473
Views
4
CrossRef citations to date
0
Altmetric
Research articles

Episodes of seabed rise and rapid drowning controlling the development of regressive and transgressive rhodolithic limestones in a tectonically-active subduction setting (Early Miocene, Wairarapa region, New Zealand)

, , &
Pages 53-78 | Received 12 Apr 2021, Accepted 19 Jul 2021, Published online: 15 Aug 2021

References

  • Abbott ST. 1998. Transgressive systems tracts and onlap shellbeds from mid-Pleistocene sequences, Wanganui Basin, New Zealand. J Sedim Res. 68(2):253–268.
  • Afzal J, Williams M, Leng MJ, Aldridge RJ. 2011. Dynamic response of the shallow marine benthic ecosystem to regional and pan-Tethyan environmental change at the Paleocene–Eocene boundary. Palaeogeogr Palaeoclim Palaeoecol. 309:141–160.
  • *Aguirre J, Braga JC, Bassi D. 2017. The role of rhodoliths and rhodolith beds in the rock record and their use in palaeoenvironmental reconstructions. In: Riosmena-Rodriguez R, Nelson W, Aguirre J., editors. Rhodolith/maerl beds: a global perspective. special volume, Berlin: Springer-Verlag; p. 105–138.
  • Allen GP, Posamentier HW. 1993. Sequence stratigraphy and facies model of an incised valley fill: the Gironde estuary, France. J Sedim Petrol. 63:378–391.
  • *Babić L, Zupanič J. 2000. Borings in mobile clasts from Eocene Conglomerates of Northern Dalmatia (Coastal Dinarides, Croatia). Facies. 42:51–58.
  • Bailleul J, Chanier F, Ferrière J, Robin C, Nicol A, Mahieux G, Gorini C, Caron V. 2013. Neogene evolution of lower trench-slope basins and wedge dynamics in the central Hikurangi subduction margin, New Zealand. Tectonophysics. 591:152–174.
  • Bailleul J, Robin C, Chanier F, Guillocheau F, Field B, Ferrière J. 2007. Turbidite systems in the inner forearc domain of the Hikurangi convergent margin (New Zealand): new constraints on the development of trench-slope basins. J Sedim Res. 77:263–283.
  • Barattolo F, Bassi D, Romano R. 2007. Upper Eocene larger foraminiferal-coralline algal facies from the Klokova Mountain (souther continental Greece). Facies. 53:361–375.
  • Bassi D. 1998. Coralline Algal Facies and their Palaeoenvironments in the Late Eocene of Northern Italy (Calcare di Nago, Trento). Facies. 39:179–202.
  • Bassi D. 2005. Larger foraminiferal and coralline algal facies in an Upper Eocene storm-influenced, shallow-water carbonate platform (Colli Berici, north-eastern Italy). Palaeogeogr Palaeoclim Palaeoecol. 226:17–35.
  • Bassi D, Braga JC, Owada M, Aguirre J, Lipps JH, Takayanagi H, Iryu Y. 2020. Boring bivalve traces in modern reef and deep-water macroid and rhodolith beds. Progr Earth Planet. Sci. DOI:https://doi.org/10.1186/s40645-020-00356-w.
  • Bassi D, Carannante G, Checconi A, Simone L, Vigorito M. 2010. Sedimentological and palaeoecological integrated analysis of Miocene channelized carbonate margin, Matese Mountains, Southern Appenines, Italy. Sedim. Geol. 230:105–122.
  • Bassi D, Carannante G, Murru M, Simone L, Toscano F. 2006. Rhodalgal/bryomol assemblages in temperate-type carbonate, channelized depositional systems: the Early Miocene of the Sarcidano area (Sardiania, Italy). In: Pedley HM, Carannante G, editors. Cool-water carbonates: depositional systems and palaeoenvironmental controls. London: Geol. Soc. London Spec. Publ.; p. 25535–252.
  • *Bassi D, Nebelsick JH, Checconi A, Hohenegger J, Iryu Y. 2009. Present-day and fossil rhodolith pavements compared: their potential for analyzing shallow-water carbonate deposits. Sedim Geol. 214:74–84.
  • Basso D, Morbioli C, Corselli C. 2006. Rhodolith facies evolution and burial as a response to Holocene transgression at the Pontian Islands shelf break. In: Pedley HM, Carannante G, editors. Cool-water carbonates: depositional systems and palaeoenvironmental controls. Vol. 255. London: Geological Society of London Special Publication; p. 23–34.
