847
Views
13
CrossRef citations to date
0
Altmetric
South Island

Petrology and petrogenesis of an intraplate alkaline lamprophyre-phonolite-carbonatite association in the Alpine Dyke Swarm, New Zealand

Pages 469-488 | Received 27 Jun 2019, Accepted 19 Oct 2019, Published online: 31 Oct 2019

References

  • Adams CJD. 1980. New K-Ar dates for south Island lamprophyre dyke swarms in Buller-south Westland and Haast-Wanaka areas. Geological Society of New Zealand Conference, Christchurch.
  • Adams CJ, Cooper AF. 1996. K-Ar age of a lamprophyre dike swarm near Lake Wanaka, West Otago, South Island, New Zealand. New Zealand Journal of Geology and Geophysics. 39:17–23. doi: 10.1080/00288306.1996.9514691
  • Baker IA, Gamble JA, Graham IJ. 1994. The age, geology, and geochemistry of the Tapuaenuku Igneous complex, Marlborough, New Zealand. New Zealand Journal of Geology and Geophysics. 37:249–268. doi: 10.1080/00288306.1994.9514620
  • Barreiro BA, Cooper AF. 1987. A Sr, Nd, and Pb isotope study of alkaline lamprophyres and related rocks from Westland and Otago, South Island, New Zealand. Geological Society of America Special Paper. 215:115–126. doi: 10.1130/SPE215-p115
  • Blattner P, Cooper AF. 1974. Carbon and oxygen isotopic composition of carbonatite dikes and metamorphic country rock of the Haast schist terrain, New Zealand. Contributions to Mineralogy and Petrology. 44:17–27. doi: 10.1007/BF00373129
  • Briggs S. 2011. Geology, petrology and geochemistry of the Alpine Dike swarm north of Haast River [BSc Hons. thesis]. Dunedin: University of Otago.
  • Briggs SI. 2017. The magmatic and metamorphic evolution of the Alpine schist accretionary complex in the Southern Alps, New Zealand [dissertation]. Santa Barbara: University of California.
  • Briggs SI, Cottle JM, Cooper AF. 2016. Zircon geochemistry records magmatic volatile evolution. Goldschmidt Abstract. 305.
  • Brodie CG. 1985. Geology of the Blue River-Burke River area and a study of nodule-bearing lamprophyres [master’s thesis]. Dunedin: University of Otago.
  • Brodie CG, Cooper AF. 1989. Nodule associations from ouachitite and camptonite lamprophyres, western Otago and South Westland, New Zealand. Special Publication of the Geological Society of Australia. 14:545–559.
  • Brooker RA, Hamilton DL. 1990. Three-liquid immiscibility and the origin of carbonatites. Nature. 346:459–462. doi: 10.1038/346459a0
  • Brooker RA, Kjarsgaard BA. 2011. Silicate-carbonate liquid immiscibility and phase relations in the system SiO2-Na2O-Al2O3-CaO-CO2 at 0.1-2.5GPa with applications to carbonatite genesis. Journal of Petrology. 52:1281–1305. doi: 10.1093/petrology/egq081
  • Broom-Fendley S, Brady AE, Wall F, Gunn G, Dawes W. 2017. REE minerals at the Songwe Hill carbonatite, Malawi: HREE enrichment in late-stage apatite. Ore Geology Reviews. 81:23–41. doi: 10.1016/j.oregeorev.2016.10.019
  • Carswell DA. 1980. Mantle derived lherzolite nodules associated with kimberlite, carbonatite and basalt magmatism: a review. Lithos. 13:121–138. doi: 10.1016/0024-4937(80)90013-4
  • Cheng Z, Zhang Z, Aibai A, Kong W, Holtz F. 2018. The role of magmatic and post-magmatic hydrothermal processes on rare-earth element mineralization: a study of the Bachu carbonatites from the Tarim large Igneous Province, NW China. Lithos. 314–315:71–87. doi: 10.1016/j.lithos.2018.05.023
  • Clague DA. 1978. The oceanic basalt-trachyte association: an explanation of the Daly Gap. Journal of Geology. 86:739–743. doi: 10.1086/649740
  • Cook DH. 1984. The minaret diatreme [BSc thesis]. Dunedin: University of Otago .
