14. doi: 10.5194/sd-12-4-2011
  • Gorman AR, Hill MG, Orpin AR, Koons PR, Landis CA, Allan TMH, Johnstone T, Gray FL, Wilson D, Osterberg E. 2013. Quaternary shelf structures SE of the South Island, imaged by high-resolution seismic profiling. New Zeal J Geol Geophys. 56:68–82. doi: 10.1080/00288306.2013.772906
  • Gorman AR, Smillie MW, Cooper JK, Bowman MH, Vennell R, Holbrook WS, Frew R. 2018. Seismic characterization of oceanic water masses, water mass boundaries and Mesoscale Eddies SE of New Zealand. J Geophys Res Ocean. doi: 10.1002/2017JC013459
  • Hadfield MG, Rickard GJ, Uddstrom MJ. 2007. A hydrodynamic model of the Chatham Rise, New Zealand. New Zeal J Mar Freshw Res. 41:239–264. doi: 10.1080/00288330709509912
  • Hammer O, Webb KE, Depreiter D. 2009. Numerical simulation of upwelling currents in pockmarks, and data from the Inner Oslofjord, Norway. Geo-Marine Lett. 29:269–275. doi: 10.1007/s00367-009-0140-z
  • Hardage BA, Carr DL, Lancaster DE, Simmons JL, Elphick RY, Pendelton VM, Johns RA. 1996. 3-D seismic evidence of the effects of carbonate karst collapse on overlying clastic startigraphy and reservoir compartmentalisation. Geophysics. 61:1336–1350. doi: 10.1190/1.1444057
  • Heath RA. 1972. The Southland current. New Zeal J Mar Freshw Res. 6:497–533. doi: 10.1080/00288330.1972.9515444
  • Heath RA. 1985. A review of the physical oceanography of the seas around New Zealand — 1982. New Zeal J Mar Freshw Res. 19:79–124. doi: 10.1080/00288330.1985.9516077
  • Heiniö P, Davies RJ. 2009. Trails of depressions and sediment waves along submarine channels on the continental margin of Espirito Santo Basin, Brazil. GSA Bull. 121:698–711. doi: 10.1130/B26190.1
  • Herzer RH. 1979. Submarine landslides and submarine canyons on the continental slope off Canterbury, New Zealand. New Zeal J Geol Geophys. 22:391–406. doi: 10.1080/00288306.1979.10424107
  • Herzer RH. 1981. Ellesmere sediments. New Zealand Oceanographic Institute Coastal Chart Series 1:200 000 sediments.
  • Hillman JIT, Gorman AR, Pecher I. 2015. Geostatistical analysis of seafloor depressions on the southeast margin of New Zealand’s South Island — Investigating the impact of dynamic near seafloor processes on geomorphology. Mar Geol. 360:70–83. doi: 10.1016/j.margeo.2014.11.016
  • Hillman JIT, Lamarche G, Pallentin A, Pecher IA, Gorman AR, von Deimling JS. 2017. Validation of automated supervised segmentation of multibeam backscatter data from the Chatham Rise, New Zealand. Mar Geophys Res. 1–23. doi: 10.1007/s11001-016-9297-9
  • Hjulstrom F. 1939. Transportation of detritus by moving water: Part 1. Transportation. In: Trask PD, editor. Recent mar sediments. Vol. 142. AAPG Special Volumes, Tulsa, OK; p. 5–31.
  • Hollister CD. 1993. The concept of deep-sea contourites. Sediment Geol. 82:5–11. doi: 10.1016/0037-0738(93)90109-I
  • Hollister CD, McCave IN. 1984. Sedimentation under deep-sea storms. Nature. 309:220–225. doi: 10.1038/309220a0
  • Hovland M, Gardner JV, Judd AG. 2002. The significance of pockmarks to understanding fluid flow processes and geohazards. Geofluids. 2:127–136. doi: 10.1046/j.1468-8123.2002.00028.x
  • Hübscher C, Borowski C. 2006. Seismic evidence for fluid escape from Mesozoic cuesta type topography in the Skagerrak. Mar Pet Geol. 23:17–28. doi: 10.1016/j.marpetgeo.2005.07.004
  • IODP317 Expedition Scientists. 2010. Integrated ocean drilling program expedition 317 preliminary report: Canterbury Basin sea level – global and local controls on continental margin stratigraphy. Integrated Ocean Drilling Program. 317:1–133.
  • Joseph A. 2014. Measuring ocean currents: tools, technologies, and data. Waltham, MA: Elsevier. doi: 10.1016/B978-0-12-415990-7.01001-2
  • Judd A, Hovland M. 2007. Seabed fluid flow: the impact on geology, biology and the marine environment. Cambridge, UK: Cambridge University Press.