  • Bates RL, Jackson JA. 1987. Glossary of geology, 3rd ed. Alexandria, VA: American Institute of Geology, p. 788.
  • Beavington-Penney SJ. 2004. Analysis of the effects of abrasion on the test of Palaeonummulites venosus: implications for the origin of nummulithoclastic sediments. Palaios. 19:143–155.
  • Betzler C, Brachert TC, Braga JC, Martín JM. 1997. Nearshore, temperate, carbonate depositional systems (lower Tortonian, Agua Amarga basin, southern Spain): implications for carbonate sequence stratigraphy. Sedim Geol. 113:27–53.
  • Bland KJ, Uruski CI, Isaac MJ. 2015. Pegasus Basin, eastern New Zealand: A stratigraphic record of subsidence and subduction, ancient and modern. N Z J Geol Geophys. 58(4):319–343.
  • *Boreen T, James NP, Heggie D, Wilson C. 1993. Surficial cool-water carbonate sediments on the Otway continental margin, southeastern Australia. Mar. Geol. 112:35–56.
  • Bosellini A, Ginsburg RN. 1971. Form and internal structure of recent algal nodules (rhodolites) from Bermuda. J. Geol. 79:669–682.
  • Brachert TC, Forst MH, Pais JJ, Legoinha P, Reijmer JJG. 2003. Lowstand carbonates, highstand sandstones? Sedim Geol. 155:1–12.
  • Braga JC, Aguirre J. 2001. Coralline algal assemblages in Upper Neogene reef and temperate carbonates in southern Spain. Palaeogeogr Palaeoclim Palaeoecol. 175:27–41.
  • Braga JC, Vescogni A, Bosellini FR, Aguirre J. 2009. Coralline algae (Corallinales, Rhodophyta) in western and central Mediterranean Messinian reefs. Palaeogeogr Palaeoclim Palaeoecol. 275:113–128.
  • *Bromley RG, D’Alessandro A. 1994. Comparative analysis of bioerosion in deep and shallow water, Pliocene to Recent, Mediterranean Sea. Ichnos. 1:43–49.
  • Burchette TP, Wright VP. 1992. Carbonate ramp depositional systems. Sedim Geol. 79:3–57.
  • *Campbell KA, Grant-Mackie JA, Buckeridge JS, Hudson N, Alfaro AC, Hoverd J, Morgan S, Horne N, Banfield. 2004. Paleoecology of an early Miocene, rapidly submerging rocky shore, Mokuketeke Island, Hauraki Gulf, New Zealand. N Z J Geol Geophys. 47:731–748.
  • Canals M, Ballesteros E. 1997. Production of carbonate particles by phytobenthic communities on the Mallorca-Menorca shelf, northwestern Mediterranean Sea. Deep-Sea Res. II. 44:611–629.
  • Carannante G, Esteban M, Milliman JD, Simone L. 1988. Carbonate lithofacies as paleolatitude indicators: problems and limitations. Sedim Geol. 60:333–346.
  • Caron V. 2011. Contrasted textural and taphonomic properties of high-energy wave deposits cemented in beachrocks (St. Bartholomew Island, French West Indies). Sedim Geol. 237:189–208.
  • Caron V, Bailleul J, Chanier F, Mahieux G, Joanny F-X. 2019. A new analytical procedure to graphically characterize the taphonomic properties of skeletal carbonates. An example from Miocene limestones of New Zealand. Palaios. 34(8):364–381.
  • Caron V, Nelson CS, Kamp PJJ. 2004a. Transgressive surfaces of erosion as sequence boundary markers in cool-water shelf carbonates. Sedim Geol. 164:179–189.
  • Caron V, Nelson CS, Kamp PJJ. 2004b. Contrasting carbonate depositional systems for Pliocene cool-water limestones cropping out in central Hawke’s Bay, New Zealand. N Z J Geol Geophys. 47:697–617.
  • Caron V, Nelson CS, Kamp PJJ. 2005. Sequence stratigraphic context of syndepositional diagenesis in cool-water shelf carbonates: Pliocene limestones. New Zealand J Sedim Res. 75:231–250.
  • Cattaneo A, Steel RJ. 2003. Transgressive deposits: a review of their variability. Earth-Sc Rev. 62:187–228.
  • Catuneanu O. 2006. Principles of sequence stratigraphy. Oxford: Elsevier, 375 p.
  • Catuneanu O, Abreu V, Bhattacharya JP, Blum MD, Darlymple RW, Eriksson PG, Fielding CR, Fischer WL, Galloway WE, Gibling MR, et al. 2009. Towards the standardization of sequence stratigraphy. Earth-Sc Rev. 92:1–33.