  • Coombs DS, Adams CJ, Roser BP, Reay A. 2008. Geochronology and geochemistry of the Dunedin Volcanic Group, eastern Otago, New Zealand. New Zealand Journal of Geology and Geophysics. 51:195–218. doi: 10.1080/00288300809509860
  • Cooper AF. 1971. Carbonatites and fenitization associated with a lamprophyre dike-swarm intrusive into schists of the New Zealand Geosyncline. Geological Society of America Bulletin. 82:1327–1340. doi: 10.1130/0016-7606(1971)82[1327:CAFAWA]2.0.CO;2
  • Cooper AF. 1974. Multiphase deformation and its relationship to metamorphic crystallisation at Haast River, South Westland, New Zealand. New Zealand Journal of Geology and Geophysics. 17:855–880. doi: 10.1080/00288306.1974.10418230
  • Cooper AF. 1979. Petrology of ocellar lamprophyres from western Otago, New Zealand. Journal of Petrology. 20:139–163. doi: 10.1093/petrology/20.1.139
  • Cooper AF. 1986. A carbonatitic lamprophyre dike swarm from the Southern Alps, Otago and Westland, New Zealand. Royal Society of New Zealand Bulletin. 23:313–336.
  • Cooper AF. 1996. Nb-rich baotite in carbonatites and fenites at Haast River, New Zealand. Mineralogical Magazine. 60:473–482. doi: 10.1180/minmag.1996.060.400.08
  • Cooper AF, Barreiro BA, Kimbrough DL, Mattinson JM. 1987. Lamprophyre dike intrusion and the age of the Alpine Fault, New Zealand. Geology. 15:941–944. doi: 10.1130/0091-7613(1987)15<941:LDIATA>2.0.CO;2
  • Cooper AF, Beck RJ. 2009. River capture and main divide migration in the Haast River catchment assessed from the fluvial distribution of sodalite-bearing dike rocks and fenites. New Zealand Journal of Geology and Geophysics. 52:27–36. doi: 10.1080/00288300909509875
  • Cooper AF, Collins AK, Palin JM, Spratt J. 2015. Mineralogical evolution and REE mobility during crystallisation of ancylite-bearing ferrocarbonatite, Haast River, New Zealand. Lithos. 216–217:324–337. doi: 10.1016/j.lithos.2015.01.005
  • Cooper AF, Palin JM, Collins AK. 2016. Fenitization of metabasic rocks by ferrocarbonatites at Haast River, New Zealand. Lithos. 244:109–121. doi: 10.1016/j.lithos.2015.11.035
  • Cooper AF, Paterson LA. 2008. Carbonatites from a lamprophyric dike swarm, south Westland, New Zealand. Canadian Mineralogist. 46:753–777. doi: 10.3749/canmin.46.4.753
  • Cooper AF, Paterson LA, Reid DL. 1995. Li in carbonatites- consequence of an enriched mantle source? Mineralogical Magazine. 59:401–408. doi: 10.1180/minmag.1995.059.396.03
  • Cottle JM. 2014. In-situ U-Th/Pb geochronology of (urano)thorite. American Mineralogist. 99:1985–1995. doi: 10.2138/am-2014-4920
  • Cox SC. 1984. Niger peak geology [BSc thesis]. Dunedin: University of Otago.
  • Crase J. 2014. Mantle geochemistry beneath south Westland, New Zealand: a study on peridotite xenoliths from Hidden Rivulet [Unpublished BSc Hons. Thesis]. Dunedin: University of Otago, 108p.
  • Currie KL, Ferguson J. 1970. The mechanism of intrusion of lamprophyre dikes indicated by “offsetting” of dikes. Tectonophysics. 9:525–535. doi: 10.1016/0040-1951(70)90003-X
  • Dalton HB, Scott JM, Liu J, Waight TE, Pearson DG, Brenna M, Le Roux P, Palin JM. 2017. Diffusion-zoned pyroxenes in isotopically heterogeneous mantle lithosphere beneath Dunedin Volcanic Group, New Zealand, and their implications for intraplate alkaline magma sources. Lithosphere. 9:463–475. doi: 10.1130/L631.1
  • Deines P. 1989. Stable isotope variations in carbonatites. In: Bell K, editor. Carbonatites: genesis and evolution. London: Unwin Hyman; p. 301–359.