  • Leduc D, Rowden AA, Torres LG, Nodder SD, Pallentin A. 2015. Distribution of macro-infaunal communities in phosphorite nodule deposits on Chatham Rise, Southwest Pacific: implications for management of seabed mining. Deep Sea Res Part I Oceanogr Res Pap. 99:105–118. doi: 10.1016/j.dsr.2015.01.006
  • Locarnini RA, Mishonov A V., Antonov JI, Boyer TP, Garcia HE, Baranova OK, Zweng MM, Paver CR, Reagan JR, Johnson DR, Hamilton M, Seidov D. 2013. World Ocean Atlas 2013, volume 1: temperature, NOAA Atlas NESDIS 73. In: Levitus S, Mishonov A, editor(s). Silver Spring, MD: NOAA; 1–33.
  • Lu HB, Fulthorpe CS. 2004. Controls on sequence stratigraphy of a middle Miocene-Holocene current-swept, passive margin: Offshore Canterbury Basin, New Zealand. GSA Bull. 116:1345–1366. doi: 10.1130/B2525401.1
  • Lu HB, Fulthorpe CS, Mann P. 2003. Three-dimensional architecture of shelf-building sediment drifts in the offshore Canterbury Basin, New Zealand. Mar Geol. 193:19–47. doi: 10.1016/S0025-3227(02)00612-6
  • Maestrelli D, Iacopini D, Jihad A, Bond CE, Bonini M. 2017. Seismic and structural characterization of fluid escape pipes using 3D and partial stack seismic from the Loyal Field (Scotland, UK): a multiphase and repeated intrusive mechanism. Mar Pet Geol. 88:489–510. doi: 10.1016/j.marpetgeo.2017.08.016
  • de Mahiques MM, Schattner U, Lazar M, Sumida PYG, de Souza LAP. 2017. An extensive pockmark field on the upper Atlantic margin of Southeast Brazil: spatial analysis and its relationship with salt diapirism. Heliyon. 3:1–21. doi: 10.1016/j.heliyon.2017.e00257
  • Marani M, Argnani A, Roveri M, Trincardi F. 1993. Sediment drifts and erosional surfaces in the central Mediterranean: seismic evidence of bottom-current activity. Sediment Geol. 82:207–220. doi: 10.1016/0037-0738(93)90122-L
  • Marsaglia KM, Browne GH, George SC, Kemp DB, Jaeger JM, Carson D, Richaud M. 2017. The transformation of sediment into rock: insights from IODP site U1352, Canterbury Basin, New Zealand. J Sediment Res. 87:272–287. doi: 10.2110/jsr.2017.15
  • Masson D., Howe J., Stoker M. 2002. Bottom-current sediment waves, sediment drifts and contourites in the northern Rockall Trough. Mar Geol. 192:215–237. doi: 10.1016/S0025-3227(02)00556-X
  • McCave IN, Carter L, Hall IR. 2008. Glacial-interglacial changes in water mass structure and flow in the SW Pacific Ocean. Quat Sci Rev. 27:1886–1908. doi: 10.1016/j.quascirev.2008.07.010
  • McDougall JC. 1982. Bounty Sediments. New Zealand Oceanographic Institute Chart, Oceanic Series, 1:1 000 000.
  • Mienert J, Andreassen K, Posewang J, Lukas D. 2000. Changes of the hydrate stability zone of the Norwegian margin from glacial to interglacial times. Gas Hydrates Challenges Futur. 912:200–210.
  • Mienert J, Vanneste M, Bunz S, Andreassen K, Haflidason H, Sejrup HP. 2005. Ocean warming and gas hydrate stability on the mid-Norwegian margin at the Storegga slide. Mar Pet Geol. 22:233–244. doi: 10.1016/j.marpetgeo.2004.10.018
  • Miller KG, Mountain GS, Wright JD, Browning JV. 2011. A 180-million-year record of sea level and ice volume variations from continental margin and deep-sea records. Oceanography. 24:40–53. doi: 10.5670/oceanog.2011.26
  • Mitchell J, Mackay K, Neil HL, Mackay EJ, Pallentin A, Notman P. 2012. Undersea New Zealand. NIWA Chart MSN 92.
  • Mitchell J, Neil HL. 2012. OS20/20 Canterbury – Great South Basin: TAN1209 Voyage Report. National Institute of Water and Atmospheric Research Ltd (NIWA).