  • Chanier F, Ferrières J. 1991. From a passive to an active margin: tectonic and sedimentary processes linked to the birth of an accretionary prism (Hikurangi Margin, New Zealand). Bull Soc Géol Fr. 162:649–660.
  • Checconi A, Bassi D, Carannante G, Monaco P. 2010. Re-deposited rhodoliths in the Middle Miocene hemipelagic deposits of Vitulano (Southern Apennines, Italy): coralline assemblage characterization and related trace fossils. Sedim Geol. 225:50–66.
  • Checconi A, Monaco P. 2008. Trace fossil assemblages in rhodoliths from the Middle Miocene of Mt. Camposauro (Longano Formation, Southern Appenines, Italy). St Tr Sc Nat Act Geol. 83:165–176.
  • Chelaru R, Sasaran E, Tamas T, Balc R, Bucur II, Ples G. 2019. Middle Miocene carbonate facies with rhodoliths from the NW Transylvanian Basin (Valenii Somcutei Cave. Romania). Facies. 65(4). https://doi.org/https://doi.org/10.1007/s10347-018-0546-z.
  • Chiarella D, Longhitano SG, Tropeano M. 2019. Different stacking patterns along an active fold-and-thrust belt – Acerenza bay, Southern Appennines (Italy). Geology. 47(2):139–142.
  • Claussmann B, Bailleul J, Chanier F, Mahieux G, Chaptal C, Caron V, McArthur A, Morgans H, Vendeville B. 2021 (this volume). Shelf-derived mass-transport deposits: origin and significance in the stratigraphic development of trench-slope basins. N Z J Geol Geophys. DOI:https://doi.org/10.1080/00288306.2021.1918729.
  • Ćosovič V, Drobne K, Moro A. 2004. Paleoenvironmental model for Eocene foraminiferal limestones of the Adriatic carbonate platform (Istrian Peninsula). Facies. 50:61–75.
  • Davey FJ, Hampton M, Childs J, Fisher MA, Lewis KB, Pettinga JR. 1986. Structure of a growing accretionnary prism, Hikurangi margin, New Zealand. Geology. 14:663–666.
  • *Davies DJ, Staff GM, Callender WR, Powell EN. 1990. Description of a quantitative approach to taphonomy and taphofacies analysis: all dead things are not created equal. In: Miller III W, editor. Paleocommunity temporal dynamics: the long-term development of multispecies assemblages. Vol. 5. Cambridge: Paleontol. Soc. Spec. Publ; p. 328–350.
  • Embry AF, Klovan JE. 1971. A late Devonian reef tract on northeastern Banks Island. N W T Bull Can Petrol Geol. 19:730–781.
  • Emery D, Myers K. 1996. Sequence stratigraphy. Oxford: Blackwell Science, 297 p.
  • Field BD, Uruski CI, Beu AG, Browne GH, Crampton JS, Funnell R, Killops S, Laird MG, Mazengarb C, Morgans HEG, et al. 1997. Cretaceous–Cenozoic geology and petroleum systems of the East Coast region, New Zealand. N Z Inst Geol Nucl Sc Monograph. 19:301.
  • Flügel E. 2004. Microfacies of carbonate rocks. Berlin: Springer-Verlag.
  • Geel T. 2000. Recognition of stratigraphic sequences in carbonate platform and slope deposits: empirical models based on microfacies analysis of Palaeogene deposits in southeastern Spain. Palaeogeogr Palaeoclim Palaeoecol. 155:211–238.
  • Graham DJ, Midgley NG. 2000. Graphical representation of particle shape using triangular diagrams: an Excel spreadsheet method. Earth Surf Proc Landf. 25:1473–1477.
  • *Halfar J, Godinez-Orta L, Mutti M, Valdez-Holguin JE, Borges JM. 2004. Nutrient and temperature controls on modern carbonate production: an example from the Gulf of California, Mexico. Geology. 32:213–216.
  • *Hallock P. 1988. The role of nutrient availability in bioerosion: consequences to carbonate buildups. Palaeogeogr Palaeoclim Palaeoecol. 63:275–291.
  • *Hallock P, Forward LB, Hansen HJ. 1986. Influence of environment on the test shape of Amphistegina. J Foram Res. 16: 224–231.
  • Hallock P, Glenn EC. 1986. Larger foraminifera: a tool for palaeoenvironmental analysis of Cenozoic depositional facies. Palaios. 1:55–64.