  • Deines P, Gold DP. 1973. The isotopic composition of carbonatite and kimberlite carbonates and their bearing on the isotopic composition of deep-seated carbon. Geochimica et Cosmochimica Acta. 37:1709–1733. doi: 10.1016/0016-7037(73)90158-0
  • Demeny A, Ahijado A, Casillas R, Vennemann TW. 1998. Crustal contamination and fluid/rock interaction processes in the carbonatites of Fuerteventura, (Canary Islands, Spain): a C, O, H isotope study. Lithos. 44:101–115. doi: 10.1016/S0024-4937(98)00050-4
  • Dick HJB, Bullen T. 1984. Chromian spinel as a petrogenetic indicator in abyssal peridotites and spatially associated lavas. Contributions to Mineralogy and Petrology. 86:54–76. doi: 10.1007/BF00373711
  • Ferguson J, Currie KL. 1971. Evidence of liquid immiscibility in alkaline ultrabasic dikes at Callander Bay, Ontario. Journal of Petrology. 12:561–585. doi: 10.1093/petrology/12.3.561
  • Gamble M. 1984. The geology of Mt Alta-triple peak [unpublished BSc Hons. thesis]. Dunedin: University of Otago.
  • Garrick RA, Hatherton T. 1973. Seismic velocity studies in the Southern Alps, New Zealand. New Zealand Journal of Geology and Geophysics. 16:973–995. doi: 10.1080/00288306.1973.10555237
  • Garson MS. 1966. Carbonatites in Malawi. In: Tuttle OF, Gittins J, editors. Carbonatites. New York: Interscience; p. 33–71.
  • Grapes RH. 1975. Petrology of the blue mountain complex, Marlborough, New Zealand. Journal of Petrology. 16:371–428. doi: 10.1093/petrology/16.1.371
  • Guzmics T, Mitchell RH, Szabo C, Berkesi M, Milke R, Abart R. 2011. Carbonatite melt inclusions in coexisting magnetite, apatite and monticellite in Kerimasi calciocarbonatite, Tanzania: melt evolution and petrogenesis. Contributions to Mineralogy and Petrology. 161:177–196. doi: 10.1007/s00410-010-0525-z
  • Hoernle K, White JDL, van den Bogaard P, Hauff F, Coombs DS, Werner R, Timm C, Garbe-Schonberg D, Reay A, Cooper AF. 2006. Cenozoic intraplate volcanism on New Zealand: upwelling induced by lithospheric removal. Earth and Planetary Science Letters. 248:335–352. doi: 10.1016/j.epsl.2006.06.001
  • Hornig-Kjarsgaard I. 1998. Rare Earth elements in sovitic carbonatites and their mineral phases. Journal of Petrology. 39:2105–2121. doi: 10.1093/petrology/39.11.2105
  • Hutton CO. 1943. Limburgite from Nevis Bluff, Kawarau River, Central Otago. Transactions of the Royal Society of New Zealand. 73:58–67.
  • Kjarsgaard BA. 1998. Phase relations of a carbonated high-CaO nephelinite at 0.2 and 0.5GPa. Journal of Petrology. 39:2061–2075. doi: 10.1093/petroj/39.11-12.2061
  • Kjarsgaard BA, Peterson T. 1991. Nephelinite-carbonatite liquid immiscibility at Shombole volcano, East Africa: petrographic and experimental evidence. Mineralogy and Petrology. 43:293–314. doi: 10.1007/BF01164532
  • Leake BE. 1978. Nomenclature of amphiboles. Mineralogical Magazine. 42:533–566. doi: 10.1180/minmag.1978.042.324.21
  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. Journal of Petrology. 27:745–750. doi: 10.1093/petrology/27.3.745
  • Lee W-J, Wyllie PJ. 1997. Liquid immiscibility between nephelinite and carbonatite from 1.0 to 2.5GPa compared with mantle melt compositions. Contributions to Mineralogy and Petrology. 127:1–16. doi: 10.1007/s004100050261
  • Lee W-J, Wyllie PJ. 1998. Processes of crustal carbonatite formation by liquid immiscibility and differentiation, elucidated by model systems. Journal of Petrology. 39:2005–2013. doi: 10.1093/petroj/39.11-12.2005
  • Liu J, Scott JM, Martin CE, Pearson DG. 2015. The longevity of Archean mantle residues in the convecting upper mantle and their role in young continent formation. Earth and Planetary Science Letters. 424:109–118. doi: 10.1016/j.epsl.2015.05.027
  • Mackenzie DE, White AJR. 1970. Phonolite globules in basanite from Kiandra, Australia. Lithos. 3:309–317. doi: 10.1016/0024-4937(70)90037-X
  • Maloney SP. 2016. Volcanology of the Lake Wanaka diatreme in the Alpine Dike swarm, New Zealand [master’s thesis]. Dunedin: University of Otago.