  • Mortimer N, Sutherland R, Seton M. 2017. Zealandia: Earth’s hidden continent. GSA Today. 27(3):27–35. doi: 10.1130/GSATG321A.1
  • Obelcz J, Brothers DS, Chaytor JD, ten Brink US, Ross SW, Brooke S. 2014. Geomorphic characterization of four shelf-sourced submarine canyons along the U.S. Mid-Atlantic continental margin. Deep Sea Research Part II: Topical Studies in Oceanography. 104:106–119. doi: 10.1016/j.dsr2.2013.09.013
  • Osterberg E. 2006. Late Quaternary (marine isotope stages 6-1) seismic sequence stratigraphic evolution of the otago continental shelf, New Zealand. Mar Geol. 229:159–178. doi: 10.1016/j.margeo.2006.03.005
  • Rebesco M, Hernández-Molina FJ, Van Rooij D, Wåhlin A. 2014. Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations. Mar Geol. 352:111–154. doi: 10.1016/j.margeo.2014.03.011
  • Riboulot V, Sultan N, Imbert P, Ker S. 2016. Initiation of gas-hydrate pockmark in deep-water Nigeria: Geo-mechanical analysis and modelling. Earth Planet Sci Lett. 434:252–263. doi: 10.1016/j.epsl.2015.11.047
  • Schattner U, Lazar M, Souza LAP, ten Brink U, Mahiques MM. 2016. Pockmark asymmetry and seafloor currents in the Santos Basin offshore Brazil. Geo-Marine Lett. 36:457–464. doi: 10.1007/s00367-016-0468-0
  • Serra N, Ambar I, Boutov D. 2009. Surface expression of Mediterranean water dipoles and their contribution to the shelf/slope – open ocean exchange. Ocean Sci Discuss. 6:2579–2623. doi: 10.5194/osd-6-2579-2009
  • Stanton BR. 1981. An oceanographic survey of the tasman front. New Zeal J Mar Freshw Res. 15:289–297. doi: 10.1080/00288330.1981.9515924
  • Stewart SA. 1999. Seismic interpretation of circular geological structures. Pet Geosci. 5:273–285. doi: 10.1144/petgeo.5.3.273
  • Stow DAV, Hunter S, Wilkinson D, Hernández-Molina FJ. 2008. Chapter 9: the nature of contourite deposition. Dev Sedimentol. 60:143–156. doi: 10.1016/S0070-4571(08)10009-7
  • Sultan N, Marsset B, Ker S, Marsset T, Voisset M, Vernant AM, Bayon G, Cauquil E, Adamy J, Colliat JL, Drapeau D. 2010. Hydrate dissolution as a potential mechanism for pockmark formation in the Niger delta. J Geophys Res. 115:1–33. doi: 10.1029/2010JB007453
  • Sumida PYG, Yoshinaga MY, Madureira LA.-P, Hovland M. 2004. Seabed pockmarks associated with deepwater corals off SE Brazilian continental slope, Santos Basin. Mar Geol. 207:159–167. doi: 10.1016/j.margeo.2004.03.006
  • Sundborg A. 1956. The River Klaralven: a study of fluvial processes. Geogr Ann. 38(2):125–237.
  • Sutton P. 2001. Detailed structure of the Subtropical Front over Chatham Rise, east of New Zealand. J Geophys Res. 106:31045–31056. doi: 10.1029/2000JC000562
  • Sutton P. 2003. The Subtropical Front: a subantarctic current. New Zeal J Mar Freshw Res. 37:645–652. doi: 10.1080/00288330.2003.9517195
  • Uddstrom MJ, Oien NA. 1999. On the use of high-resolution satellite data to describe the spatial and temporal variability of sea surface temperatures in the New Zealand region. J Geophys Res Ocean. 104:20729–20751. doi: 10.1029/1999JC900167
  • Uruski CI. 2010. New Zealand’s deepwater frontier. Mar Pet Geol. 27:2005–2026. doi: 10.1016/j.marpetgeo.2010.05.010
  • Waghorn KA, Pecher IA, Strachan L, Crutchley G, Bialas J, Coffin R, Davy B, Koch S, Kroeger KF, Papenberg C, Sarkar S. 2017. Paleo-Fluid expulsion influencing contouritic drift formation on the Chatham Rise, New Zealand. Basin Res. 30(1):5–19. doi: 10.1111/bre.12237
  • Weaver PE, Carter L, Neil HL. 1998. Response of surface water masses and circulation to late Quaternary climate change east of New Zealand. Paleoceanography. 13:70–83. doi: 10.1029/97PA02982
  • Wenau S, Spieß V, Pape T, Fekete N. 2017. Controlling mechanisms of giant deep water pockmarks in the Lower Congo Basin. Mar Pet Geol. 83:140–157. doi: 10.1016/j.marpetgeo.2017.02.030
  • Wood RA, Andrews PB, Herzer RH. 1989. Cretaceous and Cenozoic geology of the Chatham Rise region, South Island, New Zealand. Lower Hutt, New Zealand: New Zealand Geological Survey.
  • Zhang Y, Liu Z, Zhao Y, Wang W, Li J, Xu J. 2015. Mesoscale eddies transport deep-sea sediments. Sci Rep. 4:1–7. doi: 10.1038/srep05937

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.