  • Hallock P, Sheps K, Chapronière G, Howell M. 2006. Larger benthic foraminifers of the marion plateau, northeastern Australia (ODP leg 194): comparison of faunas from bryozoan (sites 1193 and 1194) and red algal (sites 1196-1198) dominated carbonate platforms. In: Anselmetti FS, Isern AR, Blum P, Betzler C, editors. Proceedings of the Ocean Drilling Program. Scientific Results; 194, p. 1–31.
  • Harvey AS, Broadwater ST, Woelkerling WJ, Mitrovski PJ. 2003. Choreonema (Corallinales, Rhodophyta): 18S rDNA phylogeny and resurrection of the Hapalidiaceae for the subfamilies Choreonematoideae, Austrolithoideae, and Melobesioideae. J Phycol. 39:988–998.
  • Hayton S, Nelson CS, Hood SD. 1995. A skeletal assemblage classification system for non-tropical carbonate deposits based on New Zealand Cenozoic limestones. Sedim Geol. 100:123–141.
  • *Hendy AJW, Kamp PJJ, Vonk AJ. 2006. Cool-water shell bed taphofacies from Miocene-Pliocene shelf sequences in New Zealand: utility of taphofacies in sequence stratigraphic analysis. In: Pedley HM, Carannante G, editors. Cool-Water Carbonates: Depositional Systems and Palaeoenvironmental controls. London: Geological Society, Special Publications; 255, p. 283–305.
  • *Hohenegger J. 2004. Depth coenoclines and environmental considerations of Western Pacific larger foraminifera. J Foram. Res. 34:9–33.
  • Hohenegger J. 2009. Functional shell geometry of symbiont-bearing foraminifera. Research Galaxea. J Coral Reef Stud. 11:81–89.
  • Hohenegger J, Yordanova EK. 2001. Displacement of larger foraminifera at the western slope of Motobu peninsula (Okinawa, Japan). Palaios. 16:53–72.
  • Hornibrook NdB. 1992. New Zealand Cenozoic marine paleoclimates: a review based on the distribution of some shallow water and terrestrial biota. In: Tsuchi R, Ingle JC, editors. Pacific neogene: environment, evolution and events. Tokyo: University of Tokyo Press; p. 83–106.
  • Hottinger L. 1997. Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations. Bull Soc Géol Fr. 168:491–505.
  • Hunt D, Tucker ME. 1992. Stranded parasequences and the forced regressive wedge systems tract: deposition during base-level fall. Sedim Geol. 81:1–9.
  • *Iryu Y, Nakamori T, Matsuda S, Abe O. 1995. Distribution of marine organisms and its ecological signi¢cance in the modern reef complex of the Ryukyu Islands. Sedim Geol. 99:243–258.
  • James NP. 1997. The cool-water carbonate depositional realm. In: James NP, Clarke JAD, editors. Cool-water carbonates. Tulsa, OK: SEPM Special Publication; 56, p. 1–22.
  • James NP, Bone Y. 2011. Neritic Carbonate Sediments in a Temperate Realm, Southern Australia. Springer Science + Business Media B.V., London.
  • James NP, Bone Y, Collins LB, Kyser TK. 2001. Surficial sediments of the Great Australian Bight: facies dynamics and oceanography on a vast cool-water carbonate shelf. J Sedim Res. 71:549–567.
  • James NP, Bone Y, Von Der Borch CC, Gostin VA. 1992. Modern carbonate and terrigenous clastic sediments on a cool-water, high-energy, mid-latitude shelf: lacepede, southern Australia. Sedimentology. 39:877–903.
  • James NP, Boreen TD, Bone Y, Feary DA. 1994. Holocene carbonate sedimentation on the west Eucla Shelf, Great Australian Bight: a shaved shelf. Sedim Geol. 90:161–177.
  • Kamp PJJ, Nelson CS. 1988. Nature and occurrence of modern and Neogene active margin limestones in New Zealand. N Z J Geol Geophys. 31:1–20.
  • Kindler P, Ruchonnet C, White T. 2006. The southern Marion platform (Marion Plateau, NE Australia) during the early Pliocene: a lowstand-producing, temperate-water carbonate factory. In: Pedley HM, Carannante G, editor. Cool-water carbonates: depositional systems and palaeoenvironmental controls. London: Geological Society, Special Publications; 255, p. 269–282.
  • *Koba M. 1977. Distribution and environment of recent cycloclypeus. Sc Rep Tohoku Univ. 28(7):283–311.