  • Martin LHJ, Schmidt MW, Mattsson HB, Guenther D. 2013. Element partitioning between immiscible carbonatite and silicate melts for dry and H2O-bearing systems at 1-3GPa. Journal of Petrology. 54:2301–2338. doi: 10.1093/petrology/egt048
  • Mason B. 1961. Some analysed rocks from Westland, New Zealand. New Zealand Journal of Geology and Geophysics. 4:347–351. doi: 10.1080/00288306.1961.10420122
  • McCoy-West AJ, Bennett VC, Amelin Y. 2016. Rapid Cenozoic ingrowth of isotopic signatures simulating “HIMU” in ancient lithospheric mantle: distinguishing source from process. Geochimica et Cosmochimica Acta. 187:79–101. doi: 10.1016/j.gca.2016.05.013
  • McLeod OE, White JDL. 2018. Petrogenetic links between the Dunedin volcano and peripheral volcanics of the Karitane suite. New Zealand Journal of Geology and Geophysics. 61:543–561. doi: 10.1080/00288306.2018.1518248
  • Midende G, Boulvais P, Tack L, Melcher F, Gerdes A, Dewaele S, Demaiffe D, Decrée S. 2014. Petrography, geochemistry and U-Pb zircon age of the Matongo carbonatite Massif (Burundi): implication for the Neoproterozoic geodynamic evolution of Central Africa. Journal of African Earth Sciences. 100:656–674. doi: 10.1016/j.jafrearsci.2014.08.010
  • Migdisov AA, Williams-Jones AE. 2014. Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Mineralium Deposita. 49:987–997. doi: 10.1007/s00126-014-0554-z
  • Migdisov AA, Williams-Jones AE, Wagner T. 2009. An experimental study of the solubility and speciation of the rare-earth elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300°C. Geochimica et Cosmochimica Acta. 73:7089–7109. doi: 10.1016/j.gca.2009.08.023
  • Moore M, Chakhmouradian AR, Mariano AN, Sidhu R. 2015. Evolution of rare-earth mineralization in the Bear Lodge carbonatite, Wyoming: mineralogical and isotopic evidence. Ore Geology Reviews. 64:499–521. doi: 10.1016/j.oregeorev.2014.03.015
  • Morimoto N. 1988. Nomenclature of pyroxenes. Mineralogical Magazine. 52:535–550. doi: 10.1180/minmag.1988.052.367.15
  • Norrie BH. 2000. Metasomatised mantle xenoliths from lamprophyre dikes of the Fish River, New Zealand [dissertation]. Dunedin: University of Otago.
  • Paterson LA. 1993. A study of carbonatites and associated fenitization at Haast River, South Westland, New Zealand [dissertation]. Dunedin: University of Otago.
  • Philpotts AR. 1971. Immiscibility between feldspathic and gabbroic magmas. Nature Physical Science. 229:107–109. doi: 10.1038/physci229107a0
  • Philpotts AR, Hodgson CJ. 1968. Role of liquid immiscibility in alkaline rock genesis. XXIII International Geological Congress. 2:175–188.
  • Pilet S, Ulmer P, Villiger S. 2010. Liquid line of descent of a basanitic liquid at 1.5 GPa: constraints on the formation of metasomatic veins. Contributions to Mineralogy and Petrology. 159:621–643. doi: 10.1007/s00410-009-0445-y
  • Price RC, Chappell BW. 1975. Fractional crystallisation and the petrology of Dunedin volcano. Contributions to Mineralogy and Petrology. 53:157–182. doi: 10.1007/BF00372602
  • Price RC, Cooper AF, Woodhead JD, Cartwright I. 2003. Phonolitic diatremes within the Dunedin volcano, south Island, New Zealand. Journal of Petrology. 44:2053–2080. doi: 10.1093/petrology/egg070
  • Putirka K. 2016. Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. American Mineralogist. 101:841–858. doi: 10.2138/am-2016-5506
  • Reay A, McIntosh PE, Gibson IL. 1991. Lherzolite xenolith bearing flows from the east Otago province: crystal fractionation of upper mantle magmas. New Zealand Journal of Geology and Geophysics. 34:317–327. doi: 10.1080/00288306.1991.9514469
  • Ridolfi F, Renzulli A. 2012. Calcic amphiboles in calc-alkaline and alkaline magmas: thermobarometric and chemometric empirical equations valid up to 1130°C and 2.2GPa. Contributions to Mineralogy and Petrology. 163:877–895. doi: 10.1007/s00410-011-0704-6
  • Rock NMS. 1986. The nature and origin of ultramafic lamprophyres: alnöites and allied rocks. Journal of Petrology. 27:155–196. doi: 10.1093/petrology/27.1.155
  • Rock NMS. 1991. Lamprophyres. Glasgow: Blackie.
  • Rock NMS. 1977. The nature and origin of lamprophyres: some definitions, distinctions and derivations. Earth-Science Reviews. 13:123–169. doi: 10.1016/0012-8252(77)90020-4
  • Scarrow JH, Molina JF, Bea F, Montero P, Vaughan APM. 2011. Lamprophyre dikes as tectonic markers of late orogenic transtension timing and kinematics: a case study from the central Iberian zone. Tectonics. 30:TC4007. DOI:10.1029/2010TC002755.
  • Schmidt MW, Weidendorfer D. 2018. Carbonatites in oceanic hotspots. Geology. 46:435–438. doi: 10.1130/G39621.1
  • Scott JM, Brenna M, Crase JA, Waight TE, van der Meer QHA, Cooper AF, Palin JM, Le Roux P, Münker C. 2016. Peridotitic lithosphere metasomatised by volatile-bearing melts and its association with intraplate alkaline HIMU-like magmatism. Journal of Petrology. 57:2053–2078. doi: 10.1093/petrology/egw069
  • Scott JM, Hodgkinson A, Palin JM, Waight TE, van der Meer QHA, Cooper AF. 2014. Ancient melt depletion overprinted by young carbonatitic metasomatism in the New Zealand lithospheric mantle. Contributions to Mineralogy and Petrology. 167:963. doi: 10.1007/s00410-014-0963-0
  • Scott JM, Liu J, Pearson DG, Harris GA, Czertowicz TA, Woodland SJ, Riches AJV, Luth RW. 2019. Continental stabilization by lateral accretion of subduction zone–processed depleted mantle residues; insights from Zealandia. Earth and Planetary Science Letters. 507:175–186. doi: 10.1016/j.epsl.2018.11.039
  • Scott JM, Pontesilli A, Brenna M, White JDL, Giacalone E, Le Roux PJ, Palin JM. 2020. The Dunedin Volcanic Group and a revised model for Zealandia’s intraplate volcanism. New Zealand Journal of Geology and Geophysics. 63(4):510–529. doi: 10.1080/00288306.1963.10420063
  • Scott JM, Waight TE, van der Meer QHA, Palin JM, Cooper AF, Münker C. 2014. Metasomatized ancient lithospheric mantle beneath the young Zealandia microcontinent and its role in HIMU-like intraplate magmatism. Geochemistry, Geophysics, Geosystems. 15:3477–3501. doi: 10.1002/2014GC005300
  • Sun S-S, McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and process. In: Saunders AD, Norry MJ, editors. Magmatism in the ocean basins. Vol. 42. London: Geological Society Special Publication; p. 313–345.
  • Tappe S, Foley SF, Jenner GA, Heaman LM, Kjarsgaard BA, Romer RL, Stracke A, Joyce N, Hoefs J. 2006. Genesis of ultramafic lamprophyres and carbonatites at Aillik Bay, Labrador: a consequence of incipient lithospheric thinning beneath the North Atlantic Craton. Journal of Petrology. 47:1261–1315. doi: 10.1093/petrology/egl008
  • Tappe S, Foley SF, Jenner GA, Kjarsgaard BA. 2005. Integrating ultramafic lamprophyres into the IUGS classification of igneous rocks: rational and implications. Journal of Petrology. 46:1893–1900. doi: 10.1093/petrology/egi039
  • Tappe S, Steenfelt A, Heamann LM, Simonetti A. 2009. The newly discovered Jurassic Tikiusaaq carbonatite-aillikite occurrence, West Greenland, and some remarks on carbonatite-kimberlite relationships. Lithos. 112S:385–399. doi: 10.1016/j.lithos.2009.03.002
  • Thomas R. 2018. Unmixing of rare Earth element-rich carbonatites and silicate magmas of the Alpine dyke swarm, northwest Otago [BSc Hons. thesis]. Dunedin: University of Otago.