  • *Kroeger KF, Reuter M, Brachert TC. 2006. Palaeoenvironmental reconstruction based on non-geniculate coralline red algal assemblages in Miocene limestone of central Crete. Facies. 52:381–409.
  • *Langer MR, Hottinger L. 2000. Biogeography of selected larger foraminifera. Micropaleontology. 46:105–126.
  • Lee JM, Begg JG. 2002. Geology of the Wairarapa area: 1:250,000, Geological Map 11, 1 sheet + 66 p. Lower Hutt, N Z Inst Geol Nucl Sc.
  • Lewis KB. 1974. Upper Tertiary rocks from the continental shelf and slope off southern Hawkes Bay. N Z J Mar Freshwater Res. 8:663–670.
  • Lewis KB, Pettinga JR. 1993. The emerging, imbricate frontal wedge of the Hikurangi margin. In: Ballance PF, editor. South Pacific Sedimentary Basins. Amsterdam: Elsevier; Sedimentary Basins of the World 2, p. 225–250.
  • López-Blanco M, Marzo M, Piña J. 2000. Transgressive-regressive sequence hierarchy of foreland, fan-delta clastic wedges (Montserrat and Sant Lorenç del Munt, Middle Eocene, Ebro Basin, NE Spain). Sedim Geol. 138:41–69.
  • Lukasik JJ, James NP. 2003. Deepening-upward subtidal cycles, Murray Basin, South Australia. J Sedim Res. 73(5):653–671.
  • Lukasik JJ, James NP. 2006. Carbonate sedimentation, climate change, and stratigraphic completeness on a Miocene cool-water epeiric ramp. In: Pedley HM, Carannante G, editors. Cool-water carbonates: depositional systems and palaeoenvironmental controls. Vol. 255. London: Geological Society of London Special Publication; p. 217–244.
  • Lukasik JJ, James NP, McGowran B, Bone Y. 2000. An epeiric ramp: low-energy, cool-water carbonate facies in a Tertiary inland sea, Murray Basin, South Australia. Sedimentology. 47:851–881.
  • Lund M, Davies PJ, Braga JC. 2000. Coralline algal nodules off Fraser Island eastern Australia. Facies. 42:25–34.
  • Malié P, Bailleul J, Chanier F, Toullec R, Mahieux G, Caron V, Field B, Mählmann F, Potel S. 2017. Spatial distribution and tectonic framework of fossil tubular concretions as onshore analogues of cold seep plumbing systems, North Island of New Zealand. Bull Soc Géol Fr. 188(4):24.
  • *Marrack EC. 1999. The relationship between water motion and living rhodolith beds in the southwestern Gulf of California, Mexico. Palaios. 14:159–171.
  • McArthur AD, Bailleul J, Chanier F, Clare A, McCaffrey WD. 2021a. (This volume): lateral and longitudinal fill variation within trench-slope basins: examples from the Neogene Akitio and Tawhero Basins, Hikurangi Margin, New Zealand. N Z J Geol Geophys.
  • McArthur AD, Bailleul J, Mahieux G, Claussmann B, Wunderlich A, McCaffrey WD. 2021b. Deformation-sedimentation feedback and the development of anomalously thick aggradational turbidite lobes: outcrop and subsurface examples from the Hikurangi Margin, New Zealand. J Sedim Res. DOI:https://doi.org/10.2110/jsr.2020.013.
  • McArthur A, Claussmann B, Bailleul J, Clare A, McCaffrey WD. 2019. Variation in syn-subduction sedimentation patterns from inner to outer portions of deep-water fold and thrust belts: examples from the Hikurangi subduction margin of New Zealand. Vol. 490. London: Geological Society of London Special Publications; p. 285–310.
  • Merino-Tomé O, Della Porta G, Kenter JAM, Vermeers K, Harris P, Adams EW, Playton T, Corrochano D. 2012. Sequence development in an isolated carbonate platform (Lower Jurassic, Djebel Bou Dahar, High Atlas, Morocco): influence of tectonics, eustacy and carbonate production. Sedimentology. 59:118–155.
  • Naish T, Kamp PJJ. 1997. Sequence stratigraphy of sixth order (41k.y.) Pliocene-Pleistocene cyclothems, Wanganui basin, New Zealand: a case for the regressive systems tract. Geol Soc Am Bull. 109(8):978–999.
  • Nalin R, Nelson CS, Basso D, Massari F. 2007. Rhodolith-bearing limestones as transgressive marker beds: fossil and modern examples from North Island, New Zealand. Sedimentology. 55(2):249–274.
  • Nebelsick JH, Bassi D. 2000. Diversity, growth forms, and taphonomy: key factors controlling the fabric of coralline algae dominated shelf carbonates. In: Insalaco E, Skelton PW, Palmer TJ, editors. Carbonate platform systems. Components and interactions: Geological Society of London, Special Publications; v. 178, p. 89–107.
  • *Nebelsick JH, Rasser MW, Bassi D. 2005. Facies dynamics in Eocene to Oligocene circumalpine carbonates. Facies. 51:197–216.
  • Neef G. 1997. Stratigraphy, structural evolution, and tectonics of the northern part of the Tawhero Basin and adjacent areas, northern Wairarapa, North Island, New Zealand. N Z J Geol Geophys. 40:335–358.
  • Neef G. 1999. Neogene development of the onland part of the forearc in the northern Wairarapa, North Island, New Zealand: a synthesis. N Z J Geol Geophys. 42:113–115.
  • Nelson CS. 1978. Temperate shelf carbonate sediments in the Cenozoic of New Zealand. Sedimentology. 25:737–771.
  • Nelson CS, Cooke PJ. 2001. History of oceanic front development in the New Zealand sector of the Southern Ocean during the Cenozoic – a synthesis. N Z J Geol Geophys. 44:535–553.
  • Nelson CS, James NP. 2000. Marine cements in mid-Tertiary cool-water shelf limestones of New Zealanf and southern Australia. Sedimentology. 47:609–629.
  • Nelson CS, Kean SL, Head PS. 1988. Non-tropical carbonate deposits on the modern New Zealand shelf. Sedim Geol. 60:71–94.
  • Nicol A, Mazengarb C, Chanier F, Rait G, Uruski C, Wallace L. 2007. Tectonic evolution of the active Hikurangi subduction margin, New Zealand, since the Oligocene. Tectonics. 26:TC4002.
  • Nummedal D, Swift DJP. 1987. Transgressive stratigraphy at sequence-bounding unconformities: some principles derived from Holocene and Cretaceous examples. In: Nummedal D, Pillkey H, editors. Sea-level fluctuations and coastal evolution. Vol. 41. Tulsa: SEPM Special Publication; p. 241–260.
  • O’Connell LG, James NP, Bone Y. 2012. The Miocene nullarbor limestone, southern Australia: deposition on a vast subtropical epeiric platform. Sedim Geol. 253–254:1–16.
  • Payros A, Pujalte V, Tosquella J, Orue-Etxebarria V. 2010. The Eocene storm-dominated foralgal ramp of the western Pyrenees (Urbasa–Andia Formation): An analogue of future shallow-marine carbonate systems? Sedim Geol. 228:184–204.
  • Pedley M, Carannante G. 2006. Cool-water carbonate ramps: A review. In: Pedley HM, Carannante G, editors. Cool-water carbonates: depositional systems and palaeoenvironmental controls. Vol. 255. London: Geol. Soc. London, Spec. Publ.; p. 1–9.
  • Pedley M, Grasso M. 2002. Lithofacies modelling and sequence stratigraphy in microtidal cool-water carbonaes: a case study from the Pleistocene of Sicily, Italy. Sedimentology. 49:533–553.
  • Perry CT, Beavington-Penney SJ. 2005. Epiphytic calcium carbonate production and facies development within sub-tropical seagrass beds, Inhaca Island, Mozambique. Sedim. Geol. 174:161–176.
  • Pickering KT, Hiscott RN. 2015. Deep marine systems: processes, deposits, environments, tectonics and sedimentation. Oxford: American Geological Union, Wiley Works Series; p. 672.
  • Pinter P, Butler RWH, Hartley AJ, Maniscalco R, Baldassini N, Di Stefano A. 2017. Tracking sand-fairways through a deformed turbidite system: the Numidian (Miocene) of central Sicily, Italy. Basin Res. 30(3):480–501.
  • Plint AG. 1988. Sharp-based shoreface sequences and offshore bars in the Cardium Formation of Alberta; their relationship to relative changes in sea level. In: Wilgus CK, Hastings BS, Kendall CGStC, Posamentier HW, Ross CA, Van Wagoner JC, editors. Sea level changes: an integrated approach. Vol. 42. Tulsa: SEPM Spec. Publ.; p. 357–370.