  • Timm C, Hoernle K, Werner R, Hauff F, den Bogaard PV, White J, Mortimer N, Garbe-Schönberg D. 2010. Temporal and geochemical evolution of the Cenozoic intraplate volcanism of Zealandia. Earth Science Reviews. 98:38–64. doi: 10.1016/j.earscirev.2009.10.002
  • Turnbull IM (compiler). 2000. Geology of the Wakatipu area: Lower Hutt, New Zealand, Institute of Geological and Nuclear Sciences, Geological Map 18, scale 1:250,000, 1 sheet, 72 pp.
  • Turner FJ. 1932. Tinguaites and camptonites from the vicinity of Haast Pass. Transactions of the New Zealand Institute. 62:215–229.
  • Ulrych J, Krmicek L, Teschner C, Skala R, Adamovic J, Durisova J, Krizova S, Kubouskova S, Radon M. 2018. Chemistry and Sr-Nd signature of amphiboles of the magnesio-hastingsite-pargasite-kaersutite series in Cenozoic volcanic rocks: insight into lithospheric mantle beneath the Bohemian Massif. Contributions to Mineralogy and Petrology. 312–313:308–321.
  • van der Meer QHA, Waight TE, Scott JM, Munker C. 2017. Variable sources for Cretaceous to recent HIMU and HIMU-like intraplate magmatism in New Zealand. Earth and Planetary Science Letters. 469:27–41. doi: 10.1016/j.epsl.2017.03.037
  • Waight TE, Weaver SD, Maas R, Eby GN. 1998. French Creek Granite and Hohonu dyke swarm, south Island, New Zealand: late Cretaceous alkaline magmatism and the opening of the Tasman Sea. Australian Journal of Earth Science. 45:823–835. doi: 10.1080/08120099808728438
  • Wallace RC. 1973. Some aspects of the geology about the Moeraki River, south Westland [master’s thesis]. Dunedin: University of Otago.
  • Wallace RC. 1975. Mineralogy and petrology of xenoliths in a diatreme from south Westland, New Zealand. Contributions to Mineralogy and Petrology. 49:191–199. doi: 10.1007/BF00376587
  • Wass SY. 1979. Fractional crystallisation in the mantle of late stage kimberlitic liquids-evidence in xenoliths from the Kiama area, N.S.W., Australia. In: Boyd FR, Meyer HOA, editors. The mantle sample: inclusions in kimberlites and other volcanics. Washington, DC: American geophysical Union; p. 366–373.
  • Waters JC. 1983. The geology of the Paringa River, south Westland [Dip. Sci. thesis]. Dunedin: University of Otago .
  • Weidendorfer D, Schmidt MW, Mattsson HB. 2016. Fractional crystallization of Si-undersaturated alkaline magmas leading to unmixing of carbonatites on Brava Island (Cape Verde) and a general model of carbonatite genesis in alkaline magma suites. Contributions to Mineralogy and Petrology. 171:43. doi: 10.1007/s00410-016-1249-5
  • Weidendorfer D, Schmidt MW, Mattsson HB. 2017. A common origin of carbonatite magmas. Geology. 45:507–510. doi: 10.1130/G38801.1
  • Wellman P, Cooper AF. 1971. Potassium-argon ages of some New Zealand lamprophyre dikes near the Alpine Fault. New Zealand Journal of Geology and Geophysics. 14:341–350. doi: 10.1080/00288306.1971.10421930
  • Wellnitz AK. 2017. Carbonate alteration associated with lamprophyres and orogenic gold, Southern Alps, New Zealand [dissertation]. Dunedin: University of Otago.
  • White SR. 1998. The Mid Cenozoic Siberia Fault zone in Northwest Otago, New Zealand and a study of Greenschist facies metamorphism in the Haast schist [dissertation]. Dunedin: University of Otago.
  • Wilshire HG, Shervais JW. 1975. Al-augite and Cr-diopside ultramafic xenoliths in basaltic rocks from the western United States. Physics and Chemistry of the Earth. 9:257–272. doi: 10.1016/0079-1946(75)90021-X

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.