  • Plint AG, Nummedal D. 2000. The falling stage systems tract: recognition and importance in sequence stratigraphic analysis. In: Hunt D, Gawthorpe RL, editors. Sedimentary responses to forced regressions. Vol. 172. London: Geol. Soc. London Spec. Publ.; p. 1–17.
  • Pomar L. 2001. Ecological control of sedimentary accommodation: evolution from carbonate ramp to rimmed shelf, Upper Miocene, Balearic Islands. Palaeogeogr Palaeoclim Palaeoecol. 175:249–272.
  • Pomar L, Brandano M, Westphal H. 2004. Environmental factors influencing skeletal grain sediment associations: a critical review of Miocene examples from the western Mediterranean. Sedimentology. 51:627–651.
  • Pomar L, Haq BU. 2016. Decoding depositional sequences in carbonate systems: concepts vs experience. Glob Planet Change. 146:190–225.
  • Pomar L, Kendall C. 2007. Architecture of carbonate platforms: a response to hydrodynamics and evolving ecology. In: Simo A, Lukasik J, editors. Controls on carbonate platform and reef development. Vol. 89. Tulsa: SEPM Spec. Publ.; p. 187–216.
  • Posamentier HW, Allen GP. 1999. Variability of the sequence stratigraphic model: effects of local basin factors. Sedim Geol. 86:91–109.
  • Posamentier HW, Allen GP, James DP, Tesson M. 1992. Forced regressions in a sequence stratigraphic framework: concepts, examples, and exploration significance. AAPG Bull. 76(11):1687–1709.
  • Posamentier HW, Jervey MT, Vail PR. 1988. Eustatic controls on clastic deposition I - Conceptual framework. In: Wilgus CK, Hastings BS, Kendal CGStC, Posamentier HW, Ross CA, Van Wagoner JC, editors. Sea-level changes: an integrated approach. Vol. 42. Tulsa: SEPM Special Publication; p. 110–124.
  • Posamentier HW, Morris WR. 2000. Aspects of the stratal architecture of forced regressive deposits. In: Hunt D, Gawthorpe DL, editors. Sedimentary responses to forced regressions. Vol. 172. London: Geol. Soc. London Spec. Publ.; p. 19–46.
  • Posamentier HW, Vail PR. 1988. Eustatic controls on clastic deposition II - Sequence and systems tract models. In: Wilgus CK, Hastings BS, Kendal CGStC, Posamentier HW, Ross CA, Van Wagoner JC, editors. Sea-Level changes: an integrated approach. Vol. 42. Tulsa: SEPM Special Publication; p. 125–154.
  • *Radwanski A. 1970. Dependence of rock-borers and burrowers on the environmental conditions within the Tortonian littoral zone of southern Poland. In: Crimes TP, Harper JC, editors. Trace fossils. Liverpool: Seel House Press; Geol. J. Spec. Issue 3. p. 371–390.
  • Raine JI, Beu AG, Boyes AF, Campbell HJ, Cooper RA, Crampton JS, Crundwell MP, Hollis CJ, Morgans HEG, Mortimer N. 2015. New Zealand Geological Timescale NZGT 2015/1. N Z J Geol Geophys. 27:6.
  • Rait GJ, Chanier F, Waters DW. 1991. Landward and seaward directed thrusting accompanying the onset of subduction beneath New Zealand. Geology. 19:230–233.
  • *Rasser MW. 2000. Coralline red algal limestones of the Late Eocene Alpine Foreland Basin in Upper Austria: component analysis, facies and paleoecology. Facies. 42:59–92.
  • Rasser MW, Piller WE. 1999. Application of neontological taxonomic concepts to Late Eocene coralline algae (Rhodophyta) of the Austrian Molasse Zone. J Micropalaeont. 18:67–80.
  • *Rasser MW, Piller WE. 2004. Crustose algal framework from the Eocene Alpine foreland. Palaeogeogr Palaeoclim Palaeoecol. 206:21–39.
  • Ricketts BD, Ballance PF, Hayward BW, Mayer W. 1989. Basal Waitemata lithofacies: rapid subsidence in an early Miocene interarc basin, New Zealand. Sedimentology. 36:559–580.
  • Sarg JF. 1988. Carbonate sequence stratigraphy. In: Wilgus CK, Hastings BS, Kendall CGStC, Posamentier HW, Ross CA, van Wagoner JC, editors. Sea-level changes: an integrated approach. Vol. 42. Tulsa: SEPM Special Publication; p. 155–182.
  • Schlager W. 1989. Drowning unconformities on carbonate platforms. In: Crevello PD, Wilson JL, Sarg JF, Read JF, editors. Controls on carbonate platform and basin development. Vol. 44. Tulsa: SEPM Spec. Publ.; p. 15–25.
  • Schlager W. 2005. Carbonate sedimentology and sequence stratigraphy. Concepts in Sedimentology and Paleontology #8., Society of Economic Paleontologists and Mineralogists (SEPM). 200 pp.
  • Simone L, Carannante G. 1988. The fate of foramol (‘temperate-type’) carbonate platforms. Sedim Geol. 60:347–354.
  • Sneed ED, Folk RL. 1958. Pebbles in the lower Colorado River, Texas: a study in particle morphogenesis. J Geol. 66:114–150.
  • Steinhauf DM, Walker KR. 1995. Recognizing exposure, drowning and missed beats. J Sedim Res. B65(2):183–207.
  • Tinterri R, Piazza A. 2019. Turbidites facies response to the morphological confinement of a foredeep (Cervarola Sandstone Formation, Miocene, northern Appennines, Italy). Sedimentology. 66:636–674.
  • Tinterri R, Tagliaferi A. 2015. The syntectonic evolution of foredeep turbidites related to basin segmentation: facies response to the increase in tectonic confinement (Marnoso-Arenacea Formation, Miocene, northern Apennines, Italy). Mar Petrol Geol. 67:81–110.
  • *Tsuji Y. 1993. Tide influenced high energy environments and rhodolith-associated carbonate deposition on the outer shelf and slope off the Miyako Islands, southern Ryukyu Island Arc, Japan. Mar Geol. 113:255–271.
  • Tucker ME. 1993. Carbonate diagenesis and sequence stratigraphy. In: Wright VP, editor. Sedimentology review, Vol. 1. Oxford: Blackwell Scientific; p. 51–72.
  • Tucker ME, Calvet F, Hunt D. 1993. Sequence stratigraphy of carbonate ramps: systems tracts, models and application to the Muschelkalk carbonate platforms of eastern Spain. In: Posamentier HW, Summerhayes CP, Haq BU, Allen GP, editors. Sequence stratigraphy and facies associations. Vol. 18. Tulsa: IAS Spec. Publ.; p. 397–415.
  • Underwood MB, Bachman SB. 1982. Sedimentary facies associations within subduction complexes. In: Leggett JK, editor. Trench–forearc geology. Vol. 10. London: Geol. Soc. London Spec. Publ.; p. 537–550.
  • Underwood MB, Moore GF. 1995. Trenches and trench-slope basins. In: Busby C.J., Ingersoll R.V, editors. Tectonic of sedimentary basins. Cambridge: Blackwell Science; p. 179–219.
  • Van der Lingen GJ, Pettinga JG. 1980. The Makara basin: a Miocene slope basin along the New Zealand sector of the Australian–Pacific obliquely convergent plate boundary. In: Ballance PF, Reading HG, editors. Sedimentation in Oblique slip Mobile Zones. IAS Spec. Publ.; 4: p. 191–215.
  • Walker RG, Wiseman TR. 1995. Lowstand shorefaces, transgressive incised shorefaces, and forced regressions: examples from the Viking Formation, Joarcam area. Alberta J Sedim Res B. 65(1):132–141.
  • Woelkerling WJ, Irvine LM, Harvey AS. 1993. Growth-forms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Aust Syst Bot. 6:277–293.
  • Yesares-Garcia J, Aguirre J. 2004. Quantitative taphonomic analysis and taphofacies in lower Pliocene temperate carbonate–siliciclastic mixed platform deposits (Almeria-Nijar basin, SE Spain). Palaeogeogr Palaeoclim Palaeoecol. 207:83–103.
  • Zamagni J, Mutti M, Kosir A. 2008. Evolution of shallow benthic communities during the Late Paleocene-earliest Eocene transition in the Northern Tethys (SW Slovenia). Facies. 54:25–43.
  • Zecchin M. 2007. The architectural variability of small-scale cycles in shelf and ramp clastic systems: the controlling factors. Earth-Sc Rev. 84:21–55.
  • Zecchin M, Catuneanu O. 2013. High-resolution sequence stratigraphy of clastic shelves I: units and bounding surfaces. Mar Petrol Geol. 39:1–25.
  • Zecchin M, Civile D, Caffau M, Sturiale G, Roda C. 2011. Sequence stratigraphy in the context of rapid regional uplift and high-amplitude glacio-eustatic changes: the Pleistocene Cutro Terrace (Calabria, southern Italy). Sedimentology. 58:442–477.